Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Nanoparticles and Zeolites: Antibacterial Effects and their Mechanism against Pathogens

Author(s): Maryam Azizi-Lalabadi, Mahmood Alizadeh-Sani, Arezou Khezerlou, Mina Mirzanajafi-Zanjani, Hajar Zolfaghari, Vahid Bagheri, Baharak Divband and Ali Ehsani*

Volume 20, Issue 13, 2019

Page: [1074 - 1086] Pages: 13

DOI: 10.2174/1573397115666190708120040

Price: $65

Abstract

Nowadays, distribution and microorganism resistance against antimicrobial compounds have caused crucial food safety problems. Hence, nanotechnology and zeolite are recognized as new approaches to manage this problem due to their inherent antimicrobial activity. Different studies have confirmed antimicrobial effects of Nano particles (NPs) (metal and metal oxide) and zeolite, by using various techniques to determine antimicrobial mechanism. This review includes an overview of research with the results of studies about antimicrobial mechanisms of nanoparticles and zeolite. Many researches have shown that type, particle size and shape of NPs and zeolite are important factors showing antimicrobial effectiveness. The use of NPs and zeolite as antimicrobial components especially in food technology and medical application can be considered as prominent strategies to overcome pathogenic microorganisms. Nevertheless, further studies are required to minimize the possible toxicity of NPs in order to apply suitable alternatives for disinfectants and antibacterial agents in food applications.

Keywords: Nano particle, zeolite, antimicrobial activity, ion exchange, titanium dioxide, foodborne pathogen.

Graphical Abstract

[1]
Malarkodi, C. Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorganic chemistry and applications, 2014, 2014
[http://dx.doi.org/10.1155/2014/347167]
[2]
Khezerlou, A.; Alizadeh-Sani, M.; Azizi-Lalabadi, M.; Ehsani, A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb. Pathog., 2018, 123, 505-526.
[http://dx.doi.org/10.1016/j.micpath.2018.08.008] [PMID: 30092260]
[3]
Guan, Y. Fabrication of biopolymer hydrogel containing Ag nanoparticles for antibacterial property. Ind. Eng. Chem. Res., 2015, 54(30), 7393-7400.
[http://dx.doi.org/10.1021/acs.iecr.5b01532]
[4]
Kaur, G. One-step synthesis of silver metallosurfactant as an efficient antibacterial and anticancer material. RSC Advances, 2016, 6(62), 57084-57097.
[http://dx.doi.org/10.1039/C6RA09677H]
[5]
Loh, X.J.; Lee, T.C.; Dou, Q.; Deen, G.R. Utilising inorganic nanocarriers for gene delivery. Biomater. Sci., 2016, 4(1), 70-86.
[http://dx.doi.org/10.1039/C5BM00277J] [PMID: 26484365]
[6]
Al-Shalalfeh, M.M.; Saleh, T.A.; Al-Saadi, A.A. Silver colloid and film substrates in surface-enhanced Raman scattering for 2-thiouracil detection. RSC Advances, 2016, 6(79), 75282-75292.
[http://dx.doi.org/10.1039/C6RA14832H]
[7]
Al-Shalalfeh, M.M.; Onawole, A.T.; Saleh, T.A.; Al-Saadi, A.A. Spherical silver nanoparticles as substrates in surface-enhanced Raman spectroscopy for enhanced characterization of ketoconazole. Mater. Sci. Eng. C, 2017, 76, 356-364.
[http://dx.doi.org/10.1016/j.msec.2017.03.081] [PMID: 28482538]
[8]
Saleh, T.A.; Al-Shalalfeh, M.M.; Al-Saadi, A.A. Silver loaded graphene as a substrate for sensing 2-thiouracil using surface-enhanced Raman scattering. Sens. Actuators B Chem., 2018, 254, 1110-1117.
[http://dx.doi.org/10.1016/j.snb.2017.07.179]
[9]
Saleh, T.A.; Al-Shalalfeh, M.M.; Al-Saadi, A.A. Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment. Sci. Rep., 2016, 6, 32185.
[http://dx.doi.org/10.1038/srep32185] [PMID: 27572919]
[10]
Alswat, A.A. Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. J. Mater. Sci. Technol., 2017, 33(8), 889-896.
[http://dx.doi.org/10.1016/j.jmst.2017.03.015]
[11]
Alswat, A.A.; Ahmad, M.B.; Saleh, T.A. Preparation and characterization of zeolite\zinc oxide-copper oxide nanocomposite: Antibacterial activities. Colloid Interface Sci. Commun., 2017, 16, 19-24.
[http://dx.doi.org/10.1016/j.colcom.2016.12.003]
[12]
Ullah, S. Mad honey: Uses, intoxicating/poisoning effects, diagnosis, and treatment. RSC Advances, 2018, 8(33), 18635-18646.
[http://dx.doi.org/10.1039/C8RA01924J]
[13]
Besinis, A.; De Peralta, T.; Handy, R.D. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology, 2014, 8(1), 1-16.
[http://dx.doi.org/10.3109/17435390.2012.742935] [PMID: 23092443]
[14]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[15]
Hernández-Sierra, J.F.; Ruiz, F.; Pena, D.C.; Martínez-Gutiérrez, F.; Martínez, A.E. Guillén, Ade.J.; Tapia-Pérez, H.; Castañón, G.M. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine (Lond.), 2008, 4(3), 237-240.
[http://dx.doi.org/10.1016/j.nano.2008.04.005] [PMID: 18565800]
[16]
Ruparelia, J.P.; Chatterjee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater., 2008, 4(3), 707-716.
[http://dx.doi.org/10.1016/j.actbio.2007.11.006] [PMID: 18248860]
[17]
Chon, H.; Woo, S.I.; Park, S-E. Recent advances and new horizons in zeolite science and technology; Elsevier, 1996, Vol. 102, .
[http://dx.doi.org/10.1016/S0167-2991(06)81396-0]
[18]
SaintCricq, P. Antibacterial activity of silver‐loaded “Green Zeolites”. Eur. J. Inorg. Chem., 2012, 2012(21), 3398-3402.
[http://dx.doi.org/10.1002/ejic.201200476]
[19]
Prasai, T.P.; Walsh, K.B.; Bhattarai, S.P.; Midmore, D.J.; Van, T.T.; Moore, R.J.; Stanley, D. Zeolite food supplementation reduces abundance of enterobacteria. Microbiol. Res., 2017, 195(Suppl. C), 24-30.
[http://dx.doi.org/10.1016/j.micres.2016.11.006] [PMID: 28024523]
[20]
Win, D.T. Zeolites-earliest solid state acids. Au J.T., 2015, 11(1), 36-41.
[21]
FDA, FDA Part 182-substances generally recognized as safe. Food and drug administration, Washington DC, USA.,2011.
[22]
Han, K.; Yu, M. Study of the preparation and properties of UV‐blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation. J. Appl. Polym. Sci., 2006, 100(2), 1588-1593.
[http://dx.doi.org/10.1002/app.23312]
[23]
Alizadeh Sani, M.; Ehsani, A.; Hashemi, M. Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: Its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration. Int. J. Food Microbiol., 2017, 251, 8-14.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.03.018] [PMID: 28376399]
[24]
Vejdan, A. Effect of TiO2 nanoparticles on the physico-mechanical and ultraviolet light barrier properties of fish gelatin/agar bilayer film. Lebensm. Wiss. Technol., 2016, 71, 88-95.
[http://dx.doi.org/10.1016/j.lwt.2016.03.011]
[25]
Espitia, P.J.P. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol., 2012, 5(5), 1447-1464.
[http://dx.doi.org/10.1007/s11947-012-0797-6]
[26]
Carbone, M. Silver nanoparticles in polymeric matrices for fresh food packaging. J. King Saud Uni.-. Sci., 2016, 28(4), 273-279.
[http://dx.doi.org/10.1016/j.jksus.2016.05.004]
[27]
Souza, V.G.L.; Fernando, A.L. Nanoparticles in food packaging: Biodegradability and potential migration to food-A review. Food Packag. Shelf Life, 2016, 8, 63-70.
[http://dx.doi.org/10.1016/j.fpsl.2016.04.001]
[28]
Xia, Z-K.; Ma, Q.H.; Li, S.Y.; Zhang, D.Q.; Cong, L.; Tian, Y.L.; Yang, R.Y. The antifungal effect of silver nanoparticles on Trichosporon asahii. J. Microbiol. Immunol. Infect., 2016, 49(2), 182-188.
[http://dx.doi.org/10.1016/j.jmii.2014.04.013] [PMID: 24877597]
[29]
Elgorban, A.M. Antifungal silver nanoparticles: Synthesis, characterization and biological evaluation. Biotechnol. Biotechnol. Equip., 2016, 30(1), 56-62.
[http://dx.doi.org/10.1080/13102818.2015.1106339]
[30]
Saharan, V.; Sharma, G.; Yadav, M.; Choudhary, M.K.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. Int. J. Biol. Macromol., 2015, 75, 346-353.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.027] [PMID: 25617841]
[31]
El-Wakil, N.A.; Hassan, E.A.; Abou-Zeid, R.E.; Dufresne, A. Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydr. Polym., 2015, 124, 337-346.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.076] [PMID: 25839828]
[32]
Zhou, J.J.; Wang, S.Y.; Gunasekaran, S. Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. J. Food Sci., 2009, 74(7), N50-N56.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01270.x] [PMID: 19895492]
[33]
Kaneko, M. Photoelectrochemical reaction of biomass and bio-related compounds with nanoporous TiO2 film photoanode and O2-reducing cathode. Electrochem. Commun., 2006, 8(2), 336-340.
[http://dx.doi.org/10.1016/j.elecom.2005.12.004]
[34]
Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G.Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453(7195), 638-641.
[http://dx.doi.org/10.1038/nature06964] [PMID: 18509440]
[35]
FDA, U., Guidance for industry: Safety of nanomaterials in cosmetic products. Information on the web-site,http://www. fda. gov/Cosmetics/GuidanceRegulation/GuidanceDocuments/ucm300886. htm2014.
[36]
Yemmireddy, V.K.; Farrell, G.D.; Hung, Y.C. Development of titanium dioxide (TiO2) nanocoatings on food contact surfaces and method to evaluate their durability and photocatalytic bactericidal property. J. Food Sci., 2015, 80(8), N1903-N1911.
[http://dx.doi.org/10.1111/1750-3841.12962] [PMID: 26189653]
[37]
Alizadeh-Sani, M.; Khezerlou, A.; Ehsani, A. Fabrication and characterization of the bionanocomposite film based on whey protein biopolymer loaded with TiO2 nanoparticles, cellulose nanofibers and rosemary essential oil. Ind. Crops Prod., 2018, 124, 300-315.
[http://dx.doi.org/10.1016/j.indcrop.2018.08.001]
[38]
Haghighi, F. Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infection. Epidemiol. Microbiol., 2013, 1(1), 33-38.
[39]
Bonetta, S.; Bonetta, S.; Motta, F.; Strini, A.; Carraro, E. Photocatalytic bacterial inactivation by TiO2-coated surfaces. AMB Express, 2013, 3(1), 59.
[http://dx.doi.org/10.1186/2191-0855-3-59] [PMID: 24090112]
[40]
Allahverdiyev, A.M.; Abamor, E.S.; Bagirova, M.; Rafailovich, M. Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol., 2011, 6(8), 933-940.
[http://dx.doi.org/10.2217/fmb.11.78] [PMID: 21861623]
[41]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[42]
F.a.D., Code of Federal Regulations Title 21-Food and Drugs. 21 CFR 73.2575. Washington, DC: US Government Printing Office; 2002. Listing of color additives exempt from certification., 2002.
[43]
Padmavathy, N.; Vijayaraghavan, R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci. Technol. Adv. Mater., 2008, 9(3)035004
[http://dx.doi.org/10.1088/1468-6996/9/3/035004] [PMID: 27878001]
[44]
Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett., 2008, 279(1), 71-76.
[http://dx.doi.org/10.1111/j.1574-6968.2007.01012.x] [PMID: 18081843]
[45]
Franklin, N.M.; Rogers, N.J.; Apte, S.C.; Batley, G.E.; Gadd, G.E.; Casey, P.S. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environ. Sci. Technol., 2007, 41(24), 8484-8490.
[http://dx.doi.org/10.1021/es071445r] [PMID: 18200883]
[46]
Liu, Y.; He, L.; Mustapha, A.; Li, H.; Hu, Z.Q.; Lin, M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol., 2009, 107(4), 1193-1201.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04303.x] [PMID: 19486396]
[47]
Jafarirad, S.; Mehrabi, M.; Divband, B.; Kosari-Nasab, M. Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach. Mater. Sci. Eng. C, 2016, 59, 296-302.
[http://dx.doi.org/10.1016/j.msec.2015.09.089] [PMID: 26652376]
[48]
Reddy, K.M.; Feris, K.; Bell, J.; Wingett, D.G.; Hanley, C.; Punnoose, A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett., 2007, 90(213902), 2139021-2139023.
[http://dx.doi.org/10.1063/1.2742324] [PMID: 18160973]
[49]
Xie, Y.; He, Y.; Irwin, P.L.; Jin, T.; Shi, X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol., 2011, 77(7), 2325-2331.
[http://dx.doi.org/10.1128/AEM.02149-10] [PMID: 21296935]
[50]
Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Habib, S.S.; Memic, A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. Int. J. Nanomedicine, 2012, 7, 6003-6009.
[http://dx.doi.org/10.2147/IJN.S35347] [PMID: 23233805]
[51]
Tankhiwale, R.; Bajpai, S.K. Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids Surf. B Biointerfaces, 2012, 90, 16-20.
[http://dx.doi.org/10.1016/j.colsurfb.2011.09.031] [PMID: 22015180]
[52]
Khosravian, S.; Montazer, M.; Malek, R.M.; Harifi, T. In situ synthesis of nano ZnO on starch sized cotton introducing nano photo active fabric optimized with response surface methodology. Carbohydr. Polym., 2015, 132, 126-133.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.085] [PMID: 26256333]
[53]
Usman, M.S.; El Zowalaty, M.E.; Shameli, K.; Zainuddin, N.; Salama, M.; Ibrahim, N.A. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomedicine, 2013, 8, 4467-4479.
[PMID: 24293998]
[54]
Yoon, K-Y.; Hoon Byeon, J.; Park, J.H.; Hwang, J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ., 2007, 373(2-3), 572-575.
[http://dx.doi.org/10.1016/j.scitotenv.2006.11.007] [PMID: 17173953]
[55]
Mahapatra, O. Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J. Exp. Nanosci., 2008, 3(3), 185-193.
[http://dx.doi.org/10.1080/17458080802395460]
[56]
Perelshtein, I. CuO-cotton nanocomposite: Formation, morphology, and antibacterial activity. Surf. Coat. Tech., 2009, 204(1), 54-57.
[http://dx.doi.org/10.1016/j.surfcoat.2009.06.028]
[57]
Gabbay, J. Copper oxide impregnated textiles with potent biocidal activities. J. Ind. Text., 2006, 35(4), 323-335.
[http://dx.doi.org/10.1177/1528083706060785]
[58]
Kamrupi, I.R.; Dolui, S. Synthesis of copper-polystyrene nanocomposite particles using water in supercritical carbon dioxide medium and its antimicrobial activity. J. Appl. Polym. Sci., 2011, 120(2), 1027-1033.
[http://dx.doi.org/10.1002/app.33230]
[59]
Cioffi, N. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem. Mater., 2005, 17(21), 5255-5262.
[http://dx.doi.org/10.1021/cm0505244]
[60]
Li, Z.; Lee, D.; Sheng, X.; Cohen, R.E.; Rubner, M.F. Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir, 2006, 22(24), 9820-9823.
[http://dx.doi.org/10.1021/la0622166] [PMID: 17106967]
[61]
Kyriacou, S.V.; Brownlow, W.J.; Xu, X-H.N. Using nanoparticle optics assay for direct observation of the function of antimicrobial agents in single live bacterial cells. Biochemistry, 2004, 43(1), 140-147.
[http://dx.doi.org/10.1021/bi0351110] [PMID: 14705939]
[62]
Kim, B-J.; Park, S-J. Antibacterial behavior of transition-metals-decorated activated carbon fibers. J. Colloid Interface Sci., 2008, 325(1), 297-299.
[http://dx.doi.org/10.1016/j.jcis.2008.05.016] [PMID: 18556011]
[63]
Fan, Y. Synthesis of copper (II) coordination polymers and conversion into CuO nanostructures with good photocatalytic, antibacterial and lithium ion battery performances. J. Mater. Chem., 2012, 22(25), 12609-12617.
[http://dx.doi.org/10.1039/c2jm31879b]
[64]
Akhavan, O. Chemical durability of metallic copper nanoparticles in silica thin films synthesized by sol-gel. J. Phys. D Appl. Phys., 2008, 41(23)235407
[http://dx.doi.org/10.1088/0022-3727/41/23/235407]
[65]
Neel, E.A.; Ahmed, I.; Pratten, J.; Nazhat, S.N.; Knowles, J.C. Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials, 2005, 26(15), 2247-2254.
[http://dx.doi.org/10.1016/j.biomaterials.2004.07.024] [PMID: 15585226]
[66]
Pang, H.; Gao, F.; Lu, Q. Morphology effect on antibacterial activity of cuprous oxide. Chem. Commun. (Camb.), 2009, (9), 1076-1078.
[http://dx.doi.org/10.1039/b816670f] [PMID: 19225641]
[67]
Trapalis, C. Study of antibacterial composite Cu/SiO2 thin coatings. J. Sol-Gel Sci. Technol., 2003, 26(1), 1213-1218.
[http://dx.doi.org/10.1023/A:1020720504942]
[68]
Rafea, M.A.; Roushdy, N. Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique. J. Phys. D Appl. Phys., 2008, 42(1)015413
[http://dx.doi.org/10.1088/0022-3727/42/1/015413]
[69]
Akhavan, O.; Tohidi, H.; Moshfegh, A. Synthesis and electrochromic study of sol-gel cuprous oxide nanoparticles accumulated on silica thin film. Thin Solid Films, 2009, 517(24), 6700-6706.
[http://dx.doi.org/10.1016/j.tsf.2009.05.016]
[70]
Pierson, J.; Thobor-Keck, A.; Billard, A. Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering. Appl. Surf. Sci., 2003, 210(3), 359-367.
[http://dx.doi.org/10.1016/S0169-4332(03)00108-9]
[71]
Oral, A. The preparation of copper (II) oxide thin films and the study of their microstructures and optical properties. Mater. Chem. Phys., 2004, 83(1), 140-144.
[http://dx.doi.org/10.1016/j.matchemphys.2003.09.015]
[72]
Shah, A. Photocatalytic degradation of crystal violet by use of copper oxide as semiconductor. Pol. J. Chem., 2009, 83(11), 2001-2007.
[73]
Batista, A.P. Preparation of CuO/SiO2 and photocatalytic activity by degradation of methylene blue. Environ. Chem. Lett., 2010, 8(1), 63-67.
[http://dx.doi.org/10.1007/s10311-008-0192-8]
[74]
Ai, Z. Interfacial hydrothermal synthesis of Cu@ Cu2O core- shell microspheres with enhanced visible-light-driven photocatalytic activity. J. Phys. Chem. C, 2009, 113(49), 20896-20902.
[http://dx.doi.org/10.1021/jp9083647]
[75]
Vaseem, M. Flower-shaped CuO nanostructures: structural, photocatalytic and XANES studies. Catal. Commun., 2008, 10(1), 11-16.
[http://dx.doi.org/10.1016/j.catcom.2008.07.022]
[76]
Paschoalino, M. Inactivation of E. coli mediated by high surface area CuO accelerated by light irradiation> 360nm. J. Photochem. Photobiol. Chem., 2008, 199(1), 105-111.
[http://dx.doi.org/10.1016/j.jphotochem.2008.05.010]
[77]
Gao, F.; Pang, H.; Xu, S.; Lu, Q. Copper-based nanostructures: Promising antibacterial agents and photocatalysts. Chem. Commun. (Camb.), 2009, (24), 3571-3573.
[http://dx.doi.org/10.1039/b904801d] [PMID: 19521611]
[78]
Bennici, S.; Gervasini, A.; Ragaini, V. Preparation of highly dispersed CuO catalysts on oxide supports for de-NO(x) reactions. Ultrason. Sonochem., 2003, 10(2), 61-64.
[http://dx.doi.org/10.1016/S1350-4177(02)00150-5] [PMID: 12551763]
[79]
You, T. Characterization and electrochemical properties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbon films prepared by RF sputtering method. Electrochem. Commun., 2002, 4(5), 468-471.
[http://dx.doi.org/10.1016/S1388-2481(02)00340-5]
[80]
Cavassin, E.D.; de Figueiredo, L.F.; Otoch, J.P.; Seckler, M.M.; de Oliveira, R.A.; Franco, F.F.; Marangoni, V.S.; Zucolotto, V.; Levin, A.S.; Costa, S.F. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J. Nanobiotechnology, 2015, 13(1), 64.
[http://dx.doi.org/10.1186/s12951-015-0120-6] [PMID: 26438142]
[81]
Huang, X. Green synthesis of silver nanoparticles with high antimicrobial activity and low cytotoxicity using catechol-conjugated chitosan. RSC Advances, 2016, 6(69), 64357-64363.
[http://dx.doi.org/10.1039/C6RA09035D]
[82]
Rezvani, Z. Liquid crystalline properties of copper (II) complexes derived from azo-containing salicylaldimine ligands. Polyhedron, 2006, 25(9), 1915-1920.
[http://dx.doi.org/10.1016/j.poly.2005.12.016]
[83]
Hoseinnejad, M.; Jafari, S.M.; Katouzian, I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit. Rev. Microbiol., 2018, 44(2), 161-181.
[PMID: 28578640]
[84]
Ghasemi, N.; Jamali-Sheini, F.; Zekavati, R. CuO and Ag/CuO nanoparticles: Biosynthesis and antibacterial properties. Mater. Lett., 2017, 196, 78-82.
[http://dx.doi.org/10.1016/j.matlet.2017.02.111]
[85]
Zazo, H. Applications of Metallic Nanoparticles in Antimicrobial Therapy. Antimicrobial Nanoarchitectonics; Elsevier, 2017, pp. 411-444.
[http://dx.doi.org/10.1016/B978-0-323-52733-0.00015-X]
[86]
Das, D.; Datta, A.K.; Kumbhakar, D.V.; Ghosh, B.; Pramanik, A.; Gupta, S.; Mandal, A. Assessment of photocatalytic potentiality and determination of ecotoxicity (using plant model for better environmental applicability) of synthesized copper, copper oxide and copper-doped zinc oxide nanoparticles. PLoS One, 2017, 12(8)e0182823
[http://dx.doi.org/10.1371/journal.pone.0182823] [PMID: 28796823]
[87]
Nagajyothi, P. Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab. J. Chem., 2017, 10(2), 215-225.
[http://dx.doi.org/10.1016/j.arabjc.2016.01.011]
[88]
Hasan, S.S.; Singh, S.; Parikh, R.Y.; Dharne, M.S.; Patole, M.S.; Prasad, B.L.; Shouche, Y.S. Bacterial synthesis of copper/copper oxide nanoparticles. J. Nanosci. Nanotechnol., 2008, 8(6), 3191-3196.
[http://dx.doi.org/10.1166/jnn.2008.095] [PMID: 18681067]
[89]
Singh, V. Biological synthesis of copper oxide nano particles using Escherichia coli. Curr. Nanosci., 2010, 6(4), 365-369.
[http://dx.doi.org/10.2174/157341310791659062]
[90]
DeAlba-Montero, I. Antimicrobial properties of copper nanoparticles and amino acid chelated copper nanoparticles produced by using a soya extract. Bioinorganic chemistry and applications 2017, 2017.
[http://dx.doi.org/10.1155/2017/1064918]
[91]
Deng, C-H.; Gong, J.L.; Zeng, G.M.; Zhang, P.; Song, B.; Zhang, X.G.; Liu, H.Y.; Huan, S.Y. Graphene sponge decorated with copper nanoparticles as a novel bactericidal filter for inactivation of Escherichia coli. Chemosphere, 2017, 184, 347-357.
[http://dx.doi.org/10.1016/j.chemosphere.2017.05.118] [PMID: 28605705]
[92]
Rahman, A. Synthesis of copper oxide nano particles by using Phormidium cyanobacterium. Indonesian J. Chem., 2010, 9(3), 355-360.
[http://dx.doi.org/10.22146/ijc.21498]
[93]
Ahmadi, S.J. A simple granulation technique for preparing high-porosity nano copper oxide (II) catalyst beads. Particuology, 2011, 9(5), 480-485.
[http://dx.doi.org/10.1016/j.partic.2011.02.010]
[94]
Tran, T.H.; Nguyen, V.T. Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: A brief review., 2014.
[http://dx.doi.org/10.1155/2014/856592]
[95]
López-Serrano, A. Nanoparticles: A global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal. Methods, 2014, 6(1), 38-56.
[http://dx.doi.org/10.1039/C3AY40517F]
[96]
Koohsaryan, E.; Anbia, M. Nanosized and hierarchical zeolites: A short review. Chin. J. Catal., 2016, 37(4), 447-467.
[http://dx.doi.org/10.1016/S1872-2067(15)61038-5]
[97]
Mintova, S.; Grand, J.; Valtchev, V. Nanosized zeolites: Quo Vadis? C. R. Chim., 2016, 19(1), 183-191.
[http://dx.doi.org/10.1016/j.crci.2015.11.005]
[98]
Majid, I. Novel food packaging technologies: Innovations and future prospective. J. Saudi Soc. Agric. Sci., 2016.
[99]
Zhang, L. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials. Chin. J. Catal., 2016, 37(6), 800-809.
[http://dx.doi.org/10.1016/S1872-2067(15)61073-7]
[100]
Saleh, T.A. Nanocomposite of carbon nanotubes/silica nanoparticles and their use for adsorption of Pb (II): From surface properties to sorption mechanism. Desalination Water Treat., 2016, 57(23), 10730-10744.
[http://dx.doi.org/10.1080/19443994.2015.1036784]
[101]
Saleh, T.A. Mercury sorption by silica/carbon nanotubes and silica/activated carbon: A comparison study. J. Water Supply, 2015, 64(8), 892-903.
[http://dx.doi.org/10.2166/aqua.2015.050]
[102]
Saleh, T.A. Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica- multiwall carbon nanotubes. Environ. Sci. Pollut. Res. Int., 2015, 22(21), 16721-16731.
[http://dx.doi.org/10.1007/s11356-015-4866-z] [PMID: 26087931]
[103]
Khatamian, M.; Divband, B.; Jodaei, A. Degradation of 4-nitrophenol (4-NP) using ZnO nanoparticles supported on zeolites and modeling of experimental results by artificial neural networks. Mater. Chem. Phys., 2012, 134(1), 31-37.
[http://dx.doi.org/10.1016/j.matchemphys.2012.01.091]
[104]
Khatamian, M.; Divband, B.; Farahmand-Zahed, F. Synthesis and characterization of Zinc (II)-loaded Zeolite/Graphene oxide nanocomposite as a new drug carrier. Mater. Sci. Eng. C, 2016, 66, 251-258.
[http://dx.doi.org/10.1016/j.msec.2016.04.090] [PMID: 27207061]
[105]
Samiei, M.; Ghasemi, N.; Asl-Aminabadi, N.; Divband, B.; Golparvar-Dashti, Y.; Shirazi, S. Zeolite-silver-zinc nanoparticles: Biocompatibility and their effect on the compressive strength of mineral trioxide aggregate. J. Clin. Exp. Dent., 2017, 9(3), e356-e360.
[http://dx.doi.org/10.4317/jced.53392] [PMID: 28298974]
[106]
Liang, J. Heterogeneous Catalysis in Zeolites; Mesoporous Silica, and Metal-Organic Frameworks, 2017.
[107]
Mandal, S.; Williams, H.L.; Hunt, H.K. Techniques for microscale patterning of zeolite-based thin films. Microporous Mesoporous Mater., 2015, 203(Suppl. C), 245-258.
[http://dx.doi.org/10.1016/j.micromeso.2014.10.038]
[108]
Gangadoo, S. Nanoparticles in feed: Progress and prospects in poultry research. Trends Food Sci. Technol., 2016, 58(Suppl. C), 115-126.
[http://dx.doi.org/10.1016/j.tifs.2016.10.013]
[109]
Cerrillo, J. Ag-zeolites as fungicidal material: Control of citrus green mold caused by Penicillium digitatum. Microporous Mesoporous Mater., 2017, 254, 69-76.
[http://dx.doi.org/10.1016/j.micromeso.2017.03.036]
[110]
Cerrillo, J.L. Ag-zeolites as fungicidal material: Control of citrus green mold caused by Penicillium digitatum. Microporous Mesoporous Mater., 2017, 254(Suppl. C), 69-76.
[http://dx.doi.org/10.1016/j.micromeso.2017.03.036]
[111]
Silva, E. PVP-coated silver nanoparticles showing antifungal improved activity against dermatophytes. J. Nanopart. Res., 2014, 16(11), 2726.
[http://dx.doi.org/10.1007/s11051-014-2726-2]
[112]
Poole, K. Bacterial stress responses as determinants of antimicrobial resistance. J. Antimicrob. Chemother., 2012, 67(9), 2069-2089.
[http://dx.doi.org/10.1093/jac/dks196] [PMID: 22618862]
[113]
Fruci, M.; Poole, K. Bacterial stress responses as determinants of antimicrobial resistance; Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 2016, p. 2.
[http://dx.doi.org/10.1002/9781119004813.ch10]
[114]
Foster, A.W.; Osman, D.; Robinson, N.J. Metal preferences and metallation. J. Biol. Chem., 2014, 289(41), 28095-28103.
[http://dx.doi.org/10.1074/jbc.R114.588145] [PMID: 25160626]
[115]
Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol., 2013, 11(6), 371-384.
[http://dx.doi.org/10.1038/nrmicro3028] [PMID: 23669886]
[116]
Cressman, W.A.; Sugita, E.T.; Doluisio, J.T.; Niebergall, P.J. Complexation of penicillins and penicilloic acids by cupric ion. J. Pharm. Pharmacol., 1966, 18(12), 801-808.
[http://dx.doi.org/10.1111/j.2042-7158.1966.tb07813.x] [PMID: 4381663]
[117]
Poole, K. At the nexus of antibiotics and metals: The impact of Cu and Zn on antibiotic activity and resistance. Trends Microbiol., 2017, 25(10), 820-832.
[http://dx.doi.org/10.1016/j.tim.2017.04.010] [PMID: 28526548]
[118]
Gensmantel, N.P.; Proctor, P.; Page, M.I. Metal-ion catalysed hydrolysis of some β-lactam antibiotics. J. Chem. Soc., Perkin Trans. 2, 1980, (11), 1725-1732.
[http://dx.doi.org/10.1039/P29800001725]
[119]
Guo, Y. Cu (II)-catalyzed degradation of ampicillin: Effect of pH and dissolved oxygen. Environ. Sci. Pollut. Res. Int., 2017, 1-10.
[PMID: 29178018]
[120]
Kozłowski, H.; Kowalik-Jankowska, T.; Jeżowska-Bojczuk, M. Chemical and biological aspects of Cu 2+ interactions with peptides and aminoglycosides. Coord. Chem. Rev., 2005, 249(21), 2323-2334.
[http://dx.doi.org/10.1016/j.ccr.2005.04.027]
[121]
Pulicharla, R. Tetracyclines metal complexation: Significance and fate of mutual existence in the environment. Environ. Pollut., 2016.
[PMID: 28007426]
[122]
Zawisza, B.; Baranik, A.; Malicka, E.; Talik, E.; Sitko, R. Preconcentration of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Pb(II) with ethylenediamine-modified graphene oxide. Mikrochim. Acta, 2016, 183(1), 231-240.
[http://dx.doi.org/10.1007/s00604-015-1629-y] [PMID: 26766877]
[123]
Zarkan, A.; Macklyne, H.R.; Truman, A.W.; Hesketh, A.R.; Hong, H.J. The frontline antibiotic vancomycin induces a zinc starvation response in bacteria by binding to Zn(II). Sci. Rep., 2016, 6, 19602.
[http://dx.doi.org/10.1038/srep19602] [PMID: 26797186]
[124]
Mohammed, S.K.; Al-Amery, M.H. Metal complexes of mixed ligands (quinolone antibiotics and α-aminonitrile derivatives) their applications: An update with Mn (II), Cu (II) and Cr (III) ions and study the biological activity. Org. Chem., 2016, 12(1), 29-45.
[125]
Bayroodi, E.; Jalal, R. Modulation of antibiotic resistance in Pseudomonas aeruginosa by ZnO nanoparticles. Iran. J. Microbiol., 2016, 8(2), 85-92.
[PMID: 27307973]
[126]
Elkhatib, W.; Noreddin, A. In vitro antibiofilm efficacies of different antibiotic combinations with zinc sulfate against Pseudomonas aeruginosa recovered from hospitalized patients with urinary tract infection. Antibiotics (Basel), 2014, 3(1), 64-84.
[http://dx.doi.org/10.3390/antibiotics3010064] [PMID: 27025734]
[127]
Walkenhorst, W.F. Using adjuvants and environmental factors to modulate the activity of antimicrobial peptides. Biochim. Biophys. Acta, 2016, 1858(5), 926-935.
[http://dx.doi.org/10.1016/j.bbamem.2015.12.034] [PMID: 26751595]
[128]
Lohner, K. Membrane-active antimicrobial peptides as template structures for novel antibiotic agents. Curr. Top. Med. Chem., 2017, 17(5), 508-519.
[http://dx.doi.org/10.2174/1568026616666160713122404] [PMID: 28117020]
[129]
Djoko, K.Y.; Goytia, M.M.; Donnelly, P.S.; Schembri, M.A.; Shafer, W.M.; McEwan, A.G. Copper (II)-bis (thiosemicarbazonato) complexes as antibacterial agents: insights into their mode of action and potential as therapeutics. Antimicrob. Agents Chemother., 2015, 59(10), 6444-6453.
[http://dx.doi.org/10.1128/AAC.01289-15] [PMID: 26239980]
[130]
Shah, S.; Dalecki, A.G.; Malalasekera, A.P.; Crawford, C.L.; Michalek, S.M.; Kutsch, O.; Sun, J.; Bossmann, S.H.; Wolschendorf, F. 8-Hydroxyquinolines are boosting agents of copper-related toxicity in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2016, 60(10), 5765-5776.
[http://dx.doi.org/10.1128/AAC.00325-16] [PMID: 27431227]
[131]
Dalecki, A.G.; Haeili, M.; Shah, S.; Speer, A.; Niederweis, M.; Kutsch, O.; Wolschendorf, F. Disulfiram and copper ions kill Mycobacterium tuberculosis in a synergistic manner. Antimicrob. Agents Chemother., 2015, 59(8), 4835-4844.
[http://dx.doi.org/10.1128/AAC.00692-15] [PMID: 26033731]
[132]
Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C, 2014, 44, 278-284.
[http://dx.doi.org/10.1016/j.msec.2014.08.031] [PMID: 25280707]
[133]
Mukherjee, P. Stenotrophomonas and Microbacterium: Mediated biogenesis of copper, silver and iron nanoparticles-proteomic insights and antibacterial properties versus biofilm formation. J. Cluster Sci., 2017, 28(1), 331-358.
[http://dx.doi.org/10.1007/s10876-016-1097-5]
[134]
Seil, J.T.; Webster, T.J. Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomedicine, 2012, 7, 2767-2781.
[PMID: 22745541]
[135]
Rongione, N.A.; Floerke, S.A.; Celik, E. Developments in antibacterial disinfection techniques: Applications of nanotechnology. Applying Nanotechnology for Environmental Sustainability; IGI Global, 2017, pp. 185-203.
[http://dx.doi.org/10.4018/978-1-5225-0585-3.ch009]
[136]
Dasgupta, N.; Ranjan, S.; Ramalingam, C. Applications of nanotechnology in agriculture and water quality management. Environ. Chem. Lett., 2017, 1-15.
[http://dx.doi.org/10.1007/s10311-017-0648-9]
[137]
Zhang, C.; Hu, Z.; Deng, B. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Res., 2016, 88, 403-427.
[http://dx.doi.org/10.1016/j.watres.2015.10.025] [PMID: 26519626]
[138]
McGillicuddy, E.; Murray, I.; Kavanagh, S.; Morrison, L.; Fogarty, A.; Cormican, M.; Dockery, P.; Prendergast, M.; Rowan, N.; Morris, D. Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci. Total Environ., 2017, 575, 231-246.
[http://dx.doi.org/10.1016/j.scitotenv.2016.10.041] [PMID: 27744152]
[139]
Vatansever, F.; de Melo, W.C.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N.A.; Yin, R.; Tegos, G.P.; Hamblin, M.R. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev., 2013, 37(6), 955-989.
[http://dx.doi.org/10.1111/1574-6976.12026] [PMID: 23802986]
[140]
Durán, N.; Durán, M.; de Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine (Lond.), 2016, 12(3), 789-799.
[http://dx.doi.org/10.1016/j.nano.2015.11.016] [PMID: 26724539]
[141]
Actis, L.; Srinivasan, A.; Lopez-Ribot, J.L.; Ramasubramanian, A.K.; Ong, J.L. Effect of silver nanoparticle geometry on methicillin susceptible and resistant Staphylococcus aureus, and osteoblast viability. J. Mater. Sci. Mater. Med., 2015, 26(7), 215.
[http://dx.doi.org/10.1007/s10856-015-5538-8] [PMID: 26194976]
[142]
Kasemets, K.; Ivask, A.; Dubourguier, H.C.; Kahru, A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. In Vitro, 2009, 23(6), 1116-1122.
[http://dx.doi.org/10.1016/j.tiv.2009.05.015] [PMID: 19486936]
[143]
Juganson, K.; Mortimer, M.; Ivask, A.; Pucciarelli, S.; Miceli, C.; Orupõld, K.; Kahru, A. Mechanisms of toxic action of silver nanoparticles in the protozoan Tetrahymena thermophila: From gene expression to phenotypic events. Environ. Pollut., 2017, 225, 481-489.
[http://dx.doi.org/10.1016/j.envpol.2017.03.013] [PMID: 28318795]
[144]
De Azeredo, H.M. Nanocomposites for food packaging applications. Food Res. Int., 2009, 42(9), 1240-1253.
[http://dx.doi.org/10.1016/j.foodres.2009.03.019]
[145]
Tripathi, A.; Saravanan, S.; Pattnaik, S.; Moorthi, A.; Partridge, N.C.; Selvamurugan, N. Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper-zinc for bone tissue engineering. Int. J. Biol. Macromol., 2012, 50(1), 294-299.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.11.013] [PMID: 22123094]
[146]
Yoksan, R.; Jirawutthiwongchai, J.; Arpo, K. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloids Surf. B Biointerfaces, 2010, 76(1), 292-297.
[http://dx.doi.org/10.1016/j.colsurfb.2009.11.007] [PMID: 20004558]
[147]
Ciobanu, G.; Carja, G.; Ciobanu, O. Preparation and characterization of polymer-zeolite nanocomposite membranes. Mater. Sci. Eng. C, 2007, 27(5), 1138-1140.
[http://dx.doi.org/10.1016/j.msec.2006.06.004]
[148]
Kovačević, V. Adhesion parameters at the interface in nanoparticulate filled polymer systems. Polym. Eng. Sci., 2008, 48(10), 1994-2002.
[http://dx.doi.org/10.1002/pen.21132]
[149]
Alebooyeh, R.A.; Mohammadi, N.; Jokr, M. The Effects of ZnOnanorodson the characteristics of sago starch biodegradable films. J. Chem. Health Risks, 2012, 2(4)
[150]
Bae, H.J. Effect of clay content, homogenization RPM, pH, and ultrasonication on mechanical and barrier properties of fish gelatin/montmorillonite nanocomposite films. Lebensm. Wiss. Technol., 2009, 42(6), 1179-1186.
[http://dx.doi.org/10.1016/j.lwt.2008.12.016]
[151]
Gómez-Guillén, M. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll., 2011, 25(8), 1813-1827.
[http://dx.doi.org/10.1016/j.foodhyd.2011.02.007]
[152]
Rouhi, J.; Mahmud, S.; Naderi, N.; Ooi, ChR.; Mahmood, M.R. Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Res. Lett., 2013, 8(1), 364.
[http://dx.doi.org/10.1186/1556-276X-8-364] [PMID: 23981366]
[153]
Antimicrobial and barrier properties of bovine gelatin films reinforced by nano TiO2. J. Chem. Health Risks, 2013, 3(3), 21-28.
[154]
He, Q.; Zhang, Y.; Cai, X.; Wang, S. Fabrication of gelatin-TiO2 nanocomposite film and its structural, antibacterial and physical properties. Int. J. Biol. Macromol., 2016, 84, 153-160.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.012] [PMID: 26691381]
[155]
Li, X.H.; Xing, Y.G.; Li, W.L.; Jiang, Y.H.; Ding, Y.L. Antibacterial and physical properties of poly(vinyl chloride)-based film coated with ZnO nanoparticles. Food Sci. Technol. Int., 2010, 16(3), 225-232.
[http://dx.doi.org/10.1177/1082013209353986] [PMID: 21339138]
[156]
Shankar, S. Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocoll., 2015, 45, 264-271.
[http://dx.doi.org/10.1016/j.foodhyd.2014.12.001]
[157]
Díez-Pascual, A.M.; Díez-Vicente, A.L. ZnO-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. ACS Appl. Mater. Interfaces, 2014, 6(12), 9822-9834.
[http://dx.doi.org/10.1021/am502261e] [PMID: 24846876]
[158]
Arfat, Y.A. Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocoll., 2014, 41, 265-273.
[http://dx.doi.org/10.1016/j.foodhyd.2014.04.023]
[159]
Shankar, S.; Teng, X.; Rhim, J-W. Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohydr. Polym., 2014, 114, 484-492.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.036] [PMID: 25263917]
[160]
Jia, B.; Mei, Y.; Cheng, L.; Zhou, J.; Zhang, L. Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl. Mater. Interfaces, 2012, 4(6), 2897-2902.
[http://dx.doi.org/10.1021/am3007609] [PMID: 22680307]
[161]
Li, Y. Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocoll., 2011, 25(5), 1098-1104.
[http://dx.doi.org/10.1016/j.foodhyd.2010.10.006]
[162]
Oleyaei, S.A.; Zahedi, Y.; Ghanbarzadeh, B.; Moayedi, A.A. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int. J. Biol. Macromol., 2016, 89, 256-264.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.078] [PMID: 27132884]
[163]
Zhang, W.; Chen, J.; Chen, Y.; Xia, W.; Xiong, Y.L.; Wang, H. Enhanced physicochemical properties of chitosan/whey protein isolate composite film by sodium laurate-modified TiO2 nanoparticles. Carbohydr. Polym., 2016, 138, 59-65.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.031] [PMID: 26794738]
[164]
Oun, A.A.; Rhim, J-W. Carrageenan-based hydrogels and films: Effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocoll., 2017, 67, 45-53.
[http://dx.doi.org/10.1016/j.foodhyd.2016.12.040]
[165]
Alebooyeh, R. MohammadiNafchi, A.; Jokr, M. The effects of ZnO nanorods on the characteristics of sago starch biodegradable films. J. Chem. Health Risks, 2012, 2(4), 13-16.
[166]
Shahmohammadi Jebel, F.; Almasi, H. Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr. Polym., 2016, 149, 8-19.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.089] [PMID: 27261725]
[167]
Marvizadeh, M.M.; Mohammadi, N.A.; Jokar, M. Improved physicochemical properties of tapioca starch/bovine gelatin biodegradable films with zinc oxide nanorod. J. Chem. Health Risks, 2018, 4(4)
[168]
Noshirvani, N.; Ghanbarzadeh, B.; Mokarram, R.R.; Hashemi, M.; Coma, V. Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles. Int. J. Biol. Macromol., 2017, 99, 530-538.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.007] [PMID: 28267614]
[169]
Shahedi, M.; Kadivar, M. Production bionanocomposite films of bitter vetch protein isolate contain ZnO nanoparticles and study functional characterizations and its effect on food storage. J. Food Sci. Technol., 2016, 13(51)
[170]
Kanmani, P.; Rhim, J-W. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem., 2014, 148, 162-169.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.047] [PMID: 24262541]
[171]
Orsuwan, A. Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocoll., 2016, 60, 476-485.
[http://dx.doi.org/10.1016/j.foodhyd.2016.04.017]
[172]
Arfat, Y.A. Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles. Food Hydrocoll., 2017, 62, 191-202.
[http://dx.doi.org/10.1016/j.foodhyd.2016.08.009]
[173]
Jamróz, E. Development and characterisation of furcellaran-gelatin films containing SeNPs and AgNPs that have antimicrobial activity. Food Hydrocoll., 2018, 83, 9-16.
[http://dx.doi.org/10.1016/j.foodhyd.2018.04.028]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy