Review Article

了解急性呼吸窘迫综合征的基因治疗

卷 19, 期 2, 2019

页: [93 - 99] 页: 7

弟呕挨: 10.2174/1566523219666190702154817

价格: $65

摘要

急性呼吸窘迫综合征(ARDS)及其并发症对危重病人来说仍然是危及生命的条件。目前的治疗策略,例如俯卧位通气策略,一氧化氮吸入,限制性静脉输液管理和体外膜肺氧合(ECMO)对提高ARDS的死亡率没有太大贡献。对急性呼吸窘迫综合征的病理生理学的深入理解表明,基于基因的治疗可能是这种疾病的创新方法。许多科学家已经做出有益的尝试来调节ARDS的免疫应答基因,维持肺泡上皮细胞和内皮细胞的正常功能,并抑制ARDS的纤维化和增殖。仍然存在对有效肺基因治疗的限制,包括病毒载体的安全性和针对吸入颗粒的肺防御机制。在此,我们总结和回顾了急性呼吸窘迫综合征的基因治疗机制及其应用。

关键词: 基因治疗,急性呼吸窘迫综合征,炎症,病毒载体,非病毒载体,间充质干/基质细胞。

« Previous
图形摘要

[1]
Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: Advances in diagnosis and treatment. JAMA 2018; 319(7): 698-710.
[http://dx.doi.org/10.1001/jama.2017.21907] [PMID: 29466596]
[2]
Fuller BM, Mohr NM, Kollef MH. Diagnosis and treatment of acute respiratory distress syndrome. JAMA 2018; 320(3): 305-6.
[http://dx.doi.org/10.1001/jama.2018.5928] [PMID: 30027241]
[3]
Herridge MS, Moss M, Hough CL, et al. Recovery and outcomes after the Acute Respiratory Distress Syndrome (ARDS) in patients and their family caregivers. Intensive Care Med 2016; 42(5): 725-38.
[http://dx.doi.org/10.1007/s00134-016-4321-8] [PMID: 27025938]
[4]
Levine BE. Fifty years of research in ARDS. ARDS: How it all began. Am J Respir Crit Care Med 2017; 196(10): 1247-8.
[http://dx.doi.org/10.1164/rccm.201706-1281ED] [PMID: 28731363]
[5]
Dupont H, Depuydt P, Abroug F. Prone position acute respiratory distress syndrome patients: Less prone to ventilator associated pneumonia? Intensive Care Med 2016; 42(5): 937-9.
[http://dx.doi.org/10.1007/s00134-015-4190-6] [PMID: 26768439]
[6]
Alessandri F, Pugliese F, Ranieri VM. The role of rescue therapies in the treatment of severe ARDS. Respir Care 2018; 63(1): 92-101.
[http://dx.doi.org/10.4187/respcare.05752] [PMID: 29066591]
[7]
Abrams D, Brodie D. Extracorporeal membrane oxygenation for adult respiratory failure: 2017 update. Chest 2017; 152(3): 639-49.
[http://dx.doi.org/10.1016/j.chest.2017.06.016] [PMID: 28642106]
[8]
Brackenbury AM, Puligandla PS, McCaig LA, et al. Evaluation of exogenous surfactant in HCL-induced lung injury. Am J Respir Crit Care Med 2001; 163(5): 1135-42.
[http://dx.doi.org/10.1164/ajrccm.163.5.2004049] [PMID: 11316649]
[9]
De Luca D, Minucci A, Zecca E, et al. Bile acids cause secretory phospholipase A2 activity enhancement, revertible by exogenous surfactant administration. Intensive Care Med 2009; 35(2): 321-6.
[http://dx.doi.org/10.1007/s00134-008-1321-3] [PMID: 18853138]
[10]
Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers 2019; 5(1): 18.
[http://dx.doi.org/10.1038/s41572-019-0069-0] [PMID: 30872586]
[11]
Bhattacharya J, Matthay MA. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu Rev Physiol 2013; 75: 593-615.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183756] [PMID: 23398155]
[12]
Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012; 122(8): 2731-40.
[http://dx.doi.org/10.1172/JCI60331] [PMID: 22850883]
[13]
Matthay MA. Resolution of pulmonary edema. Thirty years of progress. Am J Respir Crit Care Med 2014; 189(11): 1301-8.
[http://dx.doi.org/10.1164/rccm.201403-0535OE] [PMID: 24881936]
[14]
Cheng KT, Xiong S, Ye Z, et al. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Invest 2017; 127(11): 4124-35.
[http://dx.doi.org/10.1172/JCI94495] [PMID: 28990935]
[15]
Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science 2018; 359(6372)eaan4672
[http://dx.doi.org/10.1126/science.aan4672] [PMID: 29326244]
[16]
Boyle AJ, McNamee JJ, McAuley DF. Biological therapies in the acute respiratory distress syndrome. Expert Opin Biol Ther 2014; 14(7): 969-81.
[http://dx.doi.org/10.1517/14712598.2014.905536] [PMID: 24702248]
[17]
Qi D, Tang X, He J, et al. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism. Cell Death Dis 2016; 7(9)e2360
[http://dx.doi.org/10.1038/cddis.2016.265] [PMID: 27607575]
[18]
Dolinay T, Kim YS, Howrylak J, et al. Inflammasome-regulated cytokines are critical mediators of acute lung injury. Am J Respir Crit Care Med 2012; 185(11): 1225-34.
[http://dx.doi.org/10.1164/rccm.201201-0003OC] [PMID: 22461369]
[19]
Rojas M, Parker RE, Thorn N, et al. Infusion of freshly isolated autologous bone marrow derived mononuclear cells prevents endotoxin-induced lung injury in an ex-vivo perfused swine model. Stem Cell Res Ther 2013; 4(2): 26.
[http://dx.doi.org/10.1186/scrt174] [PMID: 23497755]
[20]
Liu X, Yan Z, Luo M, Engelhardt JF. Species-specific differences in mouse and human airway epithelial biology of recombinant adeno-associated virus transduction. Am J Respir Cell Mol Biol 2006; 34(1): 56-64.
[http://dx.doi.org/10.1165/rcmb.2005-0189OC] [PMID: 16195538]
[21]
Gong MN. Genetic epidemiology of acute respiratory distress syndrome: Implications for future prevention and treatment. Clin Chest Med 2006; 27(4): 705-24.
[http://dx.doi.org/10.1016/j.ccm.2006.07.001] [PMID: 17085257]
[22]
Xu ZL, Mizuguchi H, Sakurai F, et al. Approaches to improving the kinetics of adenovirus-delivered genes and gene products. Adv Drug Deliv Rev 2005; 57(5): 781-802.
[http://dx.doi.org/10.1016/j.addr.2004.12.010] [PMID: 15757761]
[23]
Katkin JP, Gilbert BE, Langston C, et al. Aerosol delivery of a beta-galactosidase adenoviral vector to the lungs of rodents. Hum Gene Ther 1995; 6(8): 985-95.
[http://dx.doi.org/10.1089/hum.1995.6.8-985] [PMID: 7578420]
[24]
Dumasius V, Mendez M, Mutlu GM, Factor P. Acute lung injury does not impair adenoviral-mediated gene transfer to the alveolar epithelium. Chest 2002; 121(3): 33S-4S.
[http://dx.doi.org/10.1378/chest.121.3_suppl.33S] [PMID: 11893674]
[25]
Young LS, Mautner V. The promise and potential hazards of adenovirus gene therapy. Gut 2001; 48(5): 733-6.
[http://dx.doi.org/10.1136/gut.48.5.733] [PMID: 11302979]
[26]
Hassett P, Curley GF, Contreras M, et al. Overexpression of pulmonary extracellular superoxide dismutase attenuates endotoxin-induced acute lung injury. Intensive Care Med 2011; 37(10): 1680-7.
[http://dx.doi.org/10.1007/s00134-011-2309-y] [PMID: 21755396]
[27]
Barnard AR, Groppe M, MacLaren RE. Gene therapy for choroideremia using an adeno-associated viral (AAV) vector. Cold Spring Harb Perspect Med 2014; 5(3)a017293
[http://dx.doi.org/10.1101/cshperspect.a017293] [PMID: 25359548]
[28]
Yan Z, Sun X, Feng Z, et al. Optimization of recombinant adeno-associated Virus-Mediated expression for large transgenes, using a synthetic promoter and tandem array enhancers. Hum Gene Ther 2015; 26(6): 334-46.
[http://dx.doi.org/10.1089/hum.2015.001] [PMID: 25763813]
[29]
Buch PK, Bainbridge JW, Ali RR. AAV-mediated gene therapy for retinal disorders: From mouse to man. Gene Ther 2008; 15(11): 849-57.
[http://dx.doi.org/10.1038/gt.2008.66] [PMID: 18418417]
[30]
Aucoin MG, Perrier M, Kamen AA. Critical assessment of current adeno-associated viral vector production and quantification methods. Biotechnol Adv 2008; 26(1): 73-88.
[http://dx.doi.org/10.1016/j.biotechadv.2007.09.001] [PMID: 17964108]
[31]
Barker SE, Broderick CA, Robbie SJ, et al. Subretinal delivery of adeno-associated virus serotype 2 results in minimal immune responses that allow repeat vector administration in immunocompetent mice. J Gene Med 2009; 11(6): 486-97.
[http://dx.doi.org/10.1002/jgm.1327] [PMID: 19340848]
[32]
Liu X, Luo M, Trygg C, et al. Biological differences in rAAV transduction of airway epithelia in humans and in old world Non-human Primates. Mol Ther 2007; 15(12): 2114-23.
[http://dx.doi.org/10.1038/sj.mt.6300277] [PMID: 17667945]
[33]
Gao GP, Wilson JM, Wivel NA. Production of recombinant adeno-associated virus. Adv Virus Res 2000; 55: 529-43.
[http://dx.doi.org/10.1016/S0065-3527(00)55016-7] [PMID: 11050955]
[34]
Zuckerman JB, Robinson CB, McCoy KS, et al. A phase I study of adenovirus-mediated transfer of the human cystic fibrosis transmembrane conductance regulator gene to a lung segment of individuals with cystic fibrosis. Hum Gene Ther 1999; 10(18): 2973-85.
[http://dx.doi.org/10.1089/10430349950016384] [PMID: 10609658]
[35]
Sinn PL, Hickey MA, Staber PD, et al. Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha. J Virol 2003; 77(10): 5902-10.
[http://dx.doi.org/10.1128/JVI.77.10.5902-5910.2003] [PMID: 12719583]
[36]
Kim SH, Kim S, Robbins PD. Retroviral vectors. Adv Virus Res 2000; 55: 545-63.
[http://dx.doi.org/10.1016/S0065-3527(00)55017-9] [PMID: 11050956]
[37]
Kohn DB. Gene therapy outpaces haplo for SCID-X1. Blood 2015; 125(23): 3521-2.
[http://dx.doi.org/10.1182/blood-2015-04-641720] [PMID: 26045591]
[38]
Wu C, Zhao J, Zhu G, Huang Y, Jin L. SiRNA directed against NF-κB inhibits mononuclear macrophage cells releasing proinflammatory cytokines in vitro. Mol Med Rep 2017; 16(6): 9060-6.
[http://dx.doi.org/10.3892/mmr.2017.7715] [PMID: 28990087]
[39]
Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118(9): 3132-42.
[http://dx.doi.org/10.1172/JCI35700] [PMID: 18688285]
[40]
Zabner J, Cheng SH, Meeker D, et al. Comparison of DNA-lipid complexes and DNA alone for gene transfer to cystic fibrosis airway epithelia in vivo. J Clin Invest 1997; 100(6): 1529-37.
[http://dx.doi.org/10.1172/JCI119676] [PMID: 9294121]
[41]
Lin X, Dean DA. Gene therapy for ALI/ARDS. Crit Care Clin 2011; 27(3): 705-18.
[http://dx.doi.org/10.1016/j.ccc.2011.04.002] [PMID: 21742224]
[42]
Davies LA, Nunez-Alonso GA, McLachlan G, Hyde SC, Gill DR. Aerosol delivery of DNA/liposomes to the lung for cystic fibrosis gene therapy. Hum Gene Ther Clin Dev 2014; 25(2): 97-107.
[http://dx.doi.org/10.1089/humc.2014.019] [PMID: 24865497]
[43]
Griesenbach U, Sumner-Jones SG, Holder E, et al. Limitations of the murine nose in the development of nonviral airway gene transfer. Am J Respir Cell Mol Biol 2010; 43(1): 46-54.
[http://dx.doi.org/10.1165/rcmb.2009-0075OC] [PMID: 19648474]
[44]
Griesenbach U, Meng C, Farley R, et al. The use of carboxymethylcellulose gel to increase non-viral gene transfer in mouse airways. Biomaterials 2010; 31(9): 2665-72.
[http://dx.doi.org/10.1016/j.biomaterials.2009.12.005] [PMID: 20022367]
[45]
Caplen NJ, Alton EW, Middleton PG, et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med 1995; 1(1): 39-46.
[http://dx.doi.org/10.1038/nm0195-39] [PMID: 7584951]
[46]
Noone PG, Hohneker KW, Zhou Z, et al. Safety and biological efficacy of a lipid-CFTR complex for gene transfer in the nasal epithelium of adult patients with cystic fibrosis. Mol Ther 2000; 1(1): 105-14.
[http://dx.doi.org/10.1006/mthe.1999.0009] [PMID: 10933918]
[47]
Laffey JG, Matthay MA. Fifty years of research in ARDS. Cell-based therapy for acute respiratory distress syndrome. Biology and potential therapeutic value. Am J Respir Crit Care Med 2017; 196(3): 266-73.
[http://dx.doi.org/10.1164/rccm.201701-0107CP] [PMID: 28306336]
[48]
Tang XD, Shi L, Monsel A, et al. Mesenchymal stem cell microvesicles attenuate acute lung injury in mice partly mediated by Ang-1 mRNA. Stem Cells 2017; 35(7): 1849-59.
[http://dx.doi.org/10.1002/stem.2619] [PMID: 28376568]
[49]
Chen X, Zhang Y, Wang W, Liu Z, Meng J, Han Z. Mesenchymal stem cells modified with heme oxygenase-1 have enhanced paracrine function and attenuate lipopolysaccharide-induced inflammatory and oxidative damage in pulmonary microvascular endothelial cells. Cell Physiol Biochem 2018; 49(1): 101-22.
[http://dx.doi.org/10.1159/000492847] [PMID: 30153667]
[50]
Mokhber DMR, Jabbari FM, Sadeghian CS, Dehghan MM, Vajhi A, Mokhtari R. Intrapulmonary autologous transplant of bone marrow-derived mesenchymal stromal cells improves lipopolysaccharide-induced acute respiratory distress syndrome in rabbit. Crit Care 2018; 22(1): 353.
[http://dx.doi.org/10.1186/s13054-018-2272-x] [PMID: 30572913]
[51]
Mei SH, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 2007; 4(9)e269
[http://dx.doi.org/10.1371/journal.pmed.0040269] [PMID: 17803352]
[52]
McCarter SD, Mei SH, Lai PF, et al. Cell-based angiopoietin-1 gene therapy for acute lung injury. Am J Respir Crit Care Med 2007; 175(10): 1014-26.
[http://dx.doi.org/10.1164/rccm.200609-1370OC] [PMID: 17322110]
[53]
Huang ZW, Liu N, Li D, et al. Angiopoietin-1 modified human umbilical cord mesenchymal stem cell therapy for endotoxin-induced acute lung injury in rats. Yonsei Med J 2017; 58(1): 206-16.
[http://dx.doi.org/10.3349/ymj.2017.58.1.206] [PMID: 27873515]
[54]
Tammela T, Saaristo A, Lohela M, et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 2005; 105(12): 4642-8.
[http://dx.doi.org/10.1182/blood-2004-08-3327] [PMID: 15746084]
[55]
Sullivan CC, Du L, Chu D, et al. Induction of pulmonary hypertension by an angiopoietin 1/TIE2/serotonin pathway. Proc Natl Acad Sci USA 2003; 100(21): 12331-6.
[http://dx.doi.org/10.1073/pnas.1933740100] [PMID: 14512515]
[56]
Long DA, Price KL, Ioffe E, et al. Angiopoietin-1 therapy enhances fibrosis and inflammation following folic acid-induced acute renal injury. Kidney Int 2008; 74(3): 300-9.
[http://dx.doi.org/10.1038/ki.2008.179] [PMID: 18480750]
[57]
Min JH, Codipilly CN, Nasim S, Miller EJ, Ahmed MN. Synergistic protection against hyperoxia-induced lung injury by neutrophils blockade and EC-SOD overexpression. Respir Res 2012; 13: 58.
[http://dx.doi.org/10.1186/1465-9921-13-58] [PMID: 22816678]
[58]
Makarov SS, Johnston WN, Olsen JC, et al. NF-kappa B as a target for anti-inflammatory gene therapy: Suppression of inflammatory responses in monocytic and stromal cells by stable gene transfer of I kappa B alpha cDNA. Gene Ther 1997; 4(8): 846-52.
[http://dx.doi.org/10.1038/sj.gt.3300461] [PMID: 9338014]
[59]
Jin LY, Li CF, Zhu GF, Wu CT, Wang J, Yan SF. Effect of siRNA against NF-κB on sepsis-induced acute lung injury in a mouse model. Mol Med Rep 2014; 10(2): 631-7.
[http://dx.doi.org/10.3892/mmr.2014.2299] [PMID: 24913772]
[60]
Mutlu GM, Machado-Aranda D, Norton JE, et al. Electroporation-mediated gene transfer of the Na+,K+ -ATPase rescues endotoxin-induced lung injury. Am J Respir Crit Care Med 2007; 176(6): 582-90.
[http://dx.doi.org/10.1164/rccm.200608-1246OC] [PMID: 17556717]
[61]
Factor P, Dumasius V, Saldias F, Brown LA, Sznajder JI. Adenovirus-mediated transfer of an Na+/K+-ATPase beta1 subunit gene improves alveolar fluid clearance and survival in hyperoxic rats. Hum Gene Ther 2000; 11(16): 2231-42.
[http://dx.doi.org/10.1089/104303400750035753] [PMID: 11084680]
[62]
Lin X, Barravecchia M, Kothari P, Young JL, Dean DA. β1-Na(+),K(+)-ATPase gene therapy upregulates tight junctions to rescue lipopolysaccharide-induced acute lung injury. Gene Ther 2016; 23(6): 489-99.
[http://dx.doi.org/10.1038/gt.2016.19] [PMID: 26910760]
[63]
Bromberg Z, Raj N, Goloubinoff P, Deutschman CS, Weiss YG. Enhanced expression of 70-kilodalton heat shock protein limits cell division in a sepsis-induced model of acute respiratory distress syndrome. Crit Care Med 2008; 36(1): 246-55.
[http://dx.doi.org/10.1097/01.CCM.0000295473.56522.EF] [PMID: 17989570]
[64]
Dong HY, Cui Y, Zhang B, et al. Automatic regulation of NF-κB by pHSP70/IκBαm to prevent acute lung injury in mice. Arch Biochem Biophys 2017; 634: 47-56.
[http://dx.doi.org/10.1016/j.abb.2017.07.020] [PMID: 28778458]
[65]
Parmley LA, Elkins ND, Fini MA, Liu YE, Repine JE, Wright RM. Alpha-4/beta-1 and alpha-L/beta-2 integrins mediate cytokine induced lung leukocyte-epithelial adhesion and injury. Br J Pharmacol 2007; 152(6): 915-29.
[http://dx.doi.org/10.1038/sj.bjp.0707443] [PMID: 17828290]
[66]
Takenaka K, Nishimura Y, Nishiuma T, et al. Ventilator-induced lung injury is reduced in transgenic mice that overexpress endothelial nitric oxide synthase. Am J Physiol Lung Cell Mol Physiol 2006; 290(6): L1078-86.
[http://dx.doi.org/10.1152/ajplung.00239.2005] [PMID: 16399791]
[67]
Baba Y, Yazawa T, Kanegae Y, et al. Keratinocyte growth factor gene transduction ameliorates acute lung injury and mortality in mice. Hum Gene Ther 2007; 18(2): 130-41.
[http://dx.doi.org/10.1089/hum.2006.137] [PMID: 17328680]
[68]
Devaney J, Contreras M, Laffey JG. Clinical review: Gene-based therapies for ALI/ARDS: Where are we now? Crit Care 2011; 15(3): 224.
[http://dx.doi.org/10.1186/cc10216] [PMID: 21699743]
[69]
Matthay MA, McAuley DF, Ware LB. Clinical trials in acute respiratory distress syndrome: Challenges and opportunities. Lancet Respir Med 2017; 5(6): 524-34.
[http://dx.doi.org/10.1016/S2213-2600(17)30188-1] [PMID: 28664851]
[70]
Matthay MA, Zimmerman GA, Esmon C, et al. Future research directions in acute lung injury: Summary of a National Heart, Lung and Blood Institute working group. Am J Respir Crit Care Med 2003; 167(7): 1027-35.
[http://dx.doi.org/10.1164/rccm.200208-966WS] [PMID: 12663342]
[71]
Weiss YG, Maloyan A, Tazelaar J, Raj N, Deutschman CS. Adenoviral transfer of HSP-70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome. J Clin Invest 2002; 110(6): 801-6.
[http://dx.doi.org/10.1172/JCI0215888] [PMID: 12235111]
[72]
Moss RB, Rodman D, Spencer LT, et al. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: A multicenter, double-blind, placebo-controlled trial. Chest 2004; 125(2): 509-21.
[http://dx.doi.org/10.1378/chest.125.2.509] [PMID: 14769732]
[73]
Joseph PM, O’Sullivan BP, Lapey A, et al. Aerosol and lobar administration of a recombinant adenovirus to individuals with cystic fibrosis. I. Methods, safety, and clinical implications. Hum Gene Ther 2001; 12(11): 1369-82.
[http://dx.doi.org/10.1089/104303401750298535] [PMID: 11485629]
[74]
Arad U, Zeira E, El-Latif MA, et al. Liver-targeted gene therapy by SV40-based vectors using the hydrodynamic injection method. Hum Gene Ther 2005; 16(3): 361-71.
[http://dx.doi.org/10.1089/hum.2005.16.361] [PMID: 15812231]
[75]
Suen CM, Mei SH, Kugathasan L, Stewart DJ. Targeted delivery of genes to endothelial cells and cell- and gene-based therapy in pulmonary vascular diseases. Compr Physiol 2013; 3(4): 1749-79.
[http://dx.doi.org/10.1002/cphy.c120034] [PMID: 24265244]
[76]
Tagalakis AD, McAnulty RJ, Devaney J, et al. A receptor-targeted nanocomplex vector system optimized for respiratory gene transfer. Mol Ther 2008; 16(5): 907-15.
[http://dx.doi.org/10.1038/mt.2008.38] [PMID: 18388925]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy