Review Article

抗VEGF治疗与年龄相关性黄斑变性的反应:疾病的易感性,药物遗传学和药代动力学

卷 27, 期 4, 2020

页: [549 - 569] 页: 21

弟呕挨: 10.2174/0929867326666190711105325

价格: $65

摘要

当前的审查集中在与年龄相关性黄斑变性(AMD)的发作和进展直接相关的不同因素上。特别是基于遗传和非遗传因素对AMD的易感性以及建立风险评分的基础上,是基于对不同基因的分析以衡量患病的风险。从药物动力学和药物遗传学的观点来看,与治疗AMD患者的实际治疗前景也存在相关性。在试图将个人分为“响应者”和“非响应者”时,常用的治疗方法以及不同的给药方式尤其重要。还将审查与药物反应相关的不同基因的分析,以及作为早期AMD检测和反应的可能生物标志物的microRNA(miRNA)的新兴领域。本文旨在从分子和动力学的角度为读者提供与AMD相关的不同出版物的综述,以及它的常用治疗方法,主要陷阱和未来方向,据我们所知,这些方法可能会引起评估和关注为了为AMD开发个性化的医学模型。

关键词: 易感性,药物遗传学,药物动力学,治疗,与年龄有关的黄斑变性,抗VEGF。

[1]
Bird, A.C.; Bressler, N.M.; Bressler, S.B.; Chisholm, I.H.; Coscas, G.; Davis, M.D.; de Jong, P.T.; Klaver, C.C.; Klein, B.E.; Klein, R. An international classification and grading system for age-related maculopathy and age-related macular degeneration. Surv. Ophthalmol., 1995, 39(5), 367-374.
[http://dx.doi.org/10.1016/S0039-6257(05)80092-X] [PMID: 7604360]
[2]
Resnikoff, S.; Pascolini, D.; Etya’ale, D.; Kocur, I.; Pararajasegaram, R.; Pokharel, G.P.; Mariotti, S.P. Global data on visual impairment in the year 2002. Bull. World Health Organ., 2004, 82(11), 844-851.
[http://dx.doi.org/S0042-96862004001100009] [PMID: 15640920]
[3]
Chen, Y.; Bedell, M.; Zhang, K. Age-related macular degeneration: genetic and environmental factors of disease. Mol. Interv., 2010, 10(5), 271-281.
[http://dx.doi.org/10.1124/mi.10.5.4] [PMID: 21045241]
[4]
Haddad, S.; Chen, C.A.; Santangelo, S.L.; Seddon, J.M. The genetics of age-related macular degeneration: a review of progress to date. Surv. Ophthalmol., 2006, 51(4), 316-363.
[http://dx.doi.org/10.1016/j.survophthal.2006.05.001] [PMID: 16818082]
[5]
Klein, R.; Cruickshanks, K.J.; Nash, S.D.; Krantz, E.M.; Nieto, F.J.; Huang, G.H.; Pankow, J.S.; Klein, B.E.K. The prevalence of age-related macular degeneration and associated risk factors. Arch. Ophthalmol., 2010, 128(6), 750-758.
[http://dx.doi.org/10.1001/archophthalmol.2010.92] [PMID: 20547953]
[6]
Sobrin, L.; Seddon, J.M. Nature and nurture- genes and environment- predict onset and progression of macular degeneration. Prog. Retin. Eye Res., 2014, 40, 1-15.
[http://dx.doi.org/10.1016/j.preteyeres.2013.12.004] [PMID: 24374240]
[7]
Seddon, J.M.; Cote, J.; Page, W.F.; Aggen, S.H.; Neale, M.C. The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences. Arch. Ophthalmol., 2005, 123(3), 321-327.
[http://dx.doi.org/10.1001/archopht.123.3.321] [PMID: 15767473]
[8]
Fritsche, L.G.; Fariss, R.N.; Stambolian, D.; Abecasis, G.R.; Curcio, C.A.; Swaroop, A. Age-related macular degeneration: genetics and biology coming together. Annu. Rev. Genomics Hum. Genet., 2014, 15, 151-171.
[http://dx.doi.org/10.1146/annurev-genom-090413-025610] [PMID: 24773320]
[9]
Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA, 2013, 309(19), 2005-2015.
[http://dx.doi.org/10.1001/jama.2013.4997] [PMID: 23644932]
[10]
Juan, V.T. Degeneración macular relacionada a la edad. Rev. Med. Clin. Las Condes, 2010, 21(6), 949-955.
[http://dx.doi.org/10.1016/S0716-8640(10)70620-9]
[11]
Rosenfeld, P.J.; Shapiro, H.; Tuomi, L.; Webster, M.; Elledge, J.; Blodi, B. MARINA and ANCHOR Study Groups. Characteristics of patients losing vision after 2 years of monthly dosing in the phase III ranibizumab clinical trials. Ophthalmology, 2011, 118(3), 523-530.
[http://dx.doi.org/10.1016/j.ophtha.2010.07.011] [PMID: 20920825]
[12]
Tolentino, M.J.; Dennrick, A.; John, E.; Tolentino, M.S. Drugs in Phase II clinical trials for the treatment of age-related macular degeneration. Expert Opin. Investig. Drugs, 2015, 24(2), 183-199.
[http://dx.doi.org/10.1517/13543784.2015.961601] [PMID: 25243494]
[13]
Martin, D.F.; Maguire, M.G.; Ying, G.S.; Grunwald, J.E.; Fine, S.L.; Jaffe, G.J. CATT Research Group. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N. Engl. J. Med., 2011, 364(20), 1897-1908.
[http://dx.doi.org/10.1056/NEJMoa1102673] [PMID: 21526923]
[14]
Chakravarthy, U.; Harding, S.P.; Rogers, C.A.; Downes, S.M.; Lotery, A.J.; Wordsworth, S.; Reeves, B.C. IVAN Study Investigators. Ranibizumab versus bevacizumab to treat neovascular age-related macular degeneration: one-year findings from the IVAN randomized trial. Ophthalmology, 2012, 119(7), 1399-1411.
[http://dx.doi.org/10.1016/j.ophtha.2012.04.015] [PMID: 22578446]
[15]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[16]
Grassmann, F.; Schoenberger, P.G.A.; Brandl, C.; Schick, T.; Hasler, D.; Meister, G.; Fleckenstein, M.; Lindner, M.; Helbig, H.; Fauser, S.; Weber, B.H. A circulating microrna profile is associated with late-stage neovascular age-related macular degeneration. PLoS One, 2014, 9(9)e107461
[http://dx.doi.org/10.1371/journal.pone.0107461] [PMID: 25203061]
[17]
Hung, T.; Chang, H.Y. Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol., 2010, 7(5), 582-585.
[http://dx.doi.org/10.4161/rna.7.5.13216] [PMID: 20930520]
[18]
Smith, W.; Assink, J.; Klein, R.; Mitchell, P.; Klaver, C.C.; Klein, B.E.; Hofman, A.; Jensen, S.; Wang, J.J.; de Jong, P.T. Risk factors for age-related macular degeneration: Pooled findings from three continents. Ophthalmology, 2001, 108(4), 697-704.
[http://dx.doi.org/10.1016/S0161-6420(00)00580-7] [PMID: 11297486]
[19]
Seddon, J.M.; Ajani, U.A.; Mitchell, B.D. Familial aggregation of age-related maculopathy. Am. J. Ophthalmol., 1997, 123(2), 199-206.
[http://dx.doi.org/10.1016/S0002-9394(14)71036-0] [PMID: 9186125]
[20]
Tomany, S.C.; Wang, J.J.; Van Leeuwen, R.; Klein, R.; Mitchell, P.; Vingerling, J.R.; Klein, B.E.K.; Smith, W.; De Jong, P.T.V.M. Risk factors for incident age-related macular degeneration: pooled findings from 3 continents. Ophthalmology, 2004, 111(7), 1280-1287.
[http://dx.doi.org/10.1016/j.ophtha.2003.11.010] [PMID: 15234127]
[21]
Velilla, S.; García-Medina, J.J.; García-Layana, A.; Dolz-Marco, R.; Pons-Vázquez, S.; Pinazo-Durán, M.D.; Gómez-Ulla, F.; Arévalo, J.F.; Díaz-Llopis, M.; Gallego-Pinazo, R. Smoking and age-related macular degeneration: review and update. J. Ophthalmol., 2013, 2013895147
[http://dx.doi.org/10.1155/2013/895147] [PMID: 24368940]
[22]
Ayala-Haedo, J.A.; Gallins, P.J.; Whitehead, P.L.; Schwartz, S.G.; Kovach, J.L.; Postel, E.A.; Agarwal, A.; Wang, G.; Haines, J.L.; Pericak-Vance, M.A.; Scott, W.K. Analysis of single nucleotide polymorphisms in the NOS2A gene and interaction with smoking in age-related macular degeneration. Ann. Hum. Genet., 2010, 74(3), 195-201.
[http://dx.doi.org/10.1111/j.1469-1809.2010.00x] [PMID: 20374233]
[23]
Naj, A.C.; Scott, W.K.; Courtenay, M.D.; Cade, W.H.; Schwartz, S.G.; Kovach, J.L.; Agarwal, A.; Wang, G.; Haines, J.L.; Pericak-Vance, M.A. Genetic factors in nonsmokers with age-related macular degeneration revealed through genome-wide gene-environment interaction analysis. Ann. Hum. Genet., 2013, 77(3), 215-231.
[http://dx.doi.org/10.1111/ahg.12011] [PMID: 23577725]
[24]
Jabbarpoor Bonyadi, M.H.; Yaseri, M.; Bonyadi, M.; Soheilian, M.; Nikkhah, H. Association of combined cigarette smoking and ARMS2/LOC387715 A69S polymorphisms with age-related macular degeneration: a meta-analysis. Ophthalmic Genet., 2017, 38(4), 308-313.
[http://dx.doi.org/10.1080/13816810.2016.1237664] [PMID: 28095100]
[25]
Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch. Ophthalmol., 2001, 119(10), 1417-1436.
[http://dx.doi.org/10.1001/archopht.119.10.1417] [PMID: 11594942]
[26]
Broekmans, W.M.; Berendschot, T.T.; Klöpping-Ketelaars, I.A.; de Vries, A.J.; Goldbohm, R.A.; Tijburg, L.B.; Kardinaal, A.F.; van Poppel, G. Macular pigment density in relation to serum and adipose tissue concentrations of lutein and serum concentrations of zeaxanthin. Am. J. Clin. Nutr., 2002, 76(3), 595-603.
[http://dx.doi.org/10.1093/ajcn/76.3.595] [PMID: 12198005]
[27]
Bovier, E.R.; Lewis, R.D.; Hammond, B.R., Jr The relationship between lutein and zeaxanthin status and body fat. Nutrients, 2013, 5(3), 750-757.
[http://dx.doi.org/10.3390/nu5030750] [PMID: 23529076]
[28]
Zhang, Q.Y.; Tie, L.J.; Wu, S.S. L.V, P.L.; Huang, H.W.; Wang, W.Q.; Wang, H.; Ma, L. Overweight, obesity, and risk of age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 2016, 57(3), 1276-1283.
[http://dx.doi.org/10.1167/iovs.15-18637] [PMID: 26990164]
[29]
Seddon, J.M.; Cote, J.; Davis, N.; Rosner, B. Progression of age-related macular degeneration: association with body mass index, waist circumference, and waist-hip ratio. Arch. Ophthalmol., 2003, 121(6), 785-792.
[http://dx.doi.org/10.1001/archopht.121.6.785] [PMID: 12796248]
[30]
Edwards, D.R.V.; Gallins, P.; Polk, M.; Ayala-Haedo, J.; Schwartz, S.G.; Kovach, J.L.; Spencer, K.; Wang, G.; Agarwal, A.; Postel, E.A.; Haines, J.L.; Pericak-Vance, M.; Scott, W.K. Inverse association of female hormone replacement therapy with age-related macular degeneration and interactions with ARMS2 polymorphisms. Invest. Ophthalmol. Vis. Sci., 2010, 51(4), 1873-1879.
[http://dx.doi.org/10.1167/iovs.09-4000] [PMID: 19933179]
[31]
Cascella, R.; Strafella, C.; Caputo, V.; Errichiello, V.; Zampatti, S.; Milano, F.; Potenza, S.; Mauriello, S.; Novelli, G.; Ricci, F.; Cusumano, A.; Giardina, E. Towards the application of precision medicine in age-related macular degeneration. Prog. Retin. Eye Res., 2018, 63, 132-146.
[http://dx.doi.org/10.1016/j.preteyeres.2017.11.004] [PMID: 29197628]
[32]
Hammond, C.J.; Webster, A.R.; Snieder, H.; Bird, A.C.; Gilbert, C.E.; Spector, T.D. Genetic influence on early age-related maculopathy: a twin study. Ophthalmology, 2002, 109(4), 730-736.
[http://dx.doi.org/10.1016/S0161-6420(01)01049-1] [PMID: 11927430]
[33]
Klein, R.J.; Zeiss, C.; Chew, E.Y.; Tsai, J.Y.; Sackler, R.S.; Haynes, C.; Henning, A.K.; SanGiovanni, J.P.; Mane, S.M.; Mayne, S.T.; Bracken, M.B.; Ferris, F.L.; Ott, J.; Barnstable, C.; Hoh, J. Complement factor H polymorphism in age-related macular degeneration. Science, 2005, 308(5720), 385-389.
[http://dx.doi.org/10.1126/science.1109557] [PMID: 15761122]
[34]
Rivera, A.; Fisher, S.A.; Fritsche, L.G.; Keilhauer, C.N.; Lichtner, P.; Meitinger, T.; Weber, B.H.F. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum. Mol. Genet., 2005, 14(21), 3227-3236.
[http://dx.doi.org/10.1093/hmg/ddi353] [PMID: 16174643]
[35]
Fritsche, L.G.; Chen, W.; Schu, M.; Yaspan, B.L.; Yu, Y.; Thorleifsson, G.; Zack, D.J.; Arakawa, S.; Cipriani, V.; Ripke, S. Seven new loci associated with age-related macular degeneration. Nat. Genet., 2013, 45(4), 433-439.
[http://dx.doi.org/10.1038%2Fng.2578] [PMID: 23455636]
[36]
Hageman, G.S.; Anderson, D.H.; Johnson, L.V.; Hancox, L.S.; Taiber, A.J.; Hardisty, L.I.; Hageman, J.L.; Stockman, H.A.; Borchardt, J.D.; Gehrs, K.M.; Smith, R.J.; Silvestri, G.; Russell, S.R.; Klaver, C.C.; Barbazetto, I.; Chang, S.; Yannuzzi, L.A.; Barile, G.R.; Merriam, J.C.; Smith, R.T.; Olsh, A.K.; Bergeron, J.; Zernant, J.; Merriam, J.E.; Gold, B.; Dean, M.; Allikmets, R. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc. Natl. Acad. Sci. USA, 2005, 102(20), 7227-7232.
[http://dx.doi.org/10.1073/pnas.0501536102] [PMID: 15870199]
[37]
Gold, B.; Merriam, J.E.; Zernant, J.; Hancox, L.S.; Taiber, A.J.; Gehrs, K.; Cramer, K.; Neel, J.; Bergeron, J.; Barile, G.R.; Smith, R.T.; Hageman, G.S.; Dean, M.; Allikmets, R. AMD Genetics Clinical Study Group. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat. Genet., 2006, 38(4), 458-462.
[http://dx.doi.org/10.1038/ng1750] [PMID: 16518403]
[38]
Li, M.; Atmaca-Sonmez, P.; Othman, M.; Branham, K.E.H.; Khanna, R.; Wade, M.S.; Li, Y.; Liang, L.; Zareparsi, S.; Swaroop, A.; Abecasis, G.R. CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nat. Genet., 2006, 38(9), 1049-1054.
[http://dx.doi.org/10.1038/ng1871] [PMID: 16936733]
[39]
Yates, J.R.W.; Sepp, T.; Matharu, B.K.; Khan, J.C.; Thurlby, D.A.; Shahid, H.; Clayton, D.G.; Hayward, C.; Morgan, J.; Wright, A.F.; Armbrecht, A.M.; Dhillon, B.; Deary, I.J.; Redmond, E.; Bird, A.C.; Moore, A.T. Genetic Factors in AMD Study Group. Complement C3 variant and the risk of age-related macular degeneration. N. Engl. J. Med., 2007, 357(6), 553-561.
[http://dx.doi.org/10.1056/NEJMoa072618] [PMID: 17634448]
[40]
Seddon, J.M.; Yu, Y.; Miller, E.C.; Reynolds, R.; Tan, P.L.; Gowrisankar, S.; Goldstein, J.I.; Triebwasser, M.; Anderson, H.E.; Zerbib, J.; Kavanagh, D.; Souied, E.; Katsanis, N.; Daly, M.J.; Atkinson, J.P.; Raychaudhuri, S. Rare variants in CFI, C3 and C9 are associated with high risk of advanced age-related macular degeneration. Nat. Genet., 2013, 45(11), 1366-1370.
[http://dx.doi.org/10.1038/ng.2741] [PMID: 24036952]
[41]
Nishiguchi, K.M.; Yasuma, T.R.; Tomida, D.; Nakamura, M.; Ishikawa, K.; Kikuchi, M.; Ohmi, Y.; Niwa, T.; Hamajima, N.; Furukawa, K.; Terasaki, H. C9-R95X polymorphism in patients with neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 2012, 53(1), 508-512.
[http://dx.doi.org/10.1167/iovs.11-8425] [PMID: 22190594]
[42]
Thakkinstian, A.; Bowe, S.; McEvoy, M.; Smith, W.; Attia, J. Association between apolipoprotein E polymorphisms and age-related macular degeneration: A HuGE review and meta-analysis. Am. J. Epidemiol., 2006, 164(9), 813-822.
[http://dx.doi.org/10.1093/aje/kwj279] [PMID: 16916985]
[43]
Kaur, I.; Hussain, A.; Hussain, N.; Das, T.; Pathangay, A.; Mathai, A.; Hussain, A.; Nutheti, R.; Nirmalan, P.K.; Chakrabarti, S. Analysis of CFH, TLR4, and APOE polymorphism in India suggests the Tyr402His variant of CFH to be a global marker for age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 2006, 47(9), 3729-3735.
[http://dx.doi.org/10.1167/iovs.05-1430] [PMID: 16936080]
[44]
Souied, E.H.; Ducroq, D.; Rozet, J.M.; Gerber, S.; Perrault, I.; Munnich, A.; Coscas, G.; Soubrane, G.; Kaplan, J. ABCR gene analysis in familial exudative age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 2000, 41(1), 244-247.
[PMID: 10634626]
[45]
Yang, Z.; Camp, N.J.; Sun, H.; Tong, Z.; Gibbs, D.; Cameron, D.J.; Chen, H.; Zhao, Y.; Pearson, E.; Li, X.; Chien, J.; Dewan, A.; Harmon, J.; Bernstein, P.S.; Shridhar, V.; Zabriskie, N.A.; Hoh, J.; Howes, K.; Zhang, K. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science, 2006, 314(5801), 992-993.
[http://dx.doi.org/10.1126/science.1133811] [PMID: 17053109]
[46]
Chen, H.; Yang, Z.; Gibbs, D.; Yang, X.; Hau, V.; Zhao, P.; Ma, X.; Zeng, J.; Luo, L.; Pearson, E.; Constantine, R.; Kaminoh, Y.; Harmon, J.; Tong, Z.; Stratton, C.A.; Cameron, D.J.; Tang, S.; Zhang, K. Association of HTRA1 polymorphism and bilaterality in advanced age-related macular degeneration. Vision Res., 2008, 48(5), 690-694.
[http://dx.doi.org/10.1016/j.visres.2007.10.014] [PMID: 18206206]
[47]
Cameron, D.J.; Yang, Z.; Gibbs, D.; Chen, H.; Kaminoh, Y.; Jorgensen, A.; Zeng, J.; Luo, L.; Brinton, E.; Brinton, G.; Brand, J.M.; Bernstein, P.S.; Zabriskie, N.A.; Tang, S.; Constantine, R.; Tong, Z.; Zhang, K. HTRA1 variant confers similar risks to geographic atrophy and neovascular age-related macular degeneration. Cell Cycle, 2007, 6(9), 1122-1125.
[http://dx.doi.org/10.4161/cc.6.9.4157] [PMID: 17426452]
[48]
Huang, C.; Xu, Y.; Li, X.; Wang, W. Vascular endothelial growth factor A polymorphisms and age-related macular degeneration: a systematic review and meta-analysis. Mol. Vis., 2013, 19, 1211-1221.
[PMID: 23761723]
[49]
Fritsche, L.G.; Igl, W.; Bailey, J.N.C.; Grassmann, F.; Sengupta, S.; Bragg-Gresham, J.L.; Burdon, K.P.; Hebbring, S.J.; Wen, C.; Gorski, M.; Kim, I.K.; Cho, D.; Zack, D.; Souied, E.; Scholl, H.P.; Bala, E.; Lee, K.E.; Hunter, D.J.; Sardell, R.J.; Mitchell, P.; Merriam, J.E.; Cipriani, V.; Hoffman, J.D.; Schick, T.; Lechanteur, Y.T.; Guymer, R.H.; Johnson, M.P.; Jiang, Y.; Stanton, C.M.; Buitendijk, G.H.; Zhan, X.; Kwong, A.M.; Boleda, A.; Brooks, M.; Gieser, L.; Ratnapriya, R.; Branham, K.E.; Foerster, J.R.; Heckenlively, J.R.; Othman, M.I.; Vote, B.J.; Liang, H.H.; Souzeau, E.; McAllister, I.L.; Isaacs, T.; Hall, J.; Lake, S.; Mackey, D.A.; Constable, I.J.; Craig, J.E.; Kitchner, T.E.; Yang, Z.; Su, Z.; Luo, H.; Chen, D.; Ouyang, H.; Flagg, K.; Lin, D.; Mao, G.; Ferreyra, H.; Stark, K.; von Strachwitz, C.N.; Wolf, A.; Brandl, C.; Rudolph, G.; Olden, M.; Morrison, M.A.; Morgan, D.J.; Schu, M.; Ahn, J.; Silvestri, G.; Tsironi, E.E.; Park, K.H.; Farrer, L.A.; Orlin, A.; Brucker, A.; Li, M.; Curcio, C.A.; Mohand-Saïd, S.; Sahel, J.A.; Audo, I.; Benchaboune, M.; Cree, A.J.; Rennie, C.A.; Goverdhan, S.V.; Grunin, M.; Hagbi-Levi, S.; Campochiaro, P.; Katsanis, N.; Holz, F.G.; Blond, F.; Blanché, H.; Deleuze, J.F.; Igo, R.P., Jr; Truitt, B.; Peachey, N.S.; Meuer, S.M.; Myers, C.E.; Moore, E.L.; Klein, R.; Hauser, M.A.; Postel, E.A.; Courtenay, M.D.; Schwartz, S.G.; Kovach, J.L.; Scott, W.K.; Liew, G.; Tan, A.G.; Gopinath, B.; Merriam, J.C.; Smith, R.T.; Khan, J.C.; Shahid, H.; Moore, A.T.; McGrath, J.A.; Laux, R.; Brantley, M.A., Jr; Agarwal, A.; Ersoy, L.; Caramoy, A.; Langmann, T.; Saksens, N.T.; de Jong, E.K.; Hoyng, C.B.; Cain, M.S.; Richardson, A.J.; Martin, T.M.; Blangero, J.; Weeks, D.E.; Dhillon, B.; van Duijn, C.M.; Doheny, K.F.; Romm, J.; Klaver, C.C.; Hayward, C.; Gorin, M.B.; Klein, M.L.; Baird, P.N.; den Hollander, A.I.; Fauser, S.; Yates, J.R.; Allikmets, R.; Wang, J.J.; Schaumberg, D.A.; Klein, B.E.; Hagstrom, S.A.; Chowers, I.; Lotery, A.J.; Léveillard, T.; Zhang, K.; Brilliant, M.H.; Hewitt, A.W.; Swaroop, A.; Chew, E.Y.; Pericak-Vance, M.A.; DeAngelis, M.; Stambolian, D.; Haines, J.L.; Iyengar, S.K.; Weber, B.H.; Abecasis, G.R.; Heid, I.M. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet., 2016, 48(2), 134-143.
[http://dx.doi.org/10.1038/ng.3448] [PMID: 26691988]
[50]
Mousavi, M.; Armstrong, R.A. Genetic risk factors and age-related macular degeneration (AMD). J. Optom., 2013, 6(4), 176-184.
[http://dx.doi.org/10.1016/j.optom.2013.07.002]
[51]
Brión, M.; Sanchez-Salorio, M.; Cortón, M.; de la Fuente, M.; Pazos, B.; Othman, M.; Swaroop, A.; Abecasis, G.; Sobrino, B.; Carracedo, A. Spanish multi-centre group of AMD. Genetic association study of age-related macular degeneration in the Spanish population. Acta Ophthalmol., 2011, 89(1), e12-e22.
[http://dx.doi.org/10.1111/j.1755-3768.2010.02040.x] [PMID: 21106043]
[52]
Mullins, R.F.; Skeie, J.M.; Folk, J.C.; Solivan-Timpe, F.M.; Oetting, T.A.; Huang, J.; Wang, K.; Stone, E.M.; Fingert, J.H. Evaluation of variants in the selectin genes in age-related macular degeneration. BMC Med. Genet., 2011, 12(1), 58.
[http://dx.doi.org/10.1186/1471-2350-12-58] [PMID: 21521525]
[53]
Fuse, N.; Mengkegale, M.; Miyazawa, A.; Abe, T.; Nakazawa, T.; Wakusawa, R.; Nishida, K. Polymorphisms in ARMS2 (LOC387715) and LOXL1 genes in the Japanese with age-related macular degeneration. Am. J. Ophthalmol., 2011, 151(3), 550-556.
[http://dx.doi.org/10.1016/j.ajo.2010.08.048] [PMID: 21236409]
[54]
Hautamäki, A.; Seitsonen, S.; Holopainen, J.M.; Moilanen, J.A.; Kivioja, J.; Onkamo, P.; Järvelä, I.; Immonen, I. The genetic variant rs4073 A→T of the Interleukin-8 promoter region is associated with the earlier onset of exudative age-related macular degeneration. Acta Ophthalmol., 2015, 93(8), 726-733.
[http://dx.doi.org/10.1111/aos.12799] [PMID: 26154559]
[55]
Brown, D.M.; Michels, M.; Kaiser, P.K.; Heier, J.S.; Sy, J.P.; Ianchulev, T. ANCHOR Study Group. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology, 2009, 116(1), 57-65.
[http://dx.doi.org/10.1016/j.ophtha.2008.10.018] [PMID: 19118696]
[56]
Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.K.; Chung, C.Y.; Kim, R.Y. MARINA Study Group. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med., 2006, 355(14), 1419-1431.
[http://dx.doi.org/10.1056/NEJMoa054481] [PMID: 17021318]
[57]
Lalwani, G.A.; Rosenfeld, P.J.; Fung, A.E.; Dubovy, S.R.; Michels, S.; Feuer, W.; Davis, J.L.; Flynn, H.W., Jr; Esquiabro, M. A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO Study. Am. J. Ophthalmol., 2009, 148(1), 43-e1.
[http://dx.doi.org/10.1016/j.ajo.2009.01.024] [PMID: 19376495]
[58]
Berg, K.; Pedersen, T.R.; Sandvik, L.; Bragadóttir, R. Comparison of ranibizumab and bevacizumab for neovascular age-related macular degeneration according to LUCAS treat-and-extend protocol. Ophthalmology, 2015, 122(1), 146-152.
[http://dx.doi.org/10.1016/j.ophtha.2014.07.041] [PMID: 25227499]
[59]
Wykoff, C.C.; Ou, W.C.; Brown, D.M.; Croft, D.E.; Wang, R.; Payne, J.F.; Clark, W.L.; Abdelfattah, N.S.; Sadda, S.R. TREX-AMD Study Group. Randomized trial of treat-and-extend versus monthly dosing for neovascular age-related macular degeneration: 2-Year results of the TREX-AMD study. Ophthalmol. Retina, 2017, 1(4), 314-321.
[http://dx.doi.org/10.1016/j.oret.2016.12.004] [PMID: 31047517]
[60]
Schmidt-Erfurth, U.; Kaiser, P.K.; Korobelnik, J-F.; Brown, D.M.; Chong, V.; Nguyen, Q.D.; Ho, A.C.; Ogura, Y.; Simader, C.; Jaffe, G.J.; Slakter, J.S.; Yancopoulos, G.D.; Stahl, N.; Vitti, R.; Berliner, A.J.; Soo, Y.; Anderesi, M.; Sowade, O.; Zeitz, O.; Norenberg, C.; Sandbrink, R.; Heier, J.S. Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies. Ophthalmology, 2014, 121(1), 193-201.
[http://dx.doi.org/10.1016/j.ophtha.2013.08.011] [PMID: 24084500]
[61]
Wykoff, C. C.; Clark, W. L.; Nielsen, J. S.; Brill, J. V.; Greene, L. S.; Heggen, C. L. Optimizing anti-VEGF treatment outcomes for patients with neovascular age-related macular degeneration. J. Manag. Care Spec. Pharm, 2018, 24(2-a Suppl.), S3-S15.
[http://dx.doi.org/10.18553/jmcp.2018.24.2-a.s3] [PMID: 29383980]
[62]
Hatz, K.; Prünte, C. Treat and extend versus pro re nata regimens of ranibizumab in neovascular age-related macular degeneration: a comparative 12 Month study. Acta Ophthalmol., 2017, 95(1), e67-e72.
[http://dx.doi.org/10.1111/aos.13031] [PMID: 27009503]
[63]
Kvannli, L.; Krohn, J. Switching from pro re nata to treat-and-extend regimen improves visual acuity in patients with neovascular age-related macular degeneration. Acta Ophthalmol., 2017, 95(7), 678-682.
[http://dx.doi.org/10.1111/aos.13356] [PMID: 28139082]
[64]
Arias Barquet, L.; Monés, J. New treatment protocols and follow-up in patients with exudative age-related macular degeneration. Arch. Soc. Esp. Oftalmol., 2012, 87(Suppl. 1), 10-17.
[http://dx.doi.org/10.1016/S0365-6691(12)70047-3] [PMID: 23380436]
[65]
Gemenetzi, M.; Patel, P.J. A systematic review of the treat and extend treatment regimen with anti-VEGF agents for neovascular age-related macular degeneration. Ophthalmol. Ther., 2017, 6(1), 79-92.
[http://dx.doi.org/10.1007/s40123-017-0087-5] [PMID: 28451952]
[66]
Fung, A.E.; Lalwani, G.A.; Rosenfeld, P.J.; Dubovy, S.R.; Michels, S.; Feuer, W.J.; Puliafito, C.A.; Davis, J.L.; Flynn, H.W., Jr; Esquiabro, M. An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (lucentis) for neovascular age-related macular degeneration. Am. J. Ophthalmol., 2007, 143(4), 566-583.
[http://dx.doi.org/10.1016/j.ajo.2007.01.028] [PMID: 17386270]
[67]
Muether, P.S.; Hermann, M.M.; Dröge, K.; Kirchhof, B.; Fauser, S. Long-term stability of vascular endothelial growth factor suppression time under ranibizumab treatment in age-related macular degeneration. Am. J. Ophthalmol., 2013, 156(5), 989-993.e2.
[http://dx.doi.org/10.1016/j.ajo.2013.06.020] [PMID: 23938122]
[68]
Saunders, D.J.; Muether, P.S.; Fauser, S. A model of the ocular pharmacokinetics involved in the therapy of neovascular age-related macular degeneration with ranibizumab. Br. J. Ophthalmol., 2015, 99(11), 1554-1559.
[http://dx.doi.org/10.1136/bjophthalmol-2015-306771] [PMID: 25957377]
[69]
Celik, N.; Scheuerle, A.; Auffarth, G.U.; Kopitz, J.; Dithmar, S. Intraocular pharmacokinetics of aflibercept and vascular endothelial growth factor-A. Invest. Ophthalmol. Vis. Sci., 2015, 56(9), 5574-5578.
[http://dx.doi.org/10.1167/iovs.15-16418] [PMID: 26305529]
[70]
Laude, A.; Tan, L.E.; Wilson, C.G.; Lascaratos, G.; Elashry, M.; Aslam, T.; Patton, N.; Dhillon, B. Intravitreal therapy for neovascular age-related macular degeneration and inter-individual variations in vitreous pharmacokinetics. Prog. Retin. Eye Res., 2010, 29(6), 466-475.
[http://dx.doi.org/10.1016/j.preteyeres.2010.04.003] [PMID: 20452456]
[71]
Xu, L.; Lu, T.; Tuomi, L.; Jumbe, N.; Lu, J.; Eppler, S.; Kuebler, P.; Damico-Beyer, L.A.; Joshi, A. Pharmacokinetics of ranibizumab in patients with neovascular age-related macular degeneration: a population approach. Invest. Ophthalmol. Vis. Sci., 2013, 54(3), 1616-1624.
[http://dx.doi.org/10.1167/iovs.12-10260] [PMID: 23361508]
[72]
Avery, R.L.; Castellarin, A.A.; Steinle, N.C.; Dhoot, D.S.; Pieramici, D.J.; See, R.; Couvillion, S.; Nasir, M.A.; Rabena, M.D.; Maia, M.; Van Everen, S.; Le, K.; Hanley, W.D. Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab, and ranibizumab. Retina, 2017, 37(10), 1847-1858.
[http://dx.doi.org/10.1097/IAE.0000000000001493] [PMID: 28106709]
[73]
Krohne, T.U.; Eter, N.; Holz, F.G.; Meyer, C.H. Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am. J. Ophthalmol., 2008, 146(4), 508-512.
[http://dx.doi.org/10.1016/j.ajo.2008.05.036] [PMID: 18635152]
[74]
Meyer, C.H.; Krohne, T.U.; Holz, F.G. Intraocular pharmacokinetics after a single intravitreal injection of 1.5 mg versus 3.0 mg of bevacizumab in humans. Retina, 2011, 31(9), 1877-1884.
[http://dx.doi.org/10.1097/IAE.0b013e318217373c] [PMID: 21738089]
[75]
Stewart, M.W. Pharmacokinetics, pharmacodynamics and pre-clinical characteristics of ophthalmic drugs that bind VEGF. Expert Rev. Clin. Pharmacol., 2014, 7(2), 167-180.
[http://dx.doi.org/10.1586/17512433.2014.884458] [PMID: 24483136]
[76]
Avery, R.L.; Castellarin, A.A.; Steinle, N.C.; Dhoot, D.S.; Pieramici, D.J.; See, R.; Couvillion, S.; Nasir, M.A.; Rabena, M.D.; Le, K.; Maia, M.; Visich, J.E. Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD. Br. J. Ophthalmol., 2014, 98(12), 1636-1641.
[http://dx.doi.org/10.1136/bjophthalmol-2014-305252] [PMID: 25001321]
[77]
Liu, K.; Song, Y.; Xu, G.; Ye, J.; Wu, Z.; Liu, X.; Dong, X.; Zhang, M.; Xing, Y.; Zhu, S.; Chen, X.; Shen, Y.; Huang, H.; Yu, L.; Ke, Z.; Rosenfeld, P.J.; Kaiser, P.K.; Ying, G.; Sun, X.; Xu, X. PHOENIX Study Group. Conbercept for treatment of neovascular age-related macular degeneration: results of the randomized phase 3 PHOENIX study. Am. J. Ophthalmol., 2019, 197, 156-167.
[http://dx.doi.org/10.1016/j.ajo.2018.08.026] [PMID: 30148987]
[78]
Cui, J.; Sun, D.; Lu, H.; Dai, R.; Xing, L.; Dong, H.; Wang, L.; Wei, D.; Jiang, B.; Jiao, Y.; Jablonski, M.M.; Charles, S.; Gu, W.; Chen, H. Comparison of effectiveness and safety between conbercept and ranibizumab for treatment of neovascular age-related macular degeneration: a retrospective case-controlled non-inferiority multiple center study. Eye (Lond.), 2018, 32(2), 391-399.
[http://dx.doi.org/10.1038/eye.2017.187] [PMID: 28937147]
[79]
Li, H.; Lei, N.; Zhang, M.; Li, Y.; Xiao, H.; Hao, X. Pharmacokinetics of a long-lasting anti-VEGF fusion protein in rabbit. Exp. Eye Res., 2012, 97(1), 154-159.
[http://dx.doi.org/10.1016/j.exer.2011.09.002] [PMID: 21933673]
[80]
Lu, X.; Sun, X. Profile of conbercept in the treatment of neovascular age-related macular degeneration. Drug Des. Devel. Ther., 2015, 9, 2311-2320.
[http://dx.doi.org/10.2147/DDDT.S67536] [PMID: 25960634]
[81]
Cioffi, C.; Johnson, G.; Petrukhin, K. Recent Developments in Agents for the Treatment of Age-Related Macular Degeneration and Stargardt Disease, 2016, 261-278.
[http://dx.doi.org/10.29200/acsmedchemrev-v51.ch16]
[82]
Costa, J.; Nascimento, J.; Teixeira, S.; Silva, R. A.M.D Future Perspectives: New promising drugs, 2017. Available at: http://www.amdbook.org/content/amd-future-perspectives-new-promising-drugs
[83]
Dugel, P.U.; Koh, A.; Ogura, Y.; Jaffe, G.J.; Schmidt-Erfurth, U.; Brown, D.M.; Gomes, A.V.; Warburton, J.; Weichselberger, A.; Holz, F.G. HAWK and HARRIER: phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmology, 2020, 127(1), 72-84.
[http://dx.doi.org/10.1016/j.ophtha.2019.04.017] [PMID: 30986442]
[84]
Wykoff, C.C.; Hariprasad, S.M.; Zhou, B. Innovation in neovascular age-related macular degeneration: consideration of brolucizumab, abicipar, and the port delivery system. Ophthalmic Surg. Lasers Imaging Retina, 2018, 49(12), 913-917.
[http://dx.doi.org/10.3928/23258160-20181203-01] [PMID: 30566697]
[85]
A Safety and Efficacy Study of Abicipar Pegol in Patients With Neovascular Age-related Macular Degeneration (CDER),, 2015. Available at : https://clinicaltrials.gov/ct2/show/NCT0246-2928/ December 19, 2018.
[86]
Safety and Efficacy of Abicipar Pegol in Patients With Neovascular Age-related Macular Degeneration, 2015. Available at: https://clinicaltrials.gov/ct2/show/NCT0246-2486/ December 19, 2018.
[87]
Schlottmann, P.G.; Alezzandrini, A.A.; Zas, M.; Rodriguez, F.J.; Luna, J.D.; Wu, L. New treatment modalities for neovascular age-related macular degeneration. Asia Pac. J. Ophthalmol. (Phila.), 2017, 6(6), 514-519.
[http://dx.doi.org/10.22608/APO.2017258] [PMID: 28933517]
[88]
Schwartz, S.G.; Puckett, B.J.; Allen, R.C.; Castillo, I.G.; Leffler, C.T. Beta1-adrenergic receptor polymorphisms and clinical efficacy of betaxolol hydrochloride in normal volunteers. Ophthalmology, 2005, 112(12), 2131-2136.
[http://dx.doi.org/10.1016/j.ophtha.2005.08.014] [PMID: 16325708]
[89]
Sakurai, M.; Higashide, T.; Ohkubo, S.; Takeda, H.; Sugiyama, K. Association between genetic polymorphisms of the prostaglandin F2α receptor gene, and response to latanoprost in patients with glaucoma and ocular hypertension. Br. J. Ophthalmol., 2014, 98(4), 469-473.
[http://dx.doi.org/10.1136/bjophthalmol-2013-304267] [PMID: 24457363]
[90]
Jeong, S.; Patel, N.; Edlund, C.K.; Hartiala, J.; Hazelett, D.J.; Itakura, T.; Wu, P-C.; Avery, R.L.; Davis, J.L.; Flynn, H.W.; Lalwani, G.; Puliafito, C.A.; Wafapoor, H.; Hijikata, M.; Keicho, N.; Gao, X.; Argüeso, P.; Allayee, H.; Coetzee, G.A.; Pletcher, M.T.; Conti, D.V.; Schwartz, S.G.; Eaton, A.M.; Fini, M.E. Identification of a novel mucin gene HCG22 associated with steroid-induced ocular hypertension. Invest. Ophthalmol. Vis. Sci., 2015, 56(4), 2737-2748.
[http://dx.doi.org/10.1167/iovs.14-14803] [PMID: 25813999]
[91]
Chen, G.; Tzekov, R.; Li, W.; Jiang, F.; Mao, S.; Tong, Y. Pharmacogenetics of complement factor H Y402H polymorphism and treatment of neovascular AMD with anti-VEGF agents: a meta-analysis. Sci. Rep., 2015, 5, 14517.
[http://dx.doi.org/10.1038/srep14517] [PMID: 26411831]
[92]
McKibbin, M.; Ali, M.; Bansal, S.; Baxter, P.D.; West, K.; Williams, G.; Cassidy, F.; Inglehearn, C.F. CFH, VEGF and HTRA1 promoter genotype may influence the response to intravitreal ranibizumab therapy for neovascular age-related macular degeneration. Br. J. Ophthalmol., 2012, 96(2), 208-212.
[http://dx.doi.org/10.1136/bjo.2010.193680] [PMID: 21558292]
[93]
Cruz-Gonzalez, F.; Cabrillo-Estévez, L.; López-Valverde, G.; Cieza-Borrella, C.; Hernández-Galilea, E.; González-Sarmiento, R. Predictive value of VEGF A and VEGFR2 polymorphisms in the response to intravitreal ranibizumab treatment for wet AMD. Graefes Arch. Clin. Exp. Ophthalmol., 2014, 252(3), 469-475.
[http://dx.doi.org/10.1007/s00417-014-2585-7] [PMID: 24522370]
[94]
Lazzeri, S.; Figus, M.; Orlandi, P.; Fioravanti, A.; Di Desidero, T.; Agosta, E.; Sartini, M.S.; Posarelli, C.; Nardi, M.; Danesi, R.; Bocci, G. VEGF-a polymorphisms predict short-term functional response to intravitreal ranibizumab in exudative age-related macular degeneration. Pharmacogenomics, 2013, 14(6), 623-630.
[http://dx.doi.org/10.2217/pgs.13.43] [PMID: 23570466]
[95]
Hermann, M.M.; van Asten, F.; Muether, P.S.; Smailhodzic, D.; Lichtner, P.; Hoyng, C.B.; Kirchhof, B.; Grefkes, C.; den Hollander, A.I.; Fauser, S. Polymorphisms in vascular endothelial growth factor receptor 2 are associated with better response rates to ranibizumab treatment in age-related macular degeneration. Ophthalmology, 2014, 121(4), 905-910.
[http://dx.doi.org/10.1016/j.ophtha.2013.10.047] [PMID: 24365177]
[96]
Wickremasinghe, S.S.; Xie, J.; Lim, J.; Chauhan, D.S.; Robman, L.; Richardson, A.J.; Hageman, G.; Baird, P.N.; Guymer, R. Variants in the APOE gene are associated with improved outcome after anti-VEGF treatment for neovascular AMD. Invest. Ophthalmol. Vis. Sci., 2011, 52(7), 4072-4079.
[http://dx.doi.org/10.1167/iovs.10-6550] [PMID: 21245410]
[97]
Bakbak, B.; Ozturk, B.T.; Zamani, A.G.; Gonul, S.; Iyit, N.; Gedik, S.; Yıldırım, M.S. Association of apolipoprotein E polymorphism with intravitreal ranibizumab treatment outcomes in age-related macular degeneration. Curr. Eye Res., 2016, 41(6), 862-866.
[http://dx.doi.org/10.3109/02713683.2015.1067325] [PMID: 26398858]
[98]
Lorés-Motta, L.; de Jong, E.K.; den Hollander, A.I. Exploring the use of molecular biomarkers for precision medicine in age-related macular degeneration. Mol. Diagn. Ther., 2018, 22(3), 315-343.
[http://dx.doi.org/10.1007/s40291-018-0332-1] [PMID: 29700787]
[99]
Kitchens, J.W.; Kassem, N.; Wood, W.; Stone, T.W.; Isernhagen, R.; Wood, E.; Hancock, B.A.; Radovich, M.; Waymire, J.; Li, L.; Schneider, B.P. A pharmacogenetics study to predict outcome in patients receiving anti-VEGF therapy in age related macular degeneration. Clin. Ophthalmol., 2013, 7, 1987-1993.
[http://dx.doi.org/10.2147/OPTH.S39635] [PMID: 24143065]
[100]
Hagstrom, S.A.; Ying, G-S.; Pauer, G.J.T.; Sturgill-Short, G.M.; Huang, J.; Callanan, D.G.; Kim, I.K.; Klein, M.L.; Maguire, M.G.; Martin, D.F. Comparison of AMD treatments trials research group. Pharmacogenetics for genes associated with age-related macular degeneration in the comparison of AMD treatments trials (CATT). Ophthalmology, 2013, 120(3), 593-599.
[http://dx.doi.org/10.1016/j.ophtha.2012.11.037] [PMID: 23337555]
[101]
Lotery, A.J.; Gibson, J.; Cree, A.J.; Downes, S.M.; Harding, S.P.; Rogers, C.A.; Reeves, B.C.; Ennis, S.; Chakravarthy, U. Alternative Treatments to Inhibit VEGF in Patients with Age-Related Choroidal Neovascularisation (IVAN) Study Group. Pharmacogenetic associations with vascular endothelial growth factor inhibition in participants with neovascular age-related macular degeneration in the IVAN Study. Ophthalmology, 2013, 120(12), 2637-2643.
[http://dx.doi.org/10.1016/j.ophtha.2013.07.046] [PMID: 24070809]
[102]
Hagstrom, S.A.; Ying, G.S.; Pauer, G.J.; Huang, J.; Maguire, M.G.; Martin, D.F. CATT Research Group. Endothelial PAS domain-containing protein 1 (EPAS1) gene polymorphisms and response to anti-VEGF therapy in the comparison of AMD treatments trials (CATT). Ophthalmology, 2014, 121(8), 1663-4.e1.
[http://dx.doi.org/10.1016/j.ophtha.2014.02.025] [PMID: 24813631]
[103]
Hagstrom, S.A.; Ying, G.S.; Pauer, G.J.T.; Sturgill-Short, G.M.; Huang, J.; Maguire, M.G.; Martin, D.F. Comparison of Age-Related Macular Degeneration Treatments Trials (CATT) Research Group. VEGFA and VEGFR2 gene polymorphisms and response to anti-vascular endothelial growth factor therapy: comparison of age-related macular degeneration treatments trials (CATT). JAMA Ophthalmol., 2014, 132(5), 521-527.
[http://dx.doi.org/10.1001/jamaophthalmol.2014.109] [PMID: 24652518]
[104]
Park, U.C.; Shin, J.Y.; McCarthy, L.C.; Kim, S.J.; Park, J.H.; Chung, H.; Yu, H.G. Pharmacogenetic associations with long-term response to anti-vascular endothelial growth factor treatment in neovascular AMD patients. Mol. Vis., 2014, 20, 1680-1694.
[PMID: 25558172]
[105]
Dedania, V.S.; Grob, S.; Zhang, K.; Bakri, S.J. Pharmacogenomics of response to anti-VEGF therapy in exudative age-related macular degeneration. Retina, 2015, 35(3), 381-391.
[http://dx.doi.org/10.1097/IAE.0000000000000466] [PMID: 25635578]
[106]
Clarke, S.F.; Murphy, E.F.; Nilaweera, K.; Ross, P.R.; Shanahan, F.; O’Toole, P.W.; Cotter, P.D. The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes, 2012, 3(3), 186-202.
[http://dx.doi.org/10.4161/gmic.20168] [PMID: 22572830]
[107]
Sun, L.; Ma, L.; Ma, Y.; Zhang, F.; Zhao, C.; Nie, Y. Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell, 2018, 9(5), 397-403.
[http://dx.doi.org/10.1007/s13238-018-0546-3] [PMID: 29725936]
[108]
Zinkernagel, M.S.; Zysset-Burri, D.C.; Keller, I.; Berger, L.E.; Leichtle, A.B.; Largiadèr, C.R.; Fiedler, G.M.; Wolf, S. Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Sci. Rep., 2017, 7, 40826.
[http://dx.doi.org/10.1038/srep40826] [PMID: 28094305]
[109]
Andriessen, E.M.; Wilson, A.M.; Mawambo, G.; Dejda, A.; Miloudi, K.; Sennlaub, F.; Sapieha, P. Gut microbiota influences pathological angiogenesis in obesity-driven choroidal neovascularization. EMBO Mol. Med., 2016, 8(12), 1366-1379.
[http://dx.doi.org/10.15252/emmm.201606531] [PMID: 27861126]
[110]
Saltzman, E.T.; Palacios, T.; Thomsen, M.; Vitetta, L. Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease. Front. Microbiol., 2018, 9, 61.
[http://dx.doi.org/10.3389/fmicb.2018.00061] [PMID: 29441049]
[111]
Rowan, S.; Taylor, A. The role of microbiota in retinal disease. Adv. Exp. Med. Biol., 2018, 1074, 429-435.
[http://dx.doi.org/10.1007/978-3-319-75402-4_53] [PMID: 29721973]
[112]
Rinninella, E.; Mele, M.C.; Merendino, N.; Cintoni, M.; Anselmi, G.; Caporossi, A.; Gasbarrini, A.; Minnella, A.M. The role of diet, micronutrients and the gut microbiota in age-related macular degeneration: new perspectives from the gutretina axis. Nutrients, 2018, 10(11)E1677
[http://dx.doi.org/10.3390/nu10111677] [PMID: 30400586]
[113]
Lim, L.P.; Lau, N.C.; Garrett-Engele, P.; Grimson, A.; Schelter, J.M.; Castle, J.; Bartel, D.P.; Linsley, P.S.; Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005, 433(7027), 769-773.
[http://dx.doi.org/10.1038/nature03315] [PMID: 15685193]
[114]
Villarreal, G., Jr; Oh, D-J.; Kang, M.H.; Rhee, D.J. Coordinated regulation of extracellular matrix synthesis by the microRNA-29 family in the trabecular meshwork. Invest. Ophthalmol. Vis. Sci., 2011, 52(6), 3391-3397.
[http://dx.doi.org/10.1167/iovs.10-6165] [PMID: 21330653]
[115]
Wang, C.; Wang, L.; Ding, Y.; Lu, X.; Zhang, G.; Yang, J.; Zheng, H.; Wang, H.; Jiang, Y.; Xu, L. LncRNA Structural characteristics in epigenetic regulation. Int. J. Mol. Sci., 2017, 18(12)E2659
[http://dx.doi.org/10.3390/ijms18122659] [PMID: 29292750]
[116]
Lee, J.T. Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev., 2009, 23(16), 1831-1842.
[http://dx.doi.org/10.1101/gad.1811209] [PMID: 19684108]
[117]
Wan, P.; Su, W.; Zhuo, Y. Precise long non-coding RNA modulation in visual maintenance and impairment. J. Med. Genet., 2017, 54(7), 450-459.
[http://dx.doi.org/10.1136/jmedgenet-2016-104266] [PMID: 28003323]
[118]
Li, F.; Wen, X.; Zhang, H.; Fan, X. Novel insights into the role of long noncoding RNA in ocular diseases. Int. J. Mol. Sci., 2016, 17(4), 478.
[http://dx.doi.org/10.3390/ijms17040478] [PMID: 27043545]
[119]
Mustafi, D.; Kevany, B.M.; Bai, X.; Maeda, T.; Sears, J.E.; Khalil, A.M.; Palczewski, K. Evolutionarily conserved long intergenic non-coding RNAs in the eye. Hum. Mol. Genet., 2013, 22(15), 2992-3002.
[http://dx.doi.org/10.1093/hmg/ddt156] [PMID: 23562822]
[120]
Xu, X-D.; Li, K-R.; Li, X-M.; Yao, J.; Qin, J.; Yan, B. Long non-coding RNAs: new players in ocular neovascularization. Mol. Biol. Rep., 2014, 41(7), 4493-4505.
[http://dx.doi.org/10.1007/s11033-014-3320-5] [PMID: 24623407]
[121]
Zhu, W.; Meng, Y.F.; Xing, Q.; Tao, J.J.; Lu, J.; Wu, Y. Identification of lncRNAs involved in biological regulation in early age-related macular degeneration. Int. J. Nanomedicine, 2017, 12, 7589-7602.
[http://dx.doi.org/10.2147/IJN.S140275] [PMID: 29089757]
[122]
Bentwich, I.; Avniel, A.; Karov, Y.; Aharonov, R.; Gilad, S.; Barad, O.; Barzilai, A.; Einat, P.; Einav, U.; Meiri, E.; Sharon, E.; Spector, Y.; Bentwich, Z. Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet., 2005, 37(7), 766-770.
[http://dx.doi.org/10.1038/ng1590] [PMID: 15965474]
[123]
Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1), 15-20.
[http://dx.doi.org/10.1016/j.cell.2004.12.035] [PMID: 15652477]
[124]
Ertekin, S.; Yıldırım, O.; Dinç, E.; Ayaz, L.; Fidancı, S.B.; Tamer, L. Evaluation of circulating miRNAs in wet age-related macular degeneration. Mol. Vis., 2014, 20, 1057-1066.
[PMID: 25221421]
[125]
Szemraj, M.; Bielecka-Kowalska, A.; Oszajca, K.; Krajewska, M.; Goś, R.; Jurowski, P.; Kowalski, M.; Szemraj, J. Serum MicroRNAs as potential biomarkers of AMD. Med. Sci. Monit., 2015, 21, 2734-2742.
[http://dx.doi.org/10.12659/MSM.893697] [PMID: 26366973]
[126]
Romano, G.L.; Platania, C.B.M.; Drago, F.; Salomone, S.; Ragusa, M.; Barbagallo, C.; Di Pietro, C.; Purrello, M.; Reibaldi, M.; Avitabile, T.; Longo, A.; Bucolo, C. Retinal and circulating miRNAs in age-related macular degeneration: an In vivo animal and human study. Front. Pharmacol., 2017, 8, 168.
[http://dx.doi.org/10.3389/fphar.2017.00168] [PMID: 28424619]
[127]
De Guire, V.; Caron, M.; Scott, N.; Ménard, C.; Gaumont-Leclerc, M.F.; Chartrand, P.; Major, F.; Ferbeyre, G. Designing small multiple-target artificial RNAs. Nucleic Acids Res., 2010, 38(13)e140
[http://dx.doi.org/10.1093/nar/gkq354] [PMID: 20453028]
[128]
Ménard, C.; Rezende, F.A.; Miloudi, K.; Wilson, A.; Tétreault, N.; Hardy, P.; SanGiovanni, J.P.; De Guire, V.; Sapieha, P. MicroRNA signatures in vitreous humour and plasma of patients with exudative AMD. Oncotarget, 2016, 7(15), 19171-19184.
[http://dx.doi.org/10.18632/oncotarget.8280] [PMID: 27015561]
[129]
Finger, R.P.; Wickremasinghe, S.S.; Baird, P.N.; Guymer, R.H. Predictors of anti-VEGF treatment response in neovascular age-related macular degeneration. Surv. Ophthalmol., 2014, 59(1), 1-18.
[http://dx.doi.org/10.1016/j.survophthal.2013.03.009] [PMID: 24332379]
[130]
Bakri, S.J.; Snyder, M.R.; Reid, J.M.; Pulido, J.S.; Ezzat, M.K.; Singh, R.J. Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology, 2007, 114(12), 2179-2182.
[http://dx.doi.org/10.1016/j.ophtha.2007.09.012] [PMID: 18054637]
[131]
Bakri, S.J.; Snyder, M.R.; Reid, J.M.; Pulido, J.S.; Singh, R.J. Pharmacokinetics of intravitreal bevacizumab (Avastin). Ophthalmology, 2007, 114(5), 855-859.
[http://dx.doi.org/10.1016/j.ophtha.2007.01.017] [PMID: 17467524]
[132]
Gaudreault, J.; Fei, D.; Rusit, J.; Suboc, P.; Shiu, V. Preclinical pharmacokinetics of Ranibizumab (rhuFabV2) after a single intravitreal administration. Invest. Ophthalmol. Vis. Sci., 2005, 46(2), 726-733.
[http://dx.doi.org/10.1167/iovs.04-0601] [PMID: 15671306]
[133]
Avery, R.L.; Gordon, G.M. Systemic safety of prolonged monthly anti-vascular endothelial growth factor therapy for diabetic macular edema: a systematic review and meta-analysis. JAMA Ophthalmol., 2016, 134(1), 21-29.
[http://dx.doi.org/10.1001/jamaophthalmol.2015.4070] [PMID: 26513684]
[134]
Zarbin, M.A. Anti-VEGF agents and the risk of arteriothrombotic events. Asia Pac. J. Ophthalmol. (Phila.), 2018, 7(1), 63-67.
[http://dx.doi.org/10.22608/APO.2017495] [PMID: 29405046]
[135]
Heiduschka, P.; Fietz, H.; Hofmeister, S.; Schultheiss, S.; Mack, A.F.; Peters, S.; Ziemssen, F.; Niggemann, B.; Julien, S.; Bartz-Schmidt, K.U.; Schraermeyer, U. Tübingen Bevacizumab Study Group. Penetration of bevacizumab through the retina after intravitreal injection in the monkey. Invest. Ophthalmol. Vis. Sci., 2007, 48(6), 2814-2823.
[http://dx.doi.org/10.1167/iovs.06-1171] [PMID: 17525217]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy