Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Depigmentation and Anti-aging Treatment by Natural Molecules

Author(s): Abdel Naser Zaid* and Rowa’ Al Ramahi

Volume 25, Issue 20, 2019

Page: [2292 - 2312] Pages: 21

DOI: 10.2174/1381612825666190703153730

Price: $65

Abstract

Natural molecules are becoming more accepted choices as cosmetic agents, many products in the market today claim to include natural components. Plants include many substances that could be of a value in the whitening of the skin and working as anti-aging agents. A wide range of articles related to natural skin whitening and anti-aging agents have been reviewed. Many plant-derived and natural molecules have shown to affect melanin synthesis by different mechanisms, examples include Arbutin, Ramulus mori extract, Licorice extract, Glabridin, Liquiritin, Kojic acid, Methyl gentisate, Aloesin, Azelaic acid, Vitamin C, Thioctic acid, Soya bean extracts, Niacinamide, α and β-hydroxy acids, Lactic acid, Chamomile extract, and Ellagic acid. Some of the widely used natural anti-aging products as natural antioxidants, collagen, hyaluronic acid, and coenzyme Q can counteract the effects of reactive oxygen species in skin cells and have anti-aging properties on the skin. It was concluded that many natural products including antioxidants can prevent UV-induced skin damage and have whitening and anti-aging effects. It is very important to develop and stabilize appropriate methods for the evaluation of the whitening and anti-aging capacity of natural products and their exact mechanism of action to ensure real efficacy based on evidence-based studies. The attention should be oriented on the formulations and the development of an appropriate vehicle to ensure suitable absorption of these natural products in addition to evaluating the suitable concentration of these molecules required having the desired effects without causing harmful side effects.

Keywords: Natural products, antioxidants, skin whitening, photoaging, anti-aging, formulation.

« Previous
[1]
Binic I, Lazarevic V, Ljubenovic M, Mojsa J, Sokolovic D. Skin ageing: natural weapons and strategies. Evid Based Complement Alternat Med 2013; 2013827248
[http://dx.doi.org/10.1155/2013/827248] [PMID: 23431351]
[2]
Engasser PG, Maibach HI. Cosmetic and dermatology: bleaching creams. J Am Acad Dermatol 1981; 5(2): 143-7.
[http://dx.doi.org/10.1016/S0190-9622(81)70082-3] [PMID: 7021611]
[3]
Harry RG. Harry’s cosmeticology. Chemical Publishing Company 1982.
[4]
Datta HS, Paramesh R. Trends in aging and skin care: Ayurvedic concepts. J Ayurveda Integr Med 2010; 1(2): 110-3.
[http://dx.doi.org/10.4103/0975-9476.65081] [PMID: 21836797]
[5]
Hirobe T. Keratinocytes regulate the function of melanocytes. Zhonghua Pifuke Yixue Zazhi 2014; 32: 200-4.
[http://dx.doi.org/10.1016/j.dsi.2014.05.002]
[6]
Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 2004; 84(4): 1155-228.
[http://dx.doi.org/10.1152/physrev.00044.2003] [PMID: 15383650]
[7]
Park HY, Gilchrest BA. Signaling pathways mediating melanogenesis. Cell Mol Biol 1999; 45(7): 919-30.
[PMID: 10643996]
[8]
Sherrow V. For appearance’sake: The historical encyclopedia of good looks, beauty, and grooming. Greenwood Publishing Group 2001.
[9]
Petruk G, Del Giudice R, Rigano MM, Monti DM. Antioxidants from Plants Protect against Skin Photoaging. Oxid Med Cell Longev 2018; 20181454936
[http://dx.doi.org/10.1155/2018/1454936]
[10]
Souyoul SA, Saussy KP, Lupo MP. Nutraceuticals: A Review. Dermatol Ther (Heidelb) 2018; 8(1): 5-16.
[http://dx.doi.org/10.1007/s13555-018-0221-x] [PMID: 29411317]
[11]
Schniertshauer D, Gebhard D, Bergemann J. Age-Dependent Loss of Mitochondrial Function in Epithelial Tissue Can Be Reversed by Coenzyme Q10. J Aging Res 2018: 6354680.
[http://dx.doi.org/10.1155/2018/6354680. eCollection 2018.]
[12]
Mamalis A, Nguyen DH, Brody N, Jagdeo J. The active natural anti-oxidant properties of chamomile, milk thistle, and halophilic bacterial components in human skin in vitro. J Drugs Dermatol 2013; 12(7): 780-4.
[PMID: 23884490]
[13]
Kasraee B. Peroxidase-mediated mechanisms are involved in the melanocytotoxic and melanogenesis-inhibiting effects of chemical agents. Dermatology (Basel) 2002; 205(4): 329-39.
[http://dx.doi.org/10.1159/000066439] [PMID: 12444326]
[14]
Gbetoh MH, Amyot M. Mercury, hydroquinone and clobetasol propionate in skin lightening products in West Africa and Canada. Environ Res 2016; 150: 403-10.
[http://dx.doi.org/10.1016/j.envres.2016.06.030] [PMID: 27372064]
[15]
Olumide YM, Akinkugbe AO, Altraide D, et al. Complications of chronic use of skin lightening cosmetics. Int J Dermatol 2008; 47(4): 344-53.
[http://dx.doi.org/10.1111/j.1365-4632.2008.02719.x] [PMID: 18377596]
[16]
Levitt J. The safety of hydroquinone: A dermatologist’s response to the 2006 Federal Register. J Am Acad Dermatol 2007; 57(5): 854-72.
[http://dx.doi.org/10.1016/j.jaad.2007.02.020] [PMID: 17467115]
[17]
Jow T, Hantash BM. Hydroquinone-induced depigmentation: Case report and review of the literature. Dermatitis 2014; 25(1): e1-5.
[http://dx.doi.org/10.1097/01.DER.0000438425.56740.8a] [PMID: 24407054]
[18]
Tse TW. Hydroquinone for skin lightening: safety profile, duration of use and when should we stop? J Dermatolog Treat 2010; 21(5): 272-5.
[http://dx.doi.org/10.3109/09546630903341945] [PMID: 20095963]
[19]
Arndt KA, Fitzpatrick TB. Topical use of hydroquinone as a depigmenting agent. JAMA 1965; 194(9): 965-7.
[http://dx.doi.org/10.1001/jama.1965.03090220021006] [PMID: 5897965]
[20]
Kang WH, Chun SC, Lee S. Intermittent therapy for melasma in Asian patients with combined topical agents (retinoic acid, hydroquinone and hydrocortisone): Clinical and histological studies. J Dermatol 1998; 25(9): 587-96.
[http://dx.doi.org/10.1111/j.1346-8138.1998.tb02463.x] [PMID: 9798345]
[21]
Gillbro JM, Olsson MJ. The melanogenesis and mechanisms of skin-lightening agents--existing and new approaches. Int J Cosmet Sci 2011; 33(3): 210-21.
[http://dx.doi.org/10.1111/j.1468-2494.2010.00616.x] [PMID: 21265866]
[22]
Solano F, Briganti S, Picardo M, Ghanem G. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res 2006; 19(6): 550-71.
[http://dx.doi.org/10.1111/j.1600-0749.2006.00334.x] [PMID: 17083484]
[23]
Parvez S, Kang M, Chung HS, et al. Survey and mechanism of skin depigmenting and lightening agents. Phytother Res 2006; 20(11): 921-34.
[http://dx.doi.org/10.1002/ptr.1954] [PMID: 16841367]
[24]
Mateus Moreira A, Souza Felix Bravo B, Gutstein da Fonseca Amorim A, Raggio Luiz R, Almeida Issa MC. Estudo duplo cego comparativo entre hidroquinona e extrato de uva-ursina no tratamento do melasma. Surg Cosm Derma 2010; p. 2.
[25]
Maeda K, Fukuda M. In vitro effectiveness of several whitening cosmetic components in human melanocytes. J Soc Cosmet Chem 1991; 42: 361-8.
[26]
Domokos J, Palinkas J, Kiss B. The bleaching of the skin by means of materials of vegetal and natural origin Olaj szappan kozmetika Hungary 2003; 521: 25-28.
[27]
Zhu W, Gao J. The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J Investig Dermatol Symp Proc 2008; 13(1): 20-4 doi: 10.1038/jidsymp.2008.8.
[http://dx.doi.org/10.1038/jidsymp.2008.8]
[28]
Ebanks JP, Wickett RR, Boissy RE. Mechanisms regulating skin pigmentation: the rise and fall of complexion coloration. Int J Mol Sci 2009; 10(9): 4066-87.
[http://dx.doi.org/10.3390/ijms10094066] [PMID: 19865532]
[29]
Kim JH, Lee KT. Inhibitory effects of Ramulus mori extracts on melanogenesis. J Soci Cosmetic Sci Korea 1998; 24: 45-50.
[30]
Yan ZHJ. Preparation of Beautiful Whitening Cream with Liquorice. Adv Fine Petrochem 2007; 6: 13.
[31]
Gupta S. Boosting Tyrosinase Inhibiting Activity of Skin Whitening and Sunscreen Compositions. U.S. Patent 20040166069; August 2004.
[32]
Santhanam U. Topical Lightening Composition and Methods of Use Thereof WIPO Patent WO/2015/187417; 2006.
[33]
Simmler C, Pauli GF, Chen S-N. Phytochemistry and biological properties of glabridin. Fitoterapia 2013; 90: 160-84.
[http://dx.doi.org/10.1016/j.fitote.2013.07.003] [PMID: 23850540]
[34]
Amer M, Metwalli M. Topical liquiritin improves melasma. Int J Dermatol 2000; 39(4): 299-301.
[http://dx.doi.org/10.1046/j.1365-4362.2000.00943.x] [PMID: 10809983]
[35]
Su E. A Comparison of Skin Lightening Agents. J Cosmet Sci 1998; 49: 208-9.
[36]
Cabanes J, Chazarra S, Garcia-Carmona F. Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J Pharm Pharmacol 1994; 46(12): 982-5.
[http://dx.doi.org/10.1111/j.2042-7158.1994.tb03253.x] [PMID: 7714722]
[37]
Mathew A, Taranalli AD, Torgal SS. Evaluation of anti-inflammatory and wound healing activity of Gentiana lutea rhizome extracts in animals. Pharm Biol 2004; 42: 8-12.
[http://dx.doi.org/10.1080/13880200390502883]
[38]
Curto EV, Kwong C, Hermersdörfer H, et al. Inhibitors of mammalian melanocyte tyrosinase: In vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochem Pharmacol 1999; 57(6): 663-72.
[http://dx.doi.org/10.1016/S0006-2952(98)00340-2] [PMID: 10037452]
[39]
Solano F, Briganti S, Picardo M, Ghanem G. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res 2006; 19(6): 550-71.
[http://dx.doi.org/10.1111/j.1600-0749.2006.00334.x] [PMID: 17083484]
[40]
Dooley T, Curto E. Inhibitors of melanocyte tyrosinase as topical skin lighteners. Google Patents 2005.
[41]
Jin YH, Lee SJ, Chung MH, et al. Aloesin and arbutin inhibit tyrosinase activity in a synergistic manner via a different action mechanism. Arch Pharm Res 1999; 22(3): 232-6.
[http://dx.doi.org/10.1007/BF02976355] [PMID: 10403123]
[42]
Wilde PF, Stewart PS. A study of the fatty acid metabolism of the yeast Pityrosporum ovale. Biochem J 1968; 108(2): 225-31.
[http://dx.doi.org/10.1042/bj1080225] [PMID: 5691082]
[43]
Kim YJ, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci 2005; 62(15): 1707-23.
[http://dx.doi.org/10.1007/s00018-005-5054-y] [PMID: 15968468]
[44]
Thiboutot D, Thieroff-Ekerdt R, Graupe K. Efficacy and safety of azelaic acid (15%) gel as a new treatment for papulopustular rosacea: Results from two vehicle-controlled, randomized phase III studies. J Am Acad Dermatol 2003; 48(6): 836-45.
[http://dx.doi.org/10.1067/mjd.2003.308] [PMID: 12789172]
[45]
Iraji F, Sadeghinia A, Shahmoradi Z, Siadat AH, Jooya A. Efficacy of topical azelaic acid gel in the treatment of mild-moderate acne vulgaris. Indian J Dermatol Venereol Leprol 2007; 73(2): 94-6.
[http://dx.doi.org/10.4103/0378-6323.31892] [PMID: 17456913]
[46]
Kameyama K, Sakai C, Kondoh S, et al. Inhibitory effect of magnesium L-ascorbyl-2-phosphate (VC-PMG) on melanogenesis in vitro and in vivo. J Am Acad Dermatol 1996; 34(1): 29-33.
[http://dx.doi.org/10.1016/S0190-9622(96)90830-0] [PMID: 8543691]
[47]
Randazzoi SD, Morganti P. Disorders of skin colour and their treatment. J Appl Cosmetol 1986; 4: 1-20.
[48]
Petit L, Piérard GE. Skin-lightening products revisited. Int J Cosmet Sci 2003; 25(4): 169-81.
[http://dx.doi.org/10.1046/j.1467-2494.2003.00182.x] [PMID: 18494898]
[49]
Morganti P, Fabrizi G, Morganti G, Guarneri F. A new cosmeceutical with a skin lightening activity: Second note the combining whitening activity of a hydrosoluble and a liposoluble vitamin C derivative. SOFW 2002; 128: 22-5.
[50]
Packer L, Witt EH, Tritschler HJ. alpha-Lipoic acid as a biological antioxidant. Free Radic Biol Med 1995; 19(2): 227-50.
[http://dx.doi.org/10.1016/0891-5849(95)00017-R] [PMID: 7649494]
[51]
Thirion L, Piérard-Franchimont C, Piérard GE. Whitening effect of a dermocosmetic formulation: a randomized double-blind controlled study on melasma. Int J Cosmet Sci 2006; 28(4): 263-7.
[http://dx.doi.org/10.1111/j.1467-2494.2006.00312.x] [PMID: 18489266]
[52]
Sharlow ER, Paine CS, Babiarz L, Eisinger M, Shapiro S, Seiberg M. The protease-activated receptor-2 upregulates keratinocyte phagocytosis. J Cell Sci 2000; 113(Pt 17): 3093-101.
[PMID: 10934047]
[53]
Gupta S. Niacinamide, niacin, and niacin esters based delivery systems for treating topical disorders of skin and skin aging. Google Patents 2004.
[54]
Smith WP. The effects of topical l(+) lactic Acid and ascorbic Acid on skin whitening. Int J Cosmet Sci 1999; 21(1): 33-40.
[http://dx.doi.org/10.1046/j.1467-2494.1999.196561.x] [PMID: 18505528]
[55]
Haddad AL, Matos LF, Brunstein F, Ferreira LM, Silva A, Costa D Jr. A clinical, prospective, randomized, double-blind trial comparing skin whitening complex with hydroquinone vs. placebo in the treatment of melasma. Int J Dermatol 2003; 42(2): 153-6.
[http://dx.doi.org/10.1046/j.1365-4362.2003.01621.x] [PMID: 12709008]
[56]
Hansen HV. Christensen KIb. The common chamomile and the scentless may weed revisited. Taxon. Inter Assoc Plant Taxo 2009; 58: 261-4.
[http://dx.doi.org/10.1002/tax.581024]
[57]
Der MA, Liberti L. Natural product medicine: A scientific guide to foods, drugs, cosmetics. George, Philadelphia: F. Stickley Co 1988.
[58]
Mann C, Staba EJ. In herbs, spices and medicinal plants: recent advances in botany Oryx Press. Phoenix, Arizona 1986.
[59]
McKay DL, Blumberg JB. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother Res 2006; 20(7): 519-30.
[http://dx.doi.org/10.1002/ptr.1900] [PMID: 16628544]
[60]
Lemberkovics E, Kéry A, Marczal G, Simándi B, Szöke E. Phytochemical evaluation of essential oils, medicinal plants and their preparations. Acta Pharm Hung 1998; 68(3): 141-9.
[PMID: 9703700]
[61]
Baser KH, Demirci B, Iscan G, et al. The essential oil constituents and antimicrobial activity of Anthemis aciphylla BOISS Var. discoidea BOISS . Chem Pharm Bull (Tokyo), 2006; 54: 222-25.
[62]
Babenko NA, Shakhova EG. Effects of Chamomilla recutita flavonoids on age-related liver sphingolipid turnover in rats. Exp Gerontol 2006; 41(1): 32-9.
[http://dx.doi.org/10.1016/j.exger.2005.08.008] [PMID: 16183236]
[63]
Redaelli C, Formentini L, Santaniello E. Reversed-Phase High-Performance Liquid Chromatography Analysis of Apigenin and its Glucosides in Flowers of Matricaria chamomilla and Chamomile. Extracts Planta Med 1981; 42: 288-92.
[64]
Svehliková V, Bennett RN, Mellon FA, et al. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L] Rauschert). Phytochemistry 2004; 65: 2323-32.
[65]
Weiss RF. Herbal Medicine. U.K: Beaconsfield 1988.
[66]
Peña D, Montes de Oca N, Rojas S. Anti-inflammatory and anti-diarrheic activity of Isocarpha cubana Blake. Pharmacologyonline 2006; 3: 744-9.
[67]
Martens D. The herb and the remedy. J Chiropractic Academy Homeopy 1995; 6: 15-8.
[68]
Crotteau CA, Wright ST, Eglash A. Clinical inquiries. What is the best treatment for infants with colic? J Fam Pract 2006; 55(7): 634-6.
[PMID: 16822454]
[69]
Hernandez S, Shaffer B. Use of polyphenols to treat skin conditions Patent US20070243271 2008.
[70]
Bhaskaran N, Shukla S, Srivastava JK, Gupta S. Chamomile: an anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity. Int J Mol Med 2010; 26(6): 935-40.
[PMID: 21042790]
[71]
Sepúlveda L, Ascacio A, Rodríguez-Herrera R, Aguilera-Carbó A, Aguilar CN. Ellagic acid: ‎Biological properties and biotechnological development for production processes. Afr J Biotechnol 2011; 10: 4518-23.
[72]
Feldman KS, Sahasrabudhe K, Smith RS, Scheuchenzuber WJ. Immunostimulation by plant polyphenols: A relationship between tumor necrosis factor-alpha production and tannin structure. Bioorg Med Chem Lett 1999; 9(7): 985-90.
[http://dx.doi.org/10.1016/S0960-894X(99)00110-9] [PMID: 10230625]
[73]
Akiyama H, Fujii K, Yamasaki O, Oono T, Iwatsuki K. Antibacterial action of several tannins against Staphylococcus aureus. J Antimicrob Chemother 2001; 48(4): 487-91.
[http://dx.doi.org/10.1093/jac/48.4.487] [PMID: 11581226]
[74]
Vattem DA, Shetty K. Solid-state production of phenolic antioxidants from cranberry pomace by Rhizopus oligosporus. Food Biotechnol 2002; 16: 189-210.
[http://dx.doi.org/10.1081/FBT-120016667]
[75]
Ruibal BIJ, Marta-Dubed EM, Martínez FL, Noa RE, Vargas GLM, Santana RJL. Inhibition of HIV replication by tannin extracts from Pinus Caribaea Morelet. Rev Cuba Farm 2003; 37: 2-9.
[76]
Tazaki H, Ito M, Miyoshi M, et al. Subulatin, an antioxidic caffeic acid derivative isolated from the in vitro cultured liverworts, Jungermannia subulata, Lophocolea heterophylla, and Scapania parvitexta. Biosci Biotechnol Biochem 2002; 66(2): 255-61.
[http://dx.doi.org/10.1271/bbb.66.255] [PMID: 11999396]
[77]
Losso JN, Bansode RR, Trappey A II, Bawadi HAT, Truax R. In vitro anti-proliferative activities of ellagic acid. J Nutr Biochem 2004; 15(11): 672-8.
[http://dx.doi.org/10.1016/j.jnutbio.2004.06.004] [PMID: 15590271]
[78]
Bensky D, Clavey S. Stonger E, Gamble A. Chinese Herbal Medicine. Materia Medica 2004.
[79]
National Center for Complementary and Integrative Health- US National Institutes of Health. Asian ginseng 2016.
[80]
Jin Y, Kim YJ, Jeon JN, et al. Effect of white, red and black ginseng on physicochemical properties and ginsenosides. Plant Foods Hum Nutr 2015; 70(2): 141-5.
[http://dx.doi.org/10.1007/s11130-015-0470-0] [PMID: 25778283]
[81]
Lim JY, Ishiguro K, Kubo I. Tyrosinase inhibitory p-coumaric acid from ginseng leaves. Phytother Res 1999; 13(5): 371-5.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199908/09)13:5<371:AID-PTR453>3.0.CO;2-L] [PMID: 10441774]
[82]
Im SJ, Kim KN, Yun YG, et al. Effect of Radix Ginseng and Radix Trichosanthis on the melanogenesis. Biol Pharm Bull 2003; 26(6): 849-53.
[http://dx.doi.org/10.1248/bpb.26.849] [PMID: 12808298]
[83]
Lee H, Lee JY, Song KC, et al. Protective effect of processed panax ginseng, sun ginseng on uvb-irradiated human skin keratinocyte and human dermal fibroblast. J Ginseng Res 2012; 36(1): 68-77.
[http://dx.doi.org/10.5142/jgr.2012.36.1.68] [PMID: 23717106]
[84]
Vaibhav S, Lakshaman K. Tyrosinase enzyme inhibitory activity of selected Indian herbs. Int J Res Pharm Biomed Sci 2012; 3: 977-82.
[85]
Prabhajit K, Bikram S, Subodh K, Satwinderjeet K. In vitro evaluation on free radical scavenging activity of Rubia cordifolia. J Chin Clin Med 2008; 3(5): 278-84.
[86]
Kumar VP, Chauhan NS, Padh H, Rajani M. Search for antibacterial and antifungal agents from selected Indian medicinal plants. J Ethnopharmacol 2006; 107(2): 182-8.
[http://dx.doi.org/10.1016/j.jep.2006.03.013] [PMID: 16678369]
[87]
Chow YL, Quon HH. Chemical constituents of the heartwood of Mesua ferrea. Phytochemistry 1968; 7: 1871-4.
[http://dx.doi.org/10.1016/S0031-9422(00)86662-5]
[88]
Bandaranayake WM, Selliah SS, Sultanbawa MU, Games DE. Xanthones and 4-‎phenylcoumarins of Mesua thwaitesii. Phytochemistry 1975; 14: 265.
[http://dx.doi.org/10.1016/0031-9422(75)85052-7]
[89]
Raju MS, Srimannarayana G, Rao NV, Bala KR, Seshadri TS. Structure of Mesuaferrone-B a new biflavanone from the stamens of Mesua ferrea Linn. Tetrahedron Lett 1976; 49: 4509.
[90]
Jayanthi G, Kamalraj S, Karthikeyan K, Muthumary J. Antimicrobial and antioxidant activity of the endophytic fungus Phomopsis sp. GJJM07 isolated from Mesua ferrea. Int J Curr Sci 2011; 1: 85-90.
[91]
Sapkota K, Park SE, Kim JE, Kim S, Choi HS, Chun HS. Antioxidant and antimelanogenic properties of chestnut flower extract. J Nat Med 2012; 66: 166-76.
[92]
Jangwan JS, Bahuguna RP. Puddumin-B, a new flavanone glycoside from Prunus cerasoides. Informa Healthc Pharm Biol 1989; 27: 223-6.
[93]
Murata K, Takahashi K, Nakamura H, Itoh K, Matsuda H. Search for skin-whitening agent from Prunus plants and the molecular targets in melanogenesis pathway of active compounds. Nat Prod Commun 2014; 9(2): 185-8.
[http://dx.doi.org/10.1177/1934578X1400900213] [PMID: 24689286]
[94]
Austin A. A review of Indian Sarasaparilla, Hemidesmus indicus (L.) R. Br. J Biol Sci 2008; 8(1): 1-12.
[95]
Ravishankara MN, Shrivastava N, Padh H, Rajani M. Evaluation of antioxidant properties of root bark of Hemidesmus indicus R. Br. (Anantmul). Phytomedicine 2002; 9(2): 153-60.
[http://dx.doi.org/10.1078/0944-7113-00104] [PMID: 11995949]
[96]
Kundu A, Mitra A. Evaluating tyrosinase (monophenolase) inhibitory activity from fragrant roots of Hemidesmus indicus for potent use in herbal products. Ind Crops Prod 2014; 52: 394-9.
[97]
Singh G, Singh BS, Kumar BR. Antimicrobial activity of essential oils against keratinophilic fungi. Indian Drugs 1978; 16: 43-5.
[98]
Peng HY, Lai CC, Lin CC, Chou ST. Effect of Vetiveria zizanioides essential oil on melanogenesis in melanoma cells: downregulation of tyrosinase expression and suppression of oxidative stress. Sci World J 2014.2014213013
[http://dx.doi.org/10.1155/2014/213013] [PMID: 24772013]
[99]
Tomás Barberán FA, Clifford MN. Flavanones, chalcones and dihydrochalcones–nature, occurrence and dietary burden. J Sci Food Agric 2000; 80: 1073-80.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1073:AID-JSFA568>3.0.CO;2-B]
[100]
Nerya O, Musa R, Khatib S, Tamir S, Vaya J. Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry 2004; 65(10): 1389-95.
[http://dx.doi.org/10.1016/j.phytochem.2004.04.016] [PMID: 15231412]
[101]
Ahshawat MS, Saraf S, Saraf S. Preparation and characterization of herbal creams for improvement of skin viscoelastic properties. Int J Cosmet Sci 2008; 30(3): 183-93.
[http://dx.doi.org/10.1111/j.1468-2494.2008.00442.x] [PMID: 18452435]
[102]
Dunaway S, Odin R, Zhou L, Ji L, Zhang Y, Kadekaro AL. Natural Antioxidants: Multiple Mechanisms to Protect Skin From Solar Radiation. Front Pharmacol2018; 9: 392.
[http://dx.doi.org/10.3389/fphar.2018.00392. eCollection 2018]
[103]
Reuter J, Merfort I, Schempp CM. Botanicals in dermatology: an evidence-based review. Am J Clin Dermatol 2010; 11(4): 247-67.
[PMID: 20509719]
[104]
Tundis R, Loizzo MR, Bonesi M, Menichini F. Potential role of natural compounds against skin aging. Curr Med Chem 2015; 22(12): 1515-38.
[http://dx.doi.org/10.2174/0929867322666150227151809] [PMID: 25723509]
[105]
Thornfeldt CR, Rizer RL. Superior Efficacy of an Herbal-based Cosmeceutical Compared With Common Prescription and Cosmetic Antiaging Therapies. J Drugs Dermatol 2016; 15(2): 218-23.
[PMID: 26885791]
[106]
Kitture R, Ghosh S, More PA, et al. Curcumin-loaded, self-assembled aloevera template for superior antioxidant activity and trans-membrane drug release. J Nanosci Nanotechnol 2015; 15(6): 4039-45.
[http://dx.doi.org/10.1166/jnn.2015.10322] [PMID: 26369010]
[107]
Korać RR, Khambholja KM. Potential of herbs in skin protection from ultraviolet radiation. Pharmacogn Rev 2011; 5(10): 164-73.
[http://dx.doi.org/10.4103/0973-7847.91114] [PMID: 22279374]
[108]
Roh E, Kim JE, Kwon JY, et al. Molecular mechanisms of green tea polyphenols with protective effects against skin photoaging. Crit Rev Food Sci Nutr 2017; 57(8): 1631-7.
[http://dx.doi.org/10.1080/10408398.2014.1003365] [PMID: 26114360]
[109]
Agarwal R, Katiyar SK, Khan SG, Mukhtar H. Protection against ultraviolet B radiation-induced effects in the skin of SKH-1 hairless mice by a polyphenolic fraction isolated from green tea. Photochem Photobiol 1993; 58(5): 695-700.
[http://dx.doi.org/10.1111/j.1751-1097.1993.tb04954.x] [PMID: 8284325]
[110]
Nwanodi O. Skin Protective Nutraceuticals: The Current Evidence in Brief. Healthcare (Basel) 2018; 6(2)E40
[http://dx.doi.org/10.3390/healthcare6020040] [PMID: 29734688]
[111]
Katiyar SK, Challa A, McCormick TS, Cooper KD, Mukhtar H. Prevention of UVB-induced immunosuppression in mice by the green tea polyphenol (-)-epigallocatechin-3-gallate may be associated with alterations in IL-10 and IL-12 production. Carcinogenesis 1999; 20(11): 2117-24.
[http://dx.doi.org/10.1093/carcin/20.11.2117] [PMID: 10545414]
[112]
Lee KO, Kim SN, Kim YC. Anti-wrinkle Effects of Water Extracts of Teas in Hairless Mouse. Toxicol Res 2014; 30(4): 283-9.
[http://dx.doi.org/10.5487/TR.2014.30.4.283] [PMID: 25584148]
[113]
Campos PM, Gianeti MD, Mercurio DG, Gaspar LR. Synergistic effects of green tea and ginkgo biloba extracts on the improvement of skin barrier function and elasticity. J Drugs Dermatol 2014; 13(9): 1092-7.
[PMID: 25226010]
[114]
Mahmood T, Akhtar N. Combined topical application of lotus and green tea improves facial skin surface parameters. Rejuvenation Res 2013; 16(2): 91-7.
[http://dx.doi.org/10.1089/rej.2012.1380] [PMID: 23267660]
[115]
Cho S. The Role of Functional Foods in Cutaneous Anti-aging. J Lifestyle Med 2014; 4(1): 8-16.
[http://dx.doi.org/10.15280/jlm.2014.4.1.8] [PMID: 26064850]
[116]
Hajheydari Z, Saeedi M, Morteza-Semnani K, Soltani A. Effect of Aloe vera topical gel combined with tretinoin in treatment of mild and moderate acne vulgaris: a randomized, double-blind, prospective trial. J Dermatolog Treat 2014; 25(2): 123-9.
[http://dx.doi.org/10.3109/09546634.2013.768328] [PMID: 23336746]
[117]
Rodrigues D, Viotto AC, Checchia R, et al. Mechanism of Aloe Vera extract protection against UVA: shelter of lysosomal membrane avoids photodamage. Photochem Photobiol Sci 2016; 15(3): 334-50.
[http://dx.doi.org/10.1039/C5PP00409H] [PMID: 26815913]
[118]
Tanaka M, Misawa E, Yamauchi K, Abe F, Ishizaki C. Effects of plant sterols derived from Aloe vera gel on human dermal fibroblasts in vitro and on skin condition in Japanese women. Clin Cosmet Investig Dermatol 2015; 8: 95-104.
[http://dx.doi.org/10.2147/CCID.S75441] [PMID: 25759593]
[119]
Yao R, Tanaka M, Misawa E, et al. Daily Ingestion of Aloe Vera Gel Powder Containing Aloe Sterols Prevents Skin Photoaging in OVX Hairless Mice. J Food Sci 2016; 81(11): H2849-57.
[http://dx.doi.org/10.1111/1750-3841.13527] [PMID: 27732760]
[120]
Cho S, Lee S, Lee MJ, et al. Dietary Aloe Vera Supplementation Improves Facial Wrinkles and Elasticity and It Increases the Type I Procollagen Gene Expression in Human Skin in vivo. Ann Dermatol 2009; 21(1): 6-11.
[http://dx.doi.org/10.5021/ad.2009.21.1.6] [PMID: 20548848]
[121]
Panahi Y, Fazlolahzadeh O, Atkin SL, et al. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review. J Cell Physiol 2018.
[http://dx.doi.org/10.1002/jcp.27096] [PMID: 30073647]
[122]
Sandur SK, Pandey MK, Sung B, et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 2007; 28(8): 1765-73.
[http://dx.doi.org/10.1093/carcin/bgm123] [PMID: 17522064]
[123]
Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 2009; 14(2): 141-53.
[PMID: 19594223]
[124]
Heng MC. Curcumin targeted signaling pathways: basis for anti-photoaging and anti-carcinogenic therapy. Int J Dermatol 2010; 49(6): 608-22.
[http://dx.doi.org/10.1111/j.1365-4632.2010.04468.x] [PMID: 20618464]
[125]
Heng MC. Signaling pathways targeted by curcumin in acute and chronic injury: burns and photo-damaged skin. Int J Dermatol 2013; 52(5): 531-43.
[http://dx.doi.org/10.1111/j.1365-4632.2012.05703.x] [PMID: 23231506]
[126]
Jang S, Chun J, Shin EM, Kim H, Kim YS. Inhibitory effects of curcuminoids from Curcuma longa on matrix metalloproteinase-1 expression in keratinocytes and fibroblasts. J Pharm Investig 2012; 42: 33-9.
[http://dx.doi.org/10.1007/s40005-012-0005-8]
[127]
Liu X, Zhang R, Shi H, et al. Protective effect of curcumin against ultraviolet A irradiationinduced photoaging in human dermal fibroblasts. Mol Med Rep 2018; 17(5): 7227-37.
[http://dx.doi.org/10.3892/mmr.2018.8791] [PMID: 29568864]
[128]
Conaway CC, Yang YM, Chung FL. Isothiocyanates as cancer chemopreventive agents: their biological activities and metabolism in rodents and humans. Curr Drug Metab 2002; 3(3): 233-55.
[http://dx.doi.org/10.2174/1389200023337496] [PMID: 12083319]
[129]
Zhang Y, Talalay P, Cho CG, Posner GH. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proceedings of the national academy of sciences 1992; 89: 2339-407.
[130]
Dinkova-Kostova AT, Jenkins SN, Fahey JW, et al. Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Lett 2006; 240(2): 243-52.
[http://dx.doi.org/10.1016/j.canlet.2005.09.012] [PMID: 16271437]
[131]
Talalay P, Fahey JW, Healy ZR, et al. Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation. Proc Natl Acad Sci USA 2007; 104(44): 17500-5.
[http://dx.doi.org/10.1073/pnas.0708710104] [PMID: 17956979]
[132]
Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 2002; 62(18): 5196-203.
[PMID: 12234984]
[133]
Suh JH, Shenvi SV, Dixon BM, et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci USA 2004; 101(10): 3381-6.
[http://dx.doi.org/10.1073/pnas.0400282101] [PMID: 14985508]
[134]
Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep 2017; 7(1): 14130.
[http://dx.doi.org/10.1038/s41598-017-14520-8] [PMID: 29074861]
[135]
Sikdar S, Papadopoulou M, Dubois J. What do we know about sulforaphane protection against photoaging? J Cosmet Dermatol 2016; 15(1): 72-7.
[http://dx.doi.org/10.1111/jocd.12176] [PMID: 26799467]
[136]
Mlcek J, Jurikova T, Skrovankova S, Sochor J. Quercetin and its anti-allergic immune response. Molecules 2016; 21(5): 623.
[http://dx.doi.org/10.3390/molecules21050623] [PMID: 27187333]
[137]
Yoo YJ, Saliba AJ, Prenzler PD, Ryan D. Total phenolic content, antioxidant activity, and cross-cultural consumer rejection threshold in white and red wines functionally enhanced with catechin-rich extracts. J Agric Food Chem 2012; 60(1): 388-93.
[http://dx.doi.org/10.1021/jf203216z] [PMID: 22133028]
[138]
Nishimuro H, Ohnishi H, Sato M, et al. Estimated daily intake and seasonal food sources of quercetin in Japan. Nutrients 2015; 7(4): 2345-58.
[http://dx.doi.org/10.3390/nu7042345] [PMID: 25849945]
[139]
D’Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 2015; 106: 256-71.
[http://dx.doi.org/10.1016/j.fitote.2015.09.018] [PMID: 26393898]
[140]
Chirumbolo S. Quercetin as a potential anti-allergic drug: which perspectives? Iran J Allergy Asthma Immunol 2011; 10(2): 139-40.
[PMID: 21625024]
[141]
Chen H, Lu C, Liu H, et al. Quercetin ameliorates imiquimod-induced psoriasis-like skin inflammation in mice via the NF-κB pathway. Int Immunopharmacol 2017; 48: 110-7.
[http://dx.doi.org/10.1016/j.intimp.2017.04.022] [PMID: 28499194]
[142]
Hung CF, Fang CL, Al-Suwayeh SA, Yang SY, Fang JY. Evaluation of drug and sunscreen permeation via skin irradiated with UVA and UVB: comparisons of normal skin and chronologically aged skin. J Dermatol Sci 2012; 68(3): 135-48.
[http://dx.doi.org/10.1016/j.jdermsci.2012.09.005] [PMID: 23026054]
[143]
Zhu X, Zeng X, Zhang X, et al. The effects of quercetin-loaded PLGA-TPGS nanoparticles on ultraviolet B-induced skin damages in vivo. Nanomedicine (Lond) 2016; 12(3): 623-32.
[http://dx.doi.org/10.1016/j.nano.2015.10.016] [PMID: 26656634]
[144]
Caddeo C, Nacher A, Vassallo A, et al. Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. Int J Pharm 2016; 513(1-2): 153-63.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.014] [PMID: 27609664]
[145]
Taira J, Ikemoto T, Mimura K, Hagi A, Murakami A, Makino K. Effective inhibition of hydroxyl radicals by hydroxylated biphenyl compounds. Free Radic Res Commun 1993; 19(Suppl. 1): S71-7.
[http://dx.doi.org/10.3109/10715769309056s71] [PMID: 8282234]
[146]
Kuribara H, Kishi E, Hattori N, Okada M, Maruyama Y. The anxiolytic effect of two oriental herbal drugs in Japan attributed to honokiol from magnolia bark. J Pharm Pharmacol 52:1425–1429CrossRefGoogle Scholar. J Pharm Pharmacol 2000; 52: 1425-9.
[http://dx.doi.org/10.1211/0022357001777432] [PMID: 11186252]
[147]
Vaid M, Sharma SD, Katiyar SK. Honokiol, a phytochemical from the Magnolia plant, inhibits photocarcinogenesis by targeting UVB-induced inflammatory mediators and cell cycle regulators: development of topical formulation. Carcinogenesis 2010; 31(11): 2004-11.
[http://dx.doi.org/10.1093/carcin/bgq186] [PMID: 20823108]
[148]
Park J, Lee J, Jung E, et al. In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp. Eur J Pharmacol 2004; 496(1-3): 189-95.
[http://dx.doi.org/10.1016/j.ejphar.2004.05.047] [PMID: 15288590]
[149]
Fried LE, Arbiser JL. Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid Redox Signal 2009; 11(5): 1139-48.
[http://dx.doi.org/10.1089/ars.2009.2440] [PMID: 19203212]
[150]
Leeman-Neill RJ, Cai Q, Joyce SC, Thomas SM, Bhola NE, Neill DB. Honokiol inhibits epidermal growth factor receptor signaling and enhances the antitumor effects of epidermal growth factor receptor inhibitors Clin Cancer Res, 2-10; 16: 2571-2579
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0333]
[151]
Mannal PW, Schneider J, Tangada A, McDonald D, McFadden DW. Honokiol produces anti-neoplastic effects on melanoma cells in vitro. J Surg Oncol 2011; 104(3): 260-4.
[http://dx.doi.org/10.1002/jso.21936] [PMID: 21472732]
[152]
Dikalov S, Losik T, Arbiser JL. Honokiol is a potent scavenger of superoxide and peroxyl radicals. Biochem Pharmacol 2008; 76(5): 589-96.
[http://dx.doi.org/10.1016/j.bcp.2008.06.012] [PMID: 18640101]
[153]
Costa A, Facchini G, Pinheiro ALTA, et al. Honokiol protects skin cells against inflammation, collagenolysis, apoptosis, and senescence caused by cigarette smoke damage. Int J Dermatol 2017; 56(7): 754-61.
[http://dx.doi.org/10.1111/ijd.13569] [PMID: 28229451]
[154]
Guillermo-Lagae R, Deep G, Ting H, Agarwal C, Agarwal R. Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts. Oncotarget 2015; 6(37): 39594-606.
[http://dx.doi.org/10.18632/oncotarget.5519] [PMID: 26447614]
[155]
Prasad R, Singh T, Katiyar SK. Honokiol inhibits ultraviolet radiation-induced immunosuppression through inhibition of ultraviolet-induced inflammation and DNA hypermethylation in mouse skin. Sci Rep 2017; 7(1): 1657.
[http://dx.doi.org/10.1038/s41598-017-01774-5] [PMID: 28490739]
[156]
Costa ASG, Alves RC, Vinha AF, et al. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem 2018; 267: 28-35.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.106] [PMID: 29934169]
[157]
Borrelli RC, Esposito F, Napolitano A, Ritieni A, Fogliano V. Characterization of a new potential functional ingredient: coffee silverskin. J Agric Food Chem 2004; 52(5): 1338-43.
[http://dx.doi.org/10.1021/jf034974x] [PMID: 14995143]
[158]
Costa AS, Alves RC, Vinha AF, et al. Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Ind Crops Prod 2014; 53: 350-7.
[http://dx.doi.org/10.1016/j.indcrop.2014.01.006]
[159]
Carneiro L, Silva J, Mussatto S, Roberto I, Teixeira J. Determination of total carbohydrates content in coffee industry residues. . In: ed. The 8th International Meeting of the Portuguese Carbohydrate Group: Braga, Portugal, 2009; pp. 94.
[160]
Napolitano A, Fogliano V, Tafuri A, Ritieni A. Natural occurrence of ochratoxin A and antioxidant activities of green and roasted coffees and corresponding byproducts. J Agric Food Chem 2007; 55(25): 10499-504.
[http://dx.doi.org/10.1021/jf071959+] [PMID: 18020409]
[161]
Toschi TG, Cardenia V, Bonaga G, Mandrioli M, Rodriguez-Estrada MT. Coffee silverskin: characterization, possible uses, and safety aspects. J Agric Food Chem 2014; 62(44): 10836-44.
[http://dx.doi.org/10.1021/jf503200z] [PMID: 25321090]
[162]
Alves RC, Costa AS, Jerez M, et al. Antiradical activity, phenolics profile, and hydroxymethylfurfural in espresso coffee: influence of technological factors. J Agric Food Chem 2010; 58(23): 12221-9.
[http://dx.doi.org/10.1021/jf1031229] [PMID: 21070017]
[163]
Mesías M, Navarro M, Martínez-Saez N, Ullate M, del Castillo M, Morales F. Antiglycative and carbonyl trapping properties of the water soluble fraction of coffee silverskin. Food Res Int 2014; 62: 1120-6.
[http://dx.doi.org/10.1016/j.foodres.2014.05.058]
[164]
Bessada SC, Alves RPP, Oliveira M. Coffee silverskin: a review on potential cosmetic applications. Cosmetics 2018; 5: 5.
[http://dx.doi.org/10.3390/cosmetics5010005]
[165]
Rodrigues F, Matias R, Ferreira M, Amaral MH, Oliveira MP. In vitro and in vivo comparative study of cosmetic ingredients coffee silverskin and hyaluronic acid. Exp Dermatol 2016; 25: 572-4.
[166]
Rodrigues F, Pereira C, Pimentel F, et al. Oliveira MP. Are coffee silverskin extracts safe for topical use? An in vitro and in vivo ‎approach. Ind Crops Prod 2015; 63: 167-74.
[http://dx.doi.org/10.1016/j.indcrop.2014.10.014]
[167]
Rodrigues F, Antónia Nunes M, Alves R, Oliveira M. Applications of recovered bioactive compounds in cosmetics and other productsHandbook of Coffee Processing by-Products. London, UK: Academic Press 2017.
[http://dx.doi.org/10.1016/B978-0-12-811290-8.00007-4]
[168]
Iriondo-DeHond A, Martorell P, Genovés S, et al. Coffee silverskin extract protects against accelerated aging caused by oxidative agents. Molecules 2016; 21: 721.
[http://dx.doi.org/10.3390/molecules21060721]
[169]
Moreira AS, Nunes FM, Domingues MR, Coimbra MA. Coffee melanoidins: structures, mechanisms of formation and potential health impacts. Food Funct 2012; 3(9): 903-15.
[http://dx.doi.org/10.1039/c2fo30048f] [PMID: 22584883]
[170]
Paur I, Balstad TR, Blomhoff R. Degree of roasting is the main determinant of the effects of coffee on NF-kappaB and EpRE. Free Radic Biol Med 2010; 48(9): 1218-27.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.02.005] [PMID: 20176103]
[171]
Menezes AC, Campos PM, Euletério C, et al. Development and characterization of novel 1-(1-Naphthyl)piperazine-loaded lipid vesicles for prevention of UV-induced skin inflammation. Eur J Pharm Biopharm 2016; 104: 101-9.
[http://dx.doi.org/10.1016/j.ejpb.2016.04.023] [PMID: 27131752]
[172]
Shin HS, Satsu H, Bae MJ, et al. Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice. Food Chem 2015; 168: 167-75.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.100] [PMID: 25172696]
[173]
Vitaglione P, Morisco F, Mazzone G, et al. Coffee reduces liver damage in a rat model of steatohepatitis: the underlying mechanisms and the role of polyphenols and melanoidins. Hepatology 2010; 52(5): 1652-61.
[http://dx.doi.org/10.1002/hep.23902] [PMID: 21038411]
[174]
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87(1): 245-313.
[http://dx.doi.org/10.1152/physrev.00044.2005] [PMID: 17237347]
[175]
Stolk J, Hiltermann TJ, Dijkman JH, Verhoeven AJ. Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol 1994; 11(1): 95-102.
[http://dx.doi.org/10.1165/ajrcmb.11.1.8018341] [PMID: 8018341]
[176]
Stefanska J, Pawliczak R. Apocynin: molecular aptitudes Mediators Inflamm, 2008; 2008: 106507.
[http://dx.doi.org/10.1155/2008/106507]
[177]
Narayanan DL, Saladi RN, Fox JL. Ultraviolet radiation and skin cancer. Int J Dermatol 2010; 49(9): 978-86.
[http://dx.doi.org/10.1111/j.1365-4632.2010.04474.x] [PMID: 20883261]
[178]
Nam YJ, Kim A, Sohn DS, Lee CS. Apocynin inhibits Tolllike receptor-4-mediated activation of NF-κB by suppressing the Akt andmTOR pathways. Naunyn Schmiedebergs Arch Pharmacol 389: 1267-77.
[http://dx.doi.org/10.1007/s00210-016-1288-5] [PMID: 27590200]
[179]
Jantaree P, Lirdprapamongkol K, Kaewsri W, et al. Choowongkomon K, Atjanasuppat K. Homodimers of vanillin and apocynin decrease the metastatic potential of human cancer cells by inhibiting the FAK/PI3K/Akt signaling pathway. J Agric Food Chem 2017; 65(11): 2299-306.
[http://dx.doi.org/10.1021/acs.jafc.6b05697] [PMID: 28248106]
[180]
Suzuki S, Shiraga K, Sato S, Punfa W, Naiki-Ito A, Yamashita Y. Apocynin, an NADPH oxidase inhibitor, suppresses rat prostate carcinogenesis. Cancer Sci 2013; 104: 1711-7.
[181]
Byun S, Lee E, Jang YJ, Kim Y, Lee KW. The NADPH oxidase inhibitor apocynin inhibits UVB-induced skin carcinogenesis. Exp Dermatol 2016; 25(6): 489-91.
[http://dx.doi.org/10.1111/exd.12989] [PMID: 26914271]
[182]
Atwell WA. Wheat Flour: Eagan Press St Paul. Eagan Press St. Paul 2001.
[http://dx.doi.org/10.1094/189112725X]
[183]
Brandolini A, Hidalgo A. 2012 Hidalgo A. Wheat germ: not only a by-product. Int J Food Sci Nutr 2012; 63: 71-4.
[184]
Mahmoud AA, Mohdaly AA, Elneairy NA. Elneairy NA. Wheat germ: An overview on nutritional value, antioxidant potential and antibacterial characteristics. Food Nutrition Sci 2015; 6: 265.
[185]
Eisenmenger M, Dunford N. Bioactive components of commercial and supercritical carbon dioxide processed wheat germ oil. J Am Oil Chem Soc 2008; 85: 55-61.
[http://dx.doi.org/10.1007/s11746-007-1163-0]
[186]
Suryawanshi JA. In vitro determination of sun protection factor and evaluation of herbal oils. Int. J Pharma Res 2016; 6: 37-43.
[187]
Consolazio CF, Matoush LO, Nelson RA, Isaac GJ, Hursh LM. Effect of ‎octacosanol, wheat germ oil, and vitamin E on performance of swimming rats. J Appl Physiol 1964; 19: 265-7.
[http://dx.doi.org/10.1152/jappl.1964.19.2.265] [PMID: 14155293]
[188]
Hussein SA, Abdel-Aal S, Elghwab A. Biochemical role of wheat germ oil on biomarkers of oxidative stress and inflammatory response in a rat model of endotoxemia. Benha Vetern Med J 2014; 27: 157-67.
[189]
Watzl B. Anti-inflammatory effects of plant-based foods and of their constituents. Int J Vitam Nutr Res 2008; 78(6): 293-8.
[http://dx.doi.org/10.1024/0300-9831.78.6.293] [PMID: 19685439]
[190]
Zhao G, Etherton TD, Martin KR, et al. Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells. Biochem Biophys Res Commun 2005; 336(3): 909-17.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.204] [PMID: 16169525]
[191]
Mori T, Beilin L. Omega-3 fatty acids and inflammation Curr Athero Reports 2004; 6: 461-67.
[192]
Chandra V, Jasti J, Kaur P, Betzel Ch, Srinivasan A, Singh TP. First structural evidence of a specific inhibition of phospholipase A2 by α-tocopherol (vitamin E) and its implications in inflammation: crystal structure of the complex formed between phospholipase A2 and α-tocopherol at 1.8 A resolution. J Mol Biol 2002; 320(2): 215-22.
[http://dx.doi.org/10.1016/S0022-2836(02)00473-4] [PMID: 12079380]
[193]
Guo W, Zingg JM, Meydani M, Azzi A. α-Tocopherol counteracts ritonavir-induced proinflammatory cytokines expression in differentiated THP-1 cells. Biofactors 2007; 31(3-4): 171-9.
[http://dx.doi.org/10.1002/biof.5520310304] [PMID: 18997280]
[194]
Marinangeli CPF, Jones PJH, Kassis AN, Eskin MNA. Policosanols as nutraceuticals: fact or fiction. Crit Rev Food Sci Nutr 2010; 50(3): 259-67.
[http://dx.doi.org/10.1080/10408391003626249] [PMID: 20301014]
[195]
Schagen SK, Zampeli VA, Makrantonaki E, Zouboulis CC. Discovering the link between nutrition and skin aging. Dermatoendocrinol 2012; 4(3): 298-307.
[http://dx.doi.org/10.4161/derm.22876] [PMID: 23467449]
[196]
Hibatallah J, Carduner C, Poelman MC. In-vivo and in-vitro assessment of the free-radical-scavenger activity of Ginkgo flavone glycosides at high concentration. J Pharm Pharmacol 1999; 51(12): 1435-40.
[http://dx.doi.org/10.1211/0022357991777083] [PMID: 10678500]
[197]
Xie LP, Chen QX, Huang H, Wang HZ, Zhang RQ. Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase. Biochemistry 2003; 68(4): 481-91.
[PMID: 12765534]
[198]
Pullar JM, Carr AC, Vissers MCM. The Roles of Vitamin C in Skin Health. Nutrients 2017; 9(8)E866
[http://dx.doi.org/10.3390/nu9080866] [PMID: 28805671]
[199]
Al-Niaimi F, Chiang NYZ. Topical Vitamin C and the Skin: Mechanisms of Action and Clinical Applications. J Clin Aesthet Dermatol 2017; 10(7): 14-7.
[PMID: 29104718]
[200]
Jeong JH, Kim MB, Kim C, Hwang JK. Inhibitory effect of vitamin C on intrinsic aging in human dermal fibroblasts and hairless mice. Food Sci Biotechnol 2017; 27(2): 555-64.
[http://dx.doi.org/10.1007/s10068-017-0252-6] [PMID: 30263780]
[201]
Fryer MJ. Evidence for the photoprotective effects of vitamin E. Photochem Photobiol 1993; 58: 304-12.
[202]
Chan AC, Tran K, Raynor T, Ganz PR, Chow CK. Regeneration of vitamin E in human platelets. J Biol Chem 1991; 266(26): 17290-5.
[PMID: 1910041]
[203]
McVean M, Liebler DC. Prevention of DNA photodamage by vitamin E compounds and sunscreens: roles of ultraviolet absorbance and cellular uptake. Mol Carcinog 1999; 24: 169-76.
[204]
Passi S, Morrone A, De Luca C, Picardo M, Ippolito F. Blood levels of vitamin E, polyunsaturated fatty acids of phospholipids, lipoperoxides and glutathione peroxidase in patients affected with seborrheic dermatitis. J Dermatol Sci 1991; 2(3): 171-8.
[http://dx.doi.org/10.1016/0923-1811(91)90064-5] [PMID: 1831657]
[205]
Boelsma E, Hendriks HF, Roza L. Nutritional skin care: health effects of micronutrients and fatty acids. Am J Clin Nutr 2001; 73(5): 853-64.
[http://dx.doi.org/10.1093/ajcn/73.5.853] [PMID: 11333837]
[206]
Ekanayake-Mudiyanselage S, Thiele J. Sebaceous glands as transporters of vitamin E Hautarzt 2006 57: 291-6.
[207]
Eberlein-König B, Ring J. Relevance of vitamins C and E in cutaneous photoprotection. J Cosmet Dermatol 2005; 4: 4-9.
[208]
Whitney E, Rolfes SR. Understanding Nutrition. California: Thomson Wadsworth 2008.
[209]
Essential fatty acids in clinical dermatology. J Am Acad Dermatol 1989; 20: 1045-53.
[210]
Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 2002; 21: 495-505.
[211]
Dietary nutrient intakes and skin-aging appearance among middle-aged American women. Am J Clin Nutr 2007; 86: 1225-31.
[212]
Rhodes LE, Durham BH, Fraser WD, Friedmann PS. Dietary fish oil reduces basal and ultraviolet B-generated PGE2 levels in skin and increases the threshold to provocation of polymorphic light eruption. J Invest Dermatol 1995; 105(4): 532-5.
[http://dx.doi.org/10.1111/1523-1747.ep12323389] [PMID: 7561154]
[213]
Cho HS, Lee MH, Lee JW, et al. Anti-wrinkling effects of the mixture of vitamin C, vitamin E, pycnogenol and evening primrose oil, and molecular mechanisms on hairless mouse skin caused by chronic ultraviolet B irradiation. Photodermatol Photoimmunol Photomed 2007; 23(5): 155-62.
[http://dx.doi.org/10.1111/j.1600-0781.2007.00298.x] [PMID: 17803593]
[214]
Shigemura Y, Iwasaki Y, Tateno M, et al. A Pilot Study for the Detection of Cyclic Prolyl-Hydroxyproline (Pro-Hyp) in Human Blood after Ingestion of Collagen Hydrolysate. Nutrients 2018; 10(10)E1356
[http://dx.doi.org/10.3390/nu10101356] [PMID: 30248982]
[215]
Borumand M, Sibilla S. Daily consumption of the collagen supplement Pure Gold Collagen® reduces visible signs of aging. Clin Interv Aging 2014; 9: 1747-58.
[PMID: 25342893]
[216]
Schwartz SR, Park J. Ingestion of BioCell Collagen(β), a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs. Clin Interv Aging 2012; 7: 267-73.
[PMID: 22956862]
[217]
Proksch E, Segger D, Degwert J, Schunck M, Zague V, Oesser S. Oral supplementation of specific collagen peptides has beneficial effects on human skin physiology: a double-blind, placebo-controlled study. Skin Pharmacol Physiol 2014; 27(1): 47-55.
[http://dx.doi.org/10.1159/000351376] [PMID: 23949208]
[218]
Kim DU, Chung HC, Choi J, Sakai Y, Lee BY. Oral Intake of Low-Molecular-Weight Collagen Peptide Improves Hydration, Elasticity, and Wrinkling in Human Skin: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2018; 10(7)E826
[http://dx.doi.org/10.3390/nu10070826] [PMID: 29949889]
[219]
Bukhari SNA, Roswandi NL, Waqas M, et al. Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects Int J Biol Macromol 2018; 120(Pt B): 1682- 95.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.188] [PMID: 30287361]
[220]
Yue Y, Zhou H, Liu G, Li Y, Yan Z, Duan M. The advantages of a novel CoQ10 delivery system in skin photo-protection. Int J Pharm 2010; 392(1-2): 57-63.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.032] [PMID: 20302925]
[221]
Nakajima H, Terazawa S, Niwano T, Yamamoto Y, Imokawa G. The inhibitory effects of anti-oxidants on ultraviolet-induced up-regulation of the wrinkling-inducing enzyme neutral endopeptidase in human fibroblasts. PLoS One 2016; 11e0161580
[222]
Žmitek K, Pogačnik T, Mervic L, Žmitek J, Pravst I. The effect of dietary intake of coenzyme Q10 on skin parameters and condition: Results of a randomised, placebo-controlled, double-blind study. Biofactors 2017; 43(1): 132-40.
[http://dx.doi.org/10.1002/biof.1316] [PMID: 27548886]
[223]
Muta-Takada K, Terada T, Yamanishi H, et al. Coenzyme Q10 protects against oxidative stress-induced cell death and enhances the synthesis of basement membrane components in dermal and epidermal cells. Biofactors 2009; 35(5): 435-41.
[http://dx.doi.org/10.1002/biof.56] [PMID: 19753652]
[224]
Knott A, Achterberg V, Smuda C, et al. Topical treatment with coenzyme Q10-containing formulas improves skin’s Q10 level and provides antioxidative effects. Biofactors 2015; 41(6): 383-90.
[http://dx.doi.org/10.1002/biof.1239] [PMID: 26648450]
[225]
El-Leithy ES, Makky AM, Khattab AM, Hussein DG. Optimization of nutraceutical coenzyme Q10 nanoemulsion with improved skin permeability and anti-wrinkle efficiency. Drug Dev Ind Pharm 2018; 44(2): 316-28.
[http://dx.doi.org/10.1080/03639045.2017.1391836] [PMID: 29096550]
[226]
Yadav NK, Nanda S, Sharma G, Katare OP. Systematically optimized coenzyme q10-loaded novel proniosomal formulation for treatment of photo-induced aging in mice: characterization, biocompatibility studies, biochemical estimations and anti-aging evaluation. J Drug Target 2016; 24(3): 257-71.
[http://dx.doi.org/10.3109/1061186X.2015.1077845] [PMID: 26302815]
[227]
Marcucci MC. Propolis: chemical composition, biological properties and therapeutic activity. Apidologie (Celle) 1995; 26: 83-99.
[http://dx.doi.org/10.1051/apido:19950202]
[228]
Fonseca YM, Marquele-Oliveira F, Vicentini FTMC, et al. Evaluation of the potential of brazilian propolis against uv-induced oxidative stress. Evid Based Complement Alternat Med 2011; 2011863917
[http://dx.doi.org/10.1155/2011/863917] [PMID: 20953396]
[229]
Gregoris E, Fabris S, Bertelle M, Grassato L, Stevanato R. Propolis as potential cosmeceutical sunscreen agent for its combined photoprotective and antioxidant properties. Int J Pharm 2011; 405(1-2): 97-101.
[http://dx.doi.org/10.1016/j.ijpharm.2010.11.052] [PMID: 21134430]
[230]
Kim HB, Yoo BS. Propolis inhibits uva-induced apoptosis of human keratinocyte hacat cells by scavenging ROS. Toxicol Res 2016; 32(4): 345-51.
[http://dx.doi.org/10.5487/TR.2016.32.4.345] [PMID: 27818737]
[231]
Ebadi P, Fazeli M. Anti-photoaging potential of propolis extract in UVB-irradiated human dermal fibroblasts through increasing the expression of FOXO3A and NGF genes. Biomed Pharmacother 2017; 95: 47-54.
[http://dx.doi.org/10.1016/j.biopha.2017.08.019] [PMID: 28826096]
[232]
Cole N, Sou PW, Ngo A, et al. Topical ‘Sydney’ propolis protects against UV-radiation-induced inflammation, lipid peroxidation and immune suppression in mouse skin. Int Arch Allergy Immunol 2010; 152(2): 87-97.
[http://dx.doi.org/10.1159/000265530] [PMID: 20016191]
[233]
Sarhan WA, Azzazy HM. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity. Nanomedicine (Lond) 2017; 12(17): 2055-67.
[http://dx.doi.org/10.2217/nnm-2017-0151] [PMID: 28805554]
[234]
Kechagia M, Basoulis D, Konstantopoulou S, et al. Health benefits of probiotics: a review. ISRN Nutr 2013; 2013481651
[http://dx.doi.org/10.5402/2013/481651] [PMID: 24959545]
[235]
Nagpal R, Kumar A, Kumar M, Behare PV, Jain S, Yadav H. Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett 2012; 334(1): 1-15.
[http://dx.doi.org/10.1111/j.1574-6968.2012.02593.x] [PMID: 22568660]
[236]
Roberfroid M, Gibson GR, Hoyles L, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr 2010; 104(Suppl. 2): S1-S63.
[http://dx.doi.org/10.1017/S0007114510003363] [PMID: 20920376]
[237]
Herich R, Levkut M. Lactic acid bacteria, probiotics and immune system Veterinarni medicina-praha 2002; 47: 169-80.
[http://dx.doi.org/10.17221/5821-VETMED]
[238]
Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010; 5(2)e9085
[http://dx.doi.org/10.1371/journal.pone.0009085] [PMID: 20140211]
[239]
Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 2011; 3(9): 559-72.
[http://dx.doi.org/10.1002/emmm.201100159] [PMID: 21735552]
[240]
Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, et al. Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus. J Dairy Sci 2011; 94(7): 3288-94.
[http://dx.doi.org/10.3168/jds.2010-4128] [PMID: 21700013]
[241]
Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490(7418): 55-60.
[http://dx.doi.org/10.1038/nature11450] [PMID: 23023125]
[242]
Roberfroid M. Prebiotics: the concept revisited. J Nutr 2007; 137(3)(Suppl. 2): 830S-7S.
[http://dx.doi.org/10.1093/jn/137.3.830S] [PMID: 17311983]
[243]
Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr Res Rev 2004; 17(2): 259-75.
[http://dx.doi.org/10.1079/NRR200479] [PMID: 19079930]
[244]
Niness KR. Inulin and oligofructose: what are they? J Nutr 1999; 129(7)(Suppl.): 1402S-6S.
[http://dx.doi.org/10.1093/jn/129.7.1402S] [PMID: 10395607]
[245]
Tomasik PJ, Tomasik P. Probiotics and prebiotics. Cereal Chem 2003; 80: 113-7.
[http://dx.doi.org/10.1094/CCHEM.2003.80.2.113]
[246]
Pourghassem Gargari B, Dehghan P, Aliasgharzadeh A, Asghari Jafar-Abadi M. Effects of high performance inulin supplementation on glycemic control and antioxidant status in women with type 2 diabetes. Diabetes Metab J 2013; 37(2): 140-8.
[http://dx.doi.org/10.4093/dmj.2013.37.2.140] [PMID: 23641355]
[247]
Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 2011; 60(11): 2775-86.
[http://dx.doi.org/10.2337/db11-0227] [PMID: 21933985]
[248]
Parnell JA, Reimer RA. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats. Br J Nutr 2012; 107(4): 601-13.
[http://dx.doi.org/10.1017/S0007114511003163] [PMID: 21767445]
[249]
Schouten B, Van Esch BC, Kormelink TG, et al. Non-digestible oligosaccharides reduce immunoglobulin free light-chain concentrations in infants at risk for allergy. Pediatr Allergy Immunol 2011; 22(5): 537-42.
[http://dx.doi.org/10.1111/j.1399-3038.2010.01132.x] [PMID: 21771085]
[250]
Krutmann J. Pre- and probiotics for human skin. Clin Plast Surg 2012; 39(1): 59-64.
[http://dx.doi.org/10.1016/j.cps.2011.09.009] [PMID: 22099848]
[251]
Guéniche A, Philippe D, Bastien P, Blum S, Buyukpamukcu E, Castiel-Higounenc I. Probiotics for photoprotection. Dermatoendocrinol 2009; 1(5): 275-9.
[http://dx.doi.org/10.4161/derm.1.5.9849] [PMID: 20808516]
[252]
Guéniche A, Benyacoub J, Buetler TM, Smola H, Blum S. Supplementation with oral probiotic bacteria maintains cutaneous immune homeostasis after UV exposure. Eur J Dermatol 2006; 16: 511-7.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy