[1]
Papagianni, M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv., 2004, 22(3), 189-259.
[2]
Pretorius, I.S. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast, 2000, 16(8), 675-729.
[3]
Sherman, F. Getting started with yeast. Methods Enzymol., 2002, 350, 3-41.
[4]
Yofe, I.; Schuldiner, M. Primers-4-Yeast: a comprehensive web tool for planning primers for Saccharomyces cerevisiae. Yeast, 2014, 31(2), 77-80.
[5]
Romanos, M.A.; Scorer, C.A.; Clare, J.J. Foreign gene expression in yeast: A review. Yeast, 1992, 8(6), 423-488.
[6]
Hebert, A.S.; Richards, A.L.; Bailey, D.J.; Ulbrich, A.; Coughlin, E.E.; Westphall, M.S.; Coon, J.J. The one hour yeast proteome. Mol. Cell. Proteomics, 2014, 13(1), 339-347.
[7]
Chong, Y.T.; Koh, J.L.; Friesen, H.; Duffy, S.K.; Cox, M.J.; Moses, A.; Moffat, J.; Boone, C.; Andrews, B.J. Yeast proteome dynamics from single cell imaging and automated analysis. Cell, 2015, 161(6), 1413-1424.
[8]
Liu, Y.; Beyer, A.; Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell, 2016, 165(3), 535-550.
[9]
Wilkins, M. Proteomics data mining. Expert Rev. Proteomics, 2009, 6(6), 599-603.
[10]
Anderson, N.L.; Anderson, N.G. Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis, 1998, 19(11), 1853-1861.
[11]
Berezovsky, I.N.; Guarnera, E.; Zheng, Z.; Eisenhaber, B.; Eisenhaber, F. Protein function machinery: from basic structural units to modulation of activity. Curr. Opin. Struct. Biol., 2017, 42, 67-74.
[12]
Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and their applications. J. Chromatogr. Sci., 2017, 55(2), 182-196.
[13]
Westman, J.O.; Taherzadeh, M.J.; Franzen, C.J. Proteomic analysis of the increased stress tolerance of Saccharomyces cerevisiae encapsulated in liquid core alginate-chitosan capsules. PLoS One, 2012, 7(11), e49335.
[14]
Van Oudenhove, L.; Devreese, B. A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics. Appl. Microbiol. Biotechnol., 2013, 97(11), 4749-4762.
[15]
Chalupova, J.; Raus, M.; Sedlarova, M.; Sebela, M. Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol. Adv., 2014, 32(1), 230-241.
[16]
Szopinska, A.; Christ, E.; Planchon, S.; Konig, H.; Evers, D.; Renaut, J. Stuck at work? Quantitative proteomics of environmental wine yeast strains reveals the natural mechanism of overcoming stuck fermentation. Proteomics, 2016, 16(4), 593-608.
[17]
Tokpohozin, S.E.; Lauterbach, A.; Fischer, S.; Behr, J.; Sacher, B.; Becker, T. Phenotypical and molecular characterization of yeast content in the starter of “Tchoukoutou,” a Beninese African sorghum beer. Eur. Food Res. Technol., 2016, 242(12), 2147-2160.
[18]
Kerr, E.D.; Schulz, B.L. Vegemite Beer: Yeast extract spreads as nutrient supplements to promote fermentation. PeerJ, 2016, 4, e2271.
[19]
Santos, R.M.; Nogueira, F.C.; Brasil, A.A.; Carvalho, P.C.; Leprevost, F.V.; Domont, G.B.; Eleutherio, E.C. Quantitative proteomic analysis of the Saccharomyces cerevisiae industrial strains CAT-1 and PE-2. J. Proteomics, 2017, 151, 114-121.
[20]
Chen, L.; Lee, J.J.L.; Zhang, J.; Chen, W.N. Comparative proteomic analysis of engineered Saccharomyces cerevisiae with enhanced free fatty acid accumulation. Appl. Microbiol. Biotechnol., 2016, 100(3), 1407-1420.
[21]
Qu, M.; An, B.; Shen, S.; Zhang, M.; Shen, X.; Duan, X.; Balthasar, J.P.; Qu, J. Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography mass spectrometry. Mass Spectrom. Rev., 2017, 36(6), 734-754.
[22]
Miah, S.; Banks, C.A.; Adams, M.K.; Florens, L.; Lukong, K.E.; Washburn, M.P. Advancement of mass spectrometry-based proteomics technologies to explore triple negative breast cancer. Mol. Biosyst., 2016, 13(1), 42-55.
[23]
Bond, U.; Blomberg, A. Principles and applications of genomics and proteomics in the analysis of industrial yeast strains.In: Yeasts in Food and Beverages; Querol, A.; Fleet, G., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2006, pp. 175-213.
[24]
Wright, E.P.; Partridge, M.A.; Padula, M.P.; Gauci, V.J.; Malladi, C.S.; Coorssen, J.R. Top-down proteomics: enhancing 2D gel electrophoresis from tissue processing to high-sensitivity protein detection. Proteomics, 2014, 14(7-8), 872-889.
[25]
Kohl, F.J.; Sanchez-Hernandez, L.; Neususs, C. Capillary electrophoresis in two-dimensional separation systems: Techniques and applications. Electrophoresis, 2015, 36(1), 144-158.
[26]
Magdeldin, S.; Enany, S.; Yoshida, Y.; Xu, B.; Zhang, Y.; Zureena, Z.; Lokamani, I.; Yaoita, E.; Yamamoto, T. Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis. Clin. Proteomics, 2014, 11(1), 16.
[27]
Feret, R.; Lilley, K.S. Protein profiling using two-dimensional
difference gel electrophoresis (2-D DIGE). Curr. Protoc. Protein
Sci., 2014, 75, Unit 22 2.
[28]
Arentz, G.; Weiland, F.; Oehler, M.K.; Hoffmann, P. State of the art of 2D DIGE. Proteomics Clin. Appl., 2015, 9(3-4), 277-288.
[29]
Oliveira, B.M.; Coorssen, J.R.; Martins-de-Souza, D. 2DE: The phoenix of proteomics. J. Proteomics, 2014, 104, 140-150.
[30]
Pomastowski, P.; Buszewski, B. Two-dimensional gel electrophoresis in the light of new developments. TrAC. Trends Analyt. Chem., 2014, 53, 167-177.
[31]
Washburn, M.P.; Yates, J.R. New methods of proteome analysis: Multidimensional chromatography and mass spectrometry. Trends Biotechnol., 2000, 18, 27-30.
[32]
Washburn, M.P. Utilisation of proteomics datasets generated via multidimensional protein identification technology (MudPIT). Brief. Funct. Genomics Proteomics, 2004, 3(3), 280-286.
[33]
The, M.; Tasnim, A.; Kall, L. How to talk about protein-level false discovery rates in shotgun proteomics. Proteomics, 2016, 16(18), 2461-2469.
[34]
Lereim, R.R.; Oveland, E.; Berven, F.S.; Vaudel, M.; Barsnes, H. Visualization, inspection and interpretation of shotgun proteomics identification results. Adv. Exp. Med. Biol., 2016, 919, 227-235.
[35]
Hamzeiy, H.; Cox, J. What computational non-targeted mass spectrometry-based metabolomics can gain from shotgun proteomics. Curr. Opin. Biotechnol., 2017, 43, 141-146.
[36]
Nagaraj, N.; Kulak, N.A.; Cox, J.; Neuhauser, N.; Mayr, K.; Hoerning, O.; Vorm, O.; Mann, M. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol. Cell
Proteomics, 2012, 11(3), M111 013722.
[37]
Picotti, P.; Clement-Ziza, M.; Lam, H.; Campbell, D.S.; Schmidt, A.; Deutsch, E.W.; Rost, H.; Sun, Z.; Rinner, O.; Reiter, L.; Shen, Q.; Michaelson, J.J.; Frei, A.; Alberti, S.; Kusebauch, U.; Wollscheid, B.; Moritz, R.L.; Beyer, A.; Aebersold, R. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature, 2013, 494(7436), 266-270.
[38]
Webb, K.J.; Xu, T.; Park, S.K.; Yates, J.R. 3rd. Modified MuDPIT separation identified 4488 proteins in a system-wide analysis of quiescence in yeast. J. Proteome Res., 2013, 12(5), 2177-2184.
[39]
Bianco, L.; Perrotta, G. Methodologies and perspectives of proteomics applied to filamentous fungi: From sample preparation to secretome analysis. Int. J. Mol. Sci., 2015, 16(3), 5803-5829.
[40]
Gygi, S.P.; Rochon, Y.; Franza, B.R.; Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol., 1999, 19(3), 1720-1730.
[41]
Garcia-Santamarina, S.; Boronat, S.; Domenech, A.; Ayte, J.; Molina, H.; Hidalgo, E. Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry. Nat. Protoc., 2014, 9(5), 1131-1145.
[42]
Koppel, I.; Fainzilber, M. Omics approaches for subcellular translation studies. Mol. Omics, 2018, 14(6), 380-388.
[43]
Zhao, X.; Hui, D.S.; Lee, R.; Edwards, J.L. Ratiometric quantitation of thiol metabolites using non-isotopic mass tags. Anal. Chim. Acta, 2018, 1037, 274-280.
[44]
Jia, S.; Wang, R.; Wu, K.; Jiang, H.; Du, Z. Elucidation of the mechanism of action for metal based anticancer drugs by mass spectrometry-based quantitative proteomics. Molecules, 2019, 24(3), 581.
[45]
Aguilar-Pontes, M.V.; de Vries, R.P.; Zhou, M. (Post-)genomics approaches in fungal research. Brief. Funct. Genomics, 2014, 13(6), 424-439.
[46]
Casey, T.M.; Khan, J.M.; Bringans, S.D.; Koudelka, T.; Takle, P.S.; Downs, R.A.; Livk, A.; Syme, R.A.; Tan, K.C.; Lipscombe, R.J. Analysis of reproducibility of proteome coverage and quantitation using isobaric mass tags (iTRAQ and TMT). J. Proteome Res., 2017, 16(2), 384-392.
[47]
Culibrk, L.; Croft, C.A.; Tebbutt, S.J. Systems biology approaches for host-fungal interactions: An expanding multi-omics frontier. OMICS, 2016, 20(3), 127-138.
[48]
Spanos, C.; Moore, J.B. Sample preparation approaches for iTRAQ labeling and quantitative proteomic analyses in systems biology. Methods Mol. Biol., 2016, 1394, 15-24.
[49]
Searle, B.C.; Yergey, A.L. An efficient solution for resolving iTRAQ and TMT channel crosstalk. J. Mass Spectrometry., 2019 In press
[50]
Mirzaei, M.; Pascovici, D.; Wu, J.X.; Chick, J.; Wu, Y.; Cooke, B.; Haynes, P.; Molloy, M.P. TMT one-stop shop: From reliable sample preparation to computational analysis platform.In: Proteome Bioinformatics; Springer, 2017, pp. 45-66.
[51]
Gonneaud, A.; Asselin, C.; Boudreau, F.; Boisvert, F.M. Phenotypic analysis of organoids by proteomics. Proteomics, 2017, 17(20), 1700023.
[52]
Chen, B.; Zhang, D.; Wang, X.; Ma, W.; Deng, S.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. Proteomics progresses in microbial physiology and clinical antimicrobial therapy. Eur. J. Clin. Microbiol. Infect. Dis., 2017, 36(3), 403-413.
[53]
Hsu, J.L.; Chen, S.H. Stable isotope dimethyl labelling for
quantitative proteomics and beyond. Philos. Trans. A Math. Phys.
Eng. Sci., 2016, 374(2079), pii: 20150364
[54]
Hsu, J.L.; Huang, S.Y.; Chow, N.H.; Chen, S.H. Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem., 2003, 75(24), 6843-6852.
[55]
Frost, D.C.; Rust, C.J.; Robinson, R.A.S.; Li, L.; Increased, N. N-dimethyl leucine isobaric tag multiplexing by a combined precursor isotopic labeling and isobaric tagging approach. Anal. Chem., 2018, 90(18), 10664-10669.
[56]
Renvoise, M.; Bonhomme, L.; Davanture, M.; Zivy, M.; Lemaire, C. Phosphoproteomic analysis of isolated mitochondria in yeast. Methods Mol. Biol., 2017, 1636, 283-299.
[57]
Renvoise, M.; Bonhomme, L.; Davanture, M.; Valot, B.; Zivy, M.; Lemaire, C. Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J. Proteomics, 2014, 106, 140-150.
[58]
Ahmad, Y.; Lamond, A.I. A perspective on proteomics in cell biology. Trends Cell Biol., 2014, 24(4), 257-264.
[59]
Mann, M.; Andersen, J.; Ishihama, Y.; Rappsilber, J.; Ong, S.; Foster, L.; Blagoev, B.; Kratchmarova, I.; Lasonder, E. Mass spectrometry based proteomics in cell biology and signaling research. Proceedings of the Australian Society for Biochemistry and Molecular Biology, 2002. Plenary-13
[60]
de Godoy, L.M. SILAC yeast: from labeling to comprehensive proteome quantification. Methods Mol. Biol., 2014, 1156, 81-109.
[61]
Kaneva, I.N.; Longworth, J.; Sudbery, P.E.; Dickman, M.J. Quantitative proteomic analysis in Candida albicans using SILAC‐based mass spectrometry. Proteomics, 2018, 18(5-6), 1700278.
[62]
Gruhler, A.; Olsen, J.V.; Mohammed, S.; Mortensen, P.; Faergeman, N.J.; Mann, M.; Jensen, O.N. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteomics, 2005, 4(3), 310-327.
[63]
Jang, W.E.; Kim, M.S. SILAC expands its territory to the pathogenic yeast, Candida albicans. Proteomics, 2018, 18(5-6), 1700458.
[64]
Noberini, R.; Bonaldi, T. A super-SILAC strategy for the accurate and multiplexed profiling of histone posttranslational modifications.In: Methods in enzymology; Elsevier, 2017, Vol. 586, pp. 311-332.
[65]
Anand, S.; Samuel, M.; Ang, C-S.; Keerthikumar, S.; Mathivanan, S. Label-based and label-free strategies for protein quantitation.In: Proteome Bioinformatics; Springer, 2017, pp. 31-43.
[66]
Greening, D.W.; Xu, R.; Gopal, S.K.; Rai, A.; Simpson, R.J. Proteomic insights into extracellular vesicle biology–defining exosomes and shed microvesicles. Expert Rev. Proteomics, 2017, 14(1), 69-95.
[67]
Aoki, W.; Ueda, T.; Tatsukami, Y.; Kitahara, N.; Morisaka, H.; Kuroda, K.; Ueda, M. Time-course proteomic profile of Candida albicans during adaptation to a fetal serum. Pathog. Dis., 2013, 67(1), 67-75.
[68]
Laskay, U.A.; Srzentic, K.; Fornelli, L.; Upir, O.; Kozhinov, A.N.; Monod, M.; Tsybin, Y.O. Practical considerations for improving the productivity of mass spectrometry-based proteomics. Chimia (Aarau), 2013, 67(4), 244-249.
[69]
Beck, S.; Michalski, A.; Raether, O.; Lubeck, M.; Kaspar, S.; Goedecke, N.; Baessmann, C.; Hornburg, D.; Meier, F.; Paron, I. The Impact II, a very high-resolution quadrupole time-of-flight instrument (QTOF) for deep shotgun proteomics. Mol. Cell. Proteomics, 2015, 14(7), 2014-2029.
[70]
Ghezzi, P.; Chan, P. Redox proteomics applied to the thiol secretome. Antioxid. Redox Signal., 2017, 26(7), 299-312.
[71]
Goeminne, L.J.; Gevaert, K.; Clement, L. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob. J. Proteomics, 2018, 171, 23-36.
[72]
Lyutvinskiy, Y.; Yang, H.; Rutishauser, D.; Zubarev, R.A. In silico instrumental response correction improves precision of label-free proteomics and accuracy of proteomics-based predictive models. Mol. Cell. Proteomics, 2013, 12(8), 2324-2331.
[73]
Fredens, J.; Engholm-Keller, K.; Moller-Jensen, J.; Larsen, M.R.; Faergeman, N.J. Identification of novel protein functions and signaling mechanisms by genetics and quantitative phosphoproteomics in Caenorhabditis elegans. Methods Mol. Biol., 2014, 1188, 107-124.
[74]
Cox, J.; Hein, M.Y.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics, 2014, 13(9), 2513-2526.
[75]
Bubis, J.A.; Levitsky, L.I.; Ivanov, M.V.; Tarasova, I.A.; Gorshkov, M.V. Comparative evaluation of label-free quantification methods for shotgun proteomics. Rapid Commun. Mass Spectrom., 2017, 31(7), 606-612.
[76]
Bhosale, S.D.; Moulder, R.; Kouvonen, P.; Lahesmaa, R.; Goodlett, D.R. Mass Spectrometry-Based Serum Proteomics for Biomarker Discovery and Validation.In: Serum/Plasma Proteomics; Springer, 2017, pp. 451-466.
[77]
Neilson, K.A.; Ali, N.A.; Muralidharan, S.; Mirzaei, M.; Mariani, M.; Assadourian, G.; Lee, A.; van Sluyter, S.C.; Haynes, P.A. Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics, 2011, 11(4), 535-553.
[78]
Kolkman, A.; Olsthoorn, M.M.; Heeremans, C.E.; Heck, A.J.; Slijper, M. Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol. Mol. Cell. Proteomics, 2005, 4(1), 1-11.
[79]
Brilhante, R.S.N.; Oliveira, J.S.; Evangelista, A.J.J.; Serpa, R.; Silva, A.L.D.; Aguiar, F.R.M.; Pereira, V.S.; Castelo-Branco, D.; Pereira-Neto, W.A.; Cordeiro, R.A.; Sidrim, J.J.C.; Rocha, M.F.G. Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans. Vet. Microbiol., 2016, 192, 213-219.
[80]
Bader, G.D.; Heilbut, A.; Andrews, B.; Tyers, M.; Hughes, T.; Boone, C. Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends Cell Biol., 2003, 13(7), 344-356.
[81]
Gavin, A.C.; Aloy, P.; Grandi, P.; Krause, R.; Boesche, M.; Marzioch, M.; Rau, C.; Jensen, L.J.; Bastuck, S.; Dumpelfeld, B.; Edelmann, A.; Heurtier, M.A.; Hoffman, V.; Hoefert, C.; Klein, K.; Hudak, M.; Michon, A.M.; Schelder, M.; Schirle, M.; Remor, M.; Rudi, T.; Hooper, S.; Bauer, A.; Bouwmeester, T.; Casari, G.; Drewes, G.; Neubauer, G.; Rick, J.M.; Kuster, B.; Bork, P.; Russell, R.B.; Superti-Furga, G. Proteome survey reveals modularity of the yeast cell machinery. Nature, 2006, 440(7084), 631-636.
[82]
Olshina, M.A.; Sharon, M. Mass spectrometry: A technique of many faces. Q. Rev. Biophys., 2016, 49, e18.
[83]
Graumann, J.; Dunipace, L.A.; Seol, J.H.; McDonald, W.H.; Yates, J.R. 3rd; Wold, B.J.; Deshaies, R.J. Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast. Mol. Cell. Proteomics, 2004, 3(3), 226-237.
[84]
Selevsek, N.; Chang, C.Y.; Gillet, L.C.; Navarro, P.; Bernhardt, O.M.; Reiter, L.; Cheng, L.Y.; Vitek, O.; Aebersold, R. Reproducible and consistent quantification of the Saccharomyces cerevisiae proteome by SWATH-mass spectrometry. Mol. Cell. Proteomics, 2015, 14(3), 739-749.
[85]
Seidel, G.; Meierhofer, D.; Sen, N.E.; Guenther, A.; Krobitsch, S.; Auburger, G. Quantitative global proteomics of yeast PBP1 deletion mutants and their stress responses identifies glucose metabolism, mitochondrial, and stress granule changes. J. Proteome Res., 2017, 16(2), 504-515.
[86]
Addis, M.F.; Tanca, A.; Landolfo, S.; Abbondio, M.; Cutzu, R.; Biosa, G.; Pagnozzi, D.; Uzzau, S.; Mannazzu, I. Proteomic analysis of Rhodotorula mucilaginosa: Dealing with the issues of a non-conventional yeast. Yeast, 2016, 33(8), 433-449.
[87]
Group, B.D.W. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther., 2001, 69(3), 89-95.
[88]
Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS, 2010, 5(6), 463-466.
[89]
Smeekens, J.M.; Xiao, H.; Wu, R. Global analysis of secreted proteins and glycoproteins in Saccharomyces cerevisiae. J. Proteome Res., 2017, 16(2), 1039-1049.
[90]
Gil-Bona, A.; Monteoliva, L.; Gil, C. Global proteomic profiling of the secretome of Candida albicans ecm33 cell wall mutant reveals the involvement of Ecm33 in Sap2 secretion. J. Proteome Res., 2015, 14(10), 4270-4281.
[91]
Leger, T.; Garcia, C.; Ounissi, M.; Lelandais, G.; Camadro, J.M. The metacaspase (Mca1p) has a dual role in farnesol-induced apoptosis in Candida albicans. Mol. Cell. Proteomics, 2015, 14(1), 93-108.
[92]
Bozhkov, P.V.; Suarez, M.F.; Filonova, L.H.; Daniel, G.; Zamyatnin, A.A. Jr.; Rodriguez-Nieto, S.; Zhivotovsky, B.; Smertenko, A. Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc. Natl. Acad. Sci. USA, 2005, 102(40), 14463-14468.
[93]
Caetano-Anolles, G.; Kim, H.S.; Mittenthal, J.E. The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. Proc. Natl. Acad. Sci. USA, 2007, 104(22), 9358-9363.
[94]
Lee, P.Y.; Gam, L.H.; Yong, V.C.; Rosli, R.; Ng, K.P.; Chong, P.P. Identification of immunogenic proteins of Candida parapsilosis by serological proteome analysis. J. Appl. Microbiol., 2014, 116(4), 999-1009.
[95]
Geddes, J.M.; Caza, M.; Croll, D.; Stoynov, N.; Foster, L.J.; Kronstad, J.W. Analysis of the protein kinase a-regulated proteome of cryptococcus neoformans identifies a role for the ubiquitin-proteasome pathway in capsule formation. MBio, 2016, 7(1), e01862-e15.
[96]
Coelho, C.; Bocca, A.L.; Casadevall, A. The tools for virulence of Cryptococcus neoformans. Adv. Appl. Microbiol., 2014, 87, 1-41.
[97]
Alspaugh, J.A. Virulence mechanisms and Cryptococcus neoformans pathogenesis. Fungal Genet. Biol., 2015, 78, 55-58.
[98]
Park, Y.D.; Shin, S.; Panepinto, J.; Ramos, J.; Qiu, J.; Frases, S.; Albuquerque, P.; Cordero, R.J.; Zhang, N.; Himmelreich, U.; Beenhouwer, D.; Bennett, J.E.; Casadevall, A.; Williamson, P.R. A role for LHC1 in higher order structure and complement binding of the Cryptococcus neoformans capsule. PLoS Pathog., 2014, 10(5), e1004037.
[99]
Geddes, J.M.; Croll, D.; Caza, M.; Stoynov, N.; Foster, L.J.; Kronstad, J.W. Secretome profiling of Cryptococcus neoformans reveals regulation of a subset of virulence-associated proteins and potential biomarkers by protein kinase A. BMC Microbiol., 2015, 15, 206.
[100]
Geddes-McAlister, J.; Shapiro, R.S. New pathogens, new tricks: Emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics. Ann. N. Y. Acad. Sci., 2019, 1435(1), 57-78.
[101]
Vu, K.; Eigenheer, R.A.; Phinney, B.S.; Gelli, A. Cryptococcus neoformans promotes its transmigration into the central nervous system by inducing molecular and cellular changes in brain endothelial cells. Infect. Immun., 2013, 81(9), 3139-3147.
[102]
Marinach-Patrice, C.; Fekkar, A.; Atanasova, R.; Gomes, J.; Djamdjian, L.; Brossas, J.Y.; Meyer, I.; Buffet, P.; Snounou, G.; Datry, A.; Hennequin, C.; Golmard, J.L.; Mazier, D. Rapid species diagnosis for invasive candidiasis using mass spectrometry. PLoS One, 2010, 5(1), e8862.
[103]
Marinach, C.; Alanio, A.; Palous, M.; Kwasek, S.; Fekkar, A.; Brossas, J.Y.; Brun, S.; Snounou, G.; Hennequin, C.; Sanglard, D.; Datry, A.; Golmard, J.L.; Mazier, D. MALDI-TOF MS-based drug susceptibility testing of pathogens: The example of Candida albicans and fluconazole. Proteomics, 2009, 9(20), 4627-4631.
[104]
Posteraro, B.; De Carolis, E.; Vella, A.; Sanguinetti, M. MALDI-TOF mass spectrometry in the clinical mycology laboratory: Identification of fungi and beyond. Expert Rev. Proteomics, 2013, 10(2), 151-164.
[105]
Stefaniuk, E.; Baraniak, A.; Fortuna, M.; Hryniewicz, W. Usefulness of CHROMagar Candida medium, biochemical methods--API ID32C and VITEK 2 compact and two MALDI-TOF MS systems for Candida spp. identification. Pol. J. Microbiol., 2016, 65(1), 111-114.
[106]
Bader, O. MALDI-TOF-MS-based species identification and typing approaches in medical mycology. Proteomics, 2013, 13(5), 788-799.
[108]
Santi, L.; Beys-da-Silva, W.O.; Berger, M.; Calzolari, D.; Guimaraes, J.A.; Moresco, J.J.; Yates, J.R. 3rd Proteomic profile of Cryptococcus neoformans biofilm reveals changes in metabolic processes. J. Proteome Res., 2014, 13(3), 1545-1559.
[109]
Truong, T.; Zeng, G.; Qingsong, L.; Kwang, L.T.; Tong, C.; Chan, F.Y.; Wang, Y.; Seneviratne, C.J. Comparative ploidy proteomics of Candida albicans biofilms unraveled the role of the AHP1 gene in the biofilm persistence against amphotericin B. Mol. Cell. Proteomics, 2016, 15(11), 3488-3500.
[110]
Vitali, A.; Vavala, E.; Marzano, V.; Leone, C.; Castagnola, M.; Iavarone, F.; Angiolella, L. Cell wall composition and biofilm formation of azoles-susceptible and -resistant Candida glabrata strains. J. Chemother., 2017, 29(3), 164-172.
[111]
Winter, M.B.; Salcedo, E.C.; Lohse, M.B.; Hartooni, N.; Gulati, M.; Sanchez, H.; Takagi, J.; Hube, B.; Andes, D.R.; Johnson, A.D.; Craik, C.S.; Nobile, C.J. Global identification of biofilm-specific proteolysis in Candida albicans. MBio, 2016, 7(5), e01514-16.
[112]
Dack, R.E.; Black, G.W.; Koutsidis, G.; Usher, S.J. The effect of Maillard reaction products and yeast strain on the synthesis of key higher alcohols and esters in beer fermentations. Food Chem., 2017, 232, 595-601.
[113]
Ciani, M.; Comitini, F. Yeast interactions in multi-starter wine fermentation. Curr. Opin. Food Sci., 2015, 1, 1-6.
[114]
Legras, J.L.; Moreno-Garcia, J.; Zara, S.; Zara, G.; Garcia-Martinez, T.; Mauricio, J.C.; Mannazzu, I.; Coi, A.L.; Bou Zeidan, M.; Dequin, S.; Moreno, J.; Budroni, M. Flor yeast: New perspectives beyond wine aging. Front. Microbiol., 2016, 7, 503.
[115]
Matallana, E.; Aranda, A. Biotechnological impact of stress response on wine yeast. Lett. Appl. Microbiol., 2017, 64(2), 103-110.
[116]
Munoz-Bernal, E.; Deery, M.J.; Rodriguez, M.E.; Cantoral, J.M.; Howard, J.; Feret, R.; Natera, R.; Lilley, K.S.; Fernandez-Acero, F.J. Analysis of temperature-mediated changes in the wine yeast Saccharomyces bayanus var uvarum. An oenological study of how the protein content influences wine quality. Proteomics, 2016, 16(4), 576-592.
[117]
Moreno-García, J.; Mauricio, J.C.; Moreno, J.; García-Martínez, T. Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation. Process Biochem., 2016, 51(5), 578-588.
[118]
Rice, C.J.; Pawlowsky, K.; Smart, C. Evaluating haze formation in flavoured lager beers using a range of forcing methods. J. Instit. Brewing., 2017, 123(3), 388-395.
[119]
Mostert, T.T.; Divol, B. Investigating the proteins released by yeasts in synthetic wine fermentations. Int. J. Food Microbiol., 2014, 171, 108-118.
[120]
Van Sluyter, S.C.; McRae, J.M.; Falconer, R.J.; Smith, P.A.; Bacic, A.; Waters, E.J.; Marangon, M. Wine protein haze: mechanisms of formation and advances in prevention. J. Agric. Food Chem., 2015, 63(16), 4020-4030.
[121]
Salvado, Z.; Chiva, R.; Rozes, N.; Cordero-Otero, R.; Guillamon, J.M. Functional analysis to identify genes in wine yeast adaptation to low-temperature fermentation. J. Appl. Microbiol., 2012, 113(1), 76-88.
[122]
Rodicio, R.; Heinisch, J.J. Carbohydrate Metabolism in Wine Yeasts.In: Biology of Microorganisms on Grapes, in Must and in Wine; König, H.; Unden, G.; Fröhlich, J., Eds.; Springer International Publishing: Cham, 2017, pp. 189-213.
[123]
García, J.M. Proteomic and metabolomic study of wine yeasts in free and immobilized formats, subjected to different stress conditions. Analytical thesis Universidad de Córdoba, Córdoba,, 2017.
[124]
Salvado, Z.; Chiva, R.; Rodriguez-Vargas, S.; Randez-Gil, F.; Mas, A.; Guillamon, J.M. Proteomic evolution of a wine yeast during the first hours of fermentation. FEMS Yeast Res., 2008, 8(7), 1137-1146.
[125]
Fasoli, E.; Righetti, P.G. Proteomics of fruits and beverages. Curr. Opin. Food Sci., 2015, 4, 76-85.
[126]
Picariello, G.; Mamone, G.; Cutignano, A.; Fontana, A.; Zurlo, L.; Addeo, F.; Ferranti, P. Proteomics, peptidomics, and immunogenic potential of wheat beer (Weissbier). J. Agric. Food Chem., 2015, 63(13), 3579-3586.
[127]
Kobi, D.; Zugmeyer, S.; Potier, S.; Jaquet-Gutfreund, L. Two-dimensional protein map of an “ale”-brewing yeast strain: proteome dynamics during fermentation. FEMS Yeast Res., 2004, 5(3), 213-230.
[128]
Xu, W.; Wang, J.; Li, Q. Comparative proteome and transcriptome analysis of lager brewer’s yeast in the autolysis process. FEMS Yeast Res., 2014, 14(8), 1273-1285.
[129]
Schulte, F.; Flaschel, E.; Niehaus, K. Proteome-based analysis of colloidal instability enables the detection of haze-active proteins in beer. J. Agric. Food Chem., 2016, 64(35), 6752-6761.
[130]
Blasco, L.; Vinas, M.; Villa, T.G. Proteins influencing foam formation in wine and beer: The role of yeast. Int. Microbiol., 2011, 14(2), 61-71.
[131]
Macedo, N.; Brigham, C.J. From beverages to biofuels: the journeys of ethanol-producing microorganisms. Int. J. Biotechnol. Wellness Industries., 2014, 3(3), 79-87.
[132]
Schulz, B.L.; Phung, T.K.; Bruschi, M.; Janusz, A.; Stewart, J.; Meehan, J.; Healy, P.; Nouwens, A.S.; Fox, G.P.; Vickers, C.E. Process proteomics of beer reveals a dynamic proteome with extensive modifications. J. Proteome Res., 2018, 17(4), 1647-1653.
[133]
Knight, M.J.; Bull, I.D.; Curnow, P. The yeast enzyme Eht1 is an octanoyl-CoA: Ethanol acyltransferase that also functions as a thioesterase. Yeast, 2014, 31(12), 463-474.
[134]
Petruzzi, L.; Rosaria Corbo, M.; Sinigaglia, M.; Bevilacqua, A. Brewer’s yeast in controlled and uncontrolled fermentations, with a focus on novel, nonconventional, and superior strains. Food Rev. Int., 2016, 32(4), 341-363.
[135]
Turvey, M.E.; Weiland, F.; Meneses, J.; Sterenberg, N.; Hoffmann, P. Identification of beer spoilage microorganisms using the MALDI Biotyper platform. Appl. Microbiol. Biotechnol., 2016, 100(6), 2761-2773.
[136]
De la Torre Gonzalez, F.J.; Gutierrez Avendano, D.O.; Gschaedler Mathis, A.C.; Kirchmayr, M.R. Evaluation of MALDI-TOF mass spectrometry for differentiation of Pichia kluyveri strains isolated from traditional fermentation processes. Rapid Commun. Mass Spectrom., 2018. [Epub ahead of print].
[137]
Lauterbach, A.; Wilde, C.; Bertrand, D.; Behr, J.; Vogel, R.F. Rating of the industrial application potential of yeast strains by molecular characterization. Eur. Food Res. Technol., 2018, 244(10), 1759-1772.
[138]
Farrell, A.E.; Plevin, R.J.; Turner, B.T.; Jones, A.D.; O’Hare, M.; Kammen, D.M. Ethanol can contribute to energy and environmental goals. Science, 2006, 311(5760), 506-508.
[139]
Sheng, J.; Feng, X. Metabolic engineering of yeast to produce fatty acid-derived biofuels: Bottlenecks and solutions. Front. Microbiol., 2015, 6, 554.
[140]
Basso, L.C.; de Amorim, H.V.; de Oliveira, A.J.; Lopes, M.L. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res., 2008, 8(7), 1155-1163.
[141]
Tang, X.; Feng, H.; Zhang, J.; Chen, W.N. Comparative proteomics analysis of engineered Saccharomyces cerevisiae with enhanced biofuel precursor production. PLoS One, 2013, 8(12), e84661.
[142]
Campbell, K.; Xia, J.; Nielsen, J. The impact of systems biology on bioprocessing. Trends Biotechnol., 2017, 35(12), 1156-1168.
[143]
Wang, T-Y. Engineering yeast for cellulosic ethanol production. Austin Chem. Eng., 2015, 2(2), 1018.
[144]
Latimer, L.N.; Lee, M.E.; Medina-Cleghorn, D.; Kohnz, R.A.; Nomura, D.K.; Dueber, J.E. Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab. Eng., 2014, 25, 20-29.
[145]
Landels, A.; Evans, C.; Noirel, J.; Wright, P.C. Advances in proteomics for production strain analysis. Curr. Opin. Biotechnol., 2015, 35, 111-117.
[146]
Sato, T.K.; Tremaine, M.; Parreiras, L.S.; Hebert, A.S.; Myers, K.S.; Higbee, A.J.; Sardi, M.; McIlwain, S.J.; Ong, I.M.; Breuer, R.J.; Narasimhan, R.A.; McGee, M.A.; Dickinson, Q.; La Reau, A.; Xie, D.; Tian, M.; Piotrowski, J.S.; Reed, J.L.; Zhang, Y.; Coon, J.J.; Hittinger, C.T.; Gasch, A.P.; Landick, R. Correction: Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae. PLoS Genet., 2016, 12(11), e1006447.
[147]
Sharma, N.K.; Behera, S.; Arora, R.; Kumar, S.; Sani, R.K. Xylose transport in yeast for lignocellulosic ethanol production: Current status. J. Biosci. Bioeng., 2018, 125(3), 259-267.
[148]
Liu, Z.H.; Qin, L.; Jin, M.J.; Pang, F.; Li, B.Z.; Kang, Y.; Dale, B.E.; Yuan, Y.J. Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment. Bioresour. Technol., 2013, 132, 5-15.
[149]
Qin, L.; Liu, Z.H.; Li, B.Z.; Dale, B.E.; Yuan, Y.J. Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresour. Technol., 2012, 112, 319-326.
[150]
Lv, Y.J.; Wang, X.; Ma, Q.; Bai, X.; Li, B.Z.; Zhang, W.; Yuan, Y.J. Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress. Appl. Microbiol. Biotechnol., 2014, 98(5), 2207-2221.
[151]
Koppram, R.; Mapelli, V.; Albers, E.; Olsson, L. The presence of pretreated lignocellulosic solids from birch during Saccharomyces cerevisiae fermentations leads to increased tolerance to inhibitors--A proteomic study of the effects. PLoS One, 2016, 11(2), e0148635.
[152]
Zheng, D.; Zhang, K.; Gao, K.; Liu, Z.; Zhang, X.; Li, O.; Sun, J.; Du, F.; Sun, P.; Qu, A.; Wu, X. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY) production. PLoS One, 2013, 8(12), e85022.
[153]
Shui, W.; Xiong, Y.; Xiao, W.; Qi, X.; Zhang, Y.; Lin, Y.; Guo, Y.; Zhang, Z.; Wang, Q.; Ma, Y. Understanding the mechanism of thermotolerance distinct from heat shock response through proteomic analysis of industrial strains of Saccharomyces cerevisiae. Mol. Cell. Proteomics, 2015, 14(7), 1885-1897.
[154]
Qi, F.; Zhao, X.; Kitahara, Y.; Li, T.; Ou, X.; Du, W.; Liu, D.; Huang, J. Integrative transcriptomic and proteomic analysis of the mutant lignocellulosic hydrolyzate-tolerant Rhodosporidium toruloides. Eng. Life Sci., 2017, 17(3), 249-261.
[156]
Paulo, J.A.; O’Connell, J.D.; Gaun, A.; Gygi, S.P. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae. Mol. Biol. Cell, 2015, 26(22), 4063-4074.
[157]
Paulo, J.A.; O’Connell, J.D.; Everley, R.A.; O’Brien, J.; Gygi, M.A.; Gygi, S.P. Quantitative mass spectrometry-based multiplexing compares the abundance of 5000 S. cerevisiae proteins across 10 carbon sources. J. Proteomics, 2016, 148, 85-93.
[158]
Ghiaci, P.; Norbeck, J.; Larsson, C. Physiological adaptations of Saccharomyces cerevisiae evolved for improved butanol tolerance. Biotechnol. Biofuels, 2013, 6(1), 101.
[159]
Li, H.; Ma, M.L.; Luo, S.; Zhang, R.M.; Han, P.; Hu, W. Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach. Int. J. Biochem. Cell Biol., 2012, 44(7), 1087-1096.
[160]
Dong, S.J.; Yi, C.F.; Li, H. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation. Int. J. Biochem. Cell Biol., 2015, 69, 196-203.
[161]
Vadia, S.; Tse, J.L.; Lucena, R.; Yang, Z.; Kellogg, D.R.; Wang, J.D.; Levin, P.A. Fatty acid availability sets cell envelope capacity and dictates microbial cell size. Curr. Biol., 2017, 27(12), 1757-1767.
[162]
Xu, K.; Yu, L.; Bai, W.; Xiao, B.; Liu, Y.; Lv, B.; Li, J.; Li, C. Construction of thermo-tolerant yeast based on an artificial protein quality control system (APQC) to improve the production of bio-ethanol. Chem. Eng. Sci., 2018, 177, 410-416.
[163]
Xiao, W.; Duan, X.; Lin, Y.; Cao, Q.; Li, S.; Guo, Y.; Gan, Y.; Qi, X.; Zhou, Y.; Guo, L.; Qin, P.; Wang, Q.; Shui, W. Distinct proteome remodeling of industrial Saccharomyces cerevisiae in response to prolonged thermal stress or transient heat shock. J. Proteome Res., 2018, 17(5), 1812-1825.
[164]
Hao, X.C.; Yang, X.S.; Wan, P.; Tian, S. Comparative proteomic analysis of a new adaptive Pichia stipitis strain to furfural, a lignocellulosic inhibitory compound. Biotechnol. Biofuels, 2013, 6(1), 34.
[165]
Passoth, V. Molecular Mechanisms in Yeast Carbon Metabolism: Bioethanol and Other Biofuels.In: Molecular Mechanisms in Yeast Carbon Metabolism; Piškur, J.; Compagno, C., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014, pp. 217-259.
[166]
Xu, J.; Liu, D. Exploitation of genus Rhodosporidium for microbial lipid production. World J. Microbiol. Biotechnol., 2017, 33(3), 54.
[167]
Liu, H.; Zhao, X.; Wang, F.; Li, Y.; Jiang, X.; Ye, M.; Zhao, Z.K.; Zou, H. Comparative proteomic analysis of Rhodosporidium toruloides during lipid accumulation. Yeast, 2009, 26(10), 553-566.
[168]
Liu, H.; Zhao, X.; Wang, F.; Jiang, X.; Zhang, S.; Ye, M.; Zhao, Z.K.; Zou, H. The proteome analysis of oleaginous yeast Lipomyces starkeyi. FEMS Yeast Res., 2011, 11(1), 42-51.
[169]
Capusoni, C.; Rodighiero, V.; Cucchetti, D.; Galafassi, S.; Bianchi, D.; Franzosi, G.; Compagno, C. Characterization of lipid accumulation and lipidome analysis in the oleaginous yeasts Rhodosporidium azoricum and Trichosporon oleaginosus. Bioresour. Technol., 2017, 238, 281-289.
[170]
Kumar, C.; Mann, M. Bioinformatics analysis of mass spectrometry-based proteomics data sets. FEBS Lett., 2009, 583(11), 1703-1712.
[171]
Cristoni, S.; Mazzuca, S. Bioinformatics Applied to Proteomics.In: Bioinformatics and Computational Modeling; Yang, N-S., Ed.; INTECH Open Access Publisher, 2011.
[172]
Fenyo, D.; Beavis, R.C. The GPMDB REST interface. Bioinformatics, 2015, 31(12), 2056-2058.
[173]
Vizcaino, J.A.; Csordas, A.; Del-Toro, N.; Dianes, J.A.; Griss, J.; Lavidas, I.; Mayer, G.; Perez-Riverol, Y.; Reisinger, F.; Ternent, T.; Xu, Q.W.; Wang, R.; Hermjakob, H. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res., 2016, 44(22), 11033.
[174]
Desiere, F.; Deutsch, E.W.; King, N.L.; Nesvizhskii, A.I.; Mallick, P.; Eng, J.; Chen, S.; Eddes, J.; Loevenich, S.N.; Aebersold, R. The PeptideAtlas project. Nucleic Acids Res., 2006, 34(Database issue), D655-D658.
[175]
Colangelo, C.M.; Shifman, M.; Cheung, K.H.; Stone, K.L.; Carriero, N.J.; Gulcicek, E.E.; Lam, T.T.; Wu, T.; Bjornson, R.D.; Bruce, C.; Nairn, A.C.; Rinehart, J.; Miller, P.L.; Williams, K.R. YPED: An integrated bioinformatics suite and database for mass spectrometry-based proteomics research. Genomics Proteomics Bioinformatics, 2015, 13(1), 25-35.
[176]
Vialas, V.; Sun, Z.; Loureiro y Penha, C.V.; Carrascal, M.; Abian, J.; Monteoliva, L.; Deutsch, E.W.; Aebersold, R.; Moritz, R.L.; Gil, C. A Candida albicans PeptideAtlas. J. Proteomics, 2014, 97, 62-68.
[177]
Vialas, V.; Sun, Z.; Reales-Calderon, J.A.; Hernaez, M.L.; Casas, V.; Carrascal, M.; Abian, J.; Monteoliva, L.; Deutsch, E.W.; Moritz, R.L.; Gil, C. A comprehensive Candida albicans PeptideAtlas build enables deep proteome coverage. J. Proteomics, 2016, 131, 122-130.
[178]
Gnad, F.; de Godoy, L.M.; Cox, J.; Neuhauser, N.; Ren, S.; Olsen, J.V.; Mann, M. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast. Proteomics, 2009, 9(20), 4642-4652.
[179]
Schmidt, A.; Forne, I.; Imhof, A. Bioinformatic analysis of proteomics data. BMC Systems. Biol., 2014, 8(2), S3.
[180]
Chen, C.; Huang, H.; Wu, C.H. Protein bioinformatics databases and resources. Methods Mol. Biol., 2017, 1558, 3-39.
[181]
Crowgey, E.L.; Matlock, A.; Venkatraman, V.; Fert-Bober, J.; Van Eyk, J.E. Mapping biological networks from quantitative data-independent acquisition mass spectrometry: Data to knowledge pipelines. Methods Mol. Biol., 2017, 1558, 395-413.
[182]
Pillich, R.T.; Chen, J.; Rynkov, V.; Welker, D.; Pratt, D. NDEx: A community resource for sharing and publishing of biological networks. Methods Mol. Biol., 2017, 1558, 271-301.
[183]
Kandasamy, K.; Mohan, S.S.; Raju, R.; Keerthikumar, S.; Kumar, G.S.; Venugopal, A.K.; Telikicherla, D.; Navarro, J.D.; Mathivanan, S.; Pecquet, C.; Gollapudi, S.K.; Tattikota, S.G.; Mohan, S.; Padhukasahasram, H.; Subbannayya, Y.; Goel, R.; Jacob, H.K.; Zhong, J.; Sekhar, R.; Nanjappa, V.; Balakrishnan, L.; Subbaiah, R.; Ramachandra, Y.L.; Rahiman, B.A.; Prasad, T.S.; Lin, J.X.; Houtman, J.C.; Desiderio, S.; Renauld, J.C.; Constantinescu, S.N.; Ohara, O.; Hirano, T.; Kubo, M.; Singh, S.; Khatri, P.; Draghici, S.; Bader, G.D.; Sander, C.; Leonard, W.J.; Pandey, A. NetPath: A public resource of curated signal transduction pathways. Genome Biol., 2010, 11(1), R3.
[184]
Schaefer, C.F.; Anthony, K.; Krupa, S.; Buchoff, J.; Day, M.; Hannay, T.; Buetow, K.H. PID: The pathway interaction database. Nucleic Acids Res., 2009, 37(Database issue), D674-D679.
[185]
Joshi-Tope, G.; Gillespie, M.; Vastrik, I.; D'Eustachio, P.; Schmidt, E.; de Bono, B.; Jassal, B.; Gopinath, G.R.; Wu, G.R.; Matthews, L.; Lewis, S.; Birney, E.; Stein, L. Reactome: A knowledgebase of biological pathways. Nucleic Acids Res., 2005, 33(suppl_1), D428-D432,
[186]
Fazekas, D.; Koltai, M.; Turei, D.; Modos, D.; Palfy, M.; Dul, Z.; Zsakai, L.; Szalay-Beko, M.; Lenti, K.; Farkas, I.J.; Vellai, T.; Csermely, P.; Korcsmaros, T. SignaLink 2 - a signaling pathway resource with multi-layered regulatory networks. BMC Syst. Biol., 2013, 7, 7.
[187]
Pico, A.R.; Kelder, T.; van Iersel, M.P.; Hanspers, K.; Conklin, B.R.; Evelo, C. WikiPathways: pathway editing for the people. PLoS Biol., 2008, 6(7), e184.
[188]
Caspi, R.; Altman, T.; Dreher, K.; Fulcher, C.A.; Subhraveti, P.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Latendresse, M.; Mueller, L.A.; Ong, Q.; Paley, S.; Pujar, A.; Shearer, A.G.; Travers, M.; Weerasinghe, D.; Zhang, P.; Karp, P.D. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 2012, 40(Database issue), D742-D753.
[189]
Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[190]
Jewison, T.; Su, Y.; Disfany, F.M.; Liang, Y.; Knox, C.; Maciejewski, A.; Poelzer, J.; Huynh, J.; Zhou, Y.; Arndt, D.; Djoumbou, Y.; Liu, Y.; Deng, L.; Guo, A.C.; Han, B.; Pon, A.; Wilson, M.; Rafatnia, S.; Liu, P.; Wishart, D.S. SMPDB 2.0: Big improvements to the small molecule pathway database. Nucleic Acids Res., 2014, 42(Database issue), D478-D484.
[191]
Elkon, R.; Vesterman, R.; Amit, N.; Ulitsky, I.; Zohar, I.; Weisz, M.; Mass, G.; Orlev, N.; Sternberg, G.; Blekhman, R.; Assa, J.; Shiloh, Y.; Shamir, R. SPIKE--a database, visualization and analysis tool of cellular signaling pathways. BMC Bioinformatics, 2008, 9, 110.
[192]
King, Z.A.; Lu, J.; Drager, A.; Miller, P.; Federowicz, S.; Lerman, J.A.; Ebrahim, A.; Palsson, B.O.; Lewis, N.E. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res., 2016, 44(D1), D515-D522.
[193]
Kramer, A.; Green, J.; Pollard, J., Jr; Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics, 2014, 30(4), 523-530.
[194]
Nikitin, A.; Egorov, S.; Daraselia, N.; Mazo, I. Pathway studio--the analysis and navigation of molecular networks. Bioinformatics, 2003, 19(16), 2155-2157.
[195]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(Database issue), D447-D452.