Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Natural Products from Mediterranean Diet: From Anti-hyperlipidemic Agents to Dietary Epigenetic Modulators

Author(s): Deligiannidou Georgia-Eirini, Sygkouna Athina, Vanden Berghe Wim, Kontogiorgis Christos* and Constantinides Theodoros

Volume 20, Issue 10, 2019

Page: [825 - 844] Pages: 20

DOI: 10.2174/1573407215666190628150921

Price: $65

Abstract

Background: Cardiovascular Diseases (CVD) are, currently, the major contributor to global mortality and will continue to dominate mortality rates in the future. Hyperlipidemia refers to the elevated levels of lipids and cholesterol in the blood, and is also identified as dyslipidemia, manifesting in the form of different disorders of lipoprotein metabolism. These abnormalities may lead to the development of atherosclerosis, which can lead to coronary artery disease and stroke. In recent years, there is a growing interest in the quest for alternative therapeutic treatments based on natural products, offering better recovery and the avoidance of side effects. Recent technological advances have further improved our understanding of the role of epigenetic mechanisms in hyperlipidemic disorders and dietary prevention strategies.

Objective: This is a comprehensive overview of the anti-hyperlipidemic effects of plant extracts, vegetables, fruits and isolated compounds thereof, with a focus on natural products from the Mediterranean region as well as the possible epigenetic changes in gene expression or cardiometabolic signaling pathways.

Methods: For the purpose of this study, we searched the PubMed, Scopus and Google Scholar databases for eligible articles and publications over the last five years. The keywords included: “hyperlipidemia”, “plant extract”, “herbs”, “natural products”, “vegetables”, “cholesterol” and others. We initially included all relevant articles referring to in vitro studies, animal studies, Randomized Controlled Trials (RCTs) and previous reviews.

Conclusion: Many natural products found in the Mediterranean diet have been studied for the treatment of hyperlipidemia. The antihyperlipidemic effect seems to be dose and/or consumption frequency related, which highlights the fact that a healthy diet can only be effective in reversing disease markers if it is consistent and within the framework of a healthy lifestyle. Finally, epigenetic biomarkers are increasingly recognized as new lifestyle management tools to monitor a healthy dietary lifestyle for the prevention of hyperlipidaemic disorders and comorbidities to promote a healthy life.

Keywords: Mediterranean diet, hyperlipidemia, plant extracts, vegetables, epigenetics, Randomized Controlled Trials (RCTs).

Graphical Abstract

[1]
Nishida, C.; Uauy, R. WHO Scientific Update on health consequences of trans fatty acids: introduction. Eur. J. Clin. Nutr., 2009, 63(Suppl. 2), S1-S4.
[http://dx.doi.org/10.1038/ejcn.2009.13] [PMID: 19424215]
[2]
Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Ruiz-Gutiérrez, V.; Covas, M.I.; Fiol, M.; Gómez-Gracia, E.; López-Sabater, M.C.; Vinyoles, E.; Arós, F.; Conde, M.; Lahoz, C.; Lapetra, J.; Sáez, G.; Ros, E. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann. Intern. Med., 2006, 145(1), 1-11.
[http://dx.doi.org/10.7326/0003-4819-145-1-200607040-00004] [PMID: 16818923]
[3]
Hedman, A.K.; Mendelson, M.M.; Marioni, R.E.; Gustafsson, S.; Joehanes, R.; Irvin, M.R.; Zhi, D.; Sandling, J.K.; Yao, C.; Liu, C.; Liang, L.; Huan, T.; McRae, A.F.; Demissie, S.; Shah, S.; Starr, J.M.; Cupples, L.A.; Deloukas, P.; Spector, T.D.; Sundström, J.; Krauss, R.M.; Arnett, D.K.; Deary, I.J.; Lind, L.; Levy, D.; Ingelsson, E. Epigenetic patterns in blood associated with lipid traits predict incident coronary heart disease events and are enriched for results from genome-wide association studies. Circ Cardiovasc Genet, 2017, 10(1)e001487
[http://dx.doi.org/10.1161/CIRCGENETICS.116.001487] [PMID: 28213390]
[4]
Istas, G.; Declerck, K.; Pudenz, M.; Szic, K.S.V.; Lendinez-Tortajada, V.; Leon-Latre, M.; Heyninck, K.; Haegeman, G.; Casasnovas, J.A.; Tellez-Plaza, M.; Gerhauser, C.; Heiss, C.; Rodriguez-Mateos, A.; Berghe, W.V. Identification of differentially methylated BRCA1 and CRISP2 DNA regions as blood surrogate markers for cardiovascular disease. Sci. Rep., 2017, 7(1), 5120.
[http://dx.doi.org/10.1038/s41598-017-03434-0] [PMID: 28698603]
[5]
Milenkovic, D.; Berghe, W.V.; Morand, C.; Claude, S.; van de Sandt, A.; Gorressen, S.; Monfoulet, L.E.; Chirumamilla, C.S.; Declerck, K.; Szic, K.S.V.; Lahtela-Kakkonen, M.; Gerhauser, C.; Merx, M.W.; Kelm, M. A systems biology network analysis of nutri(epi)genomic changes in endothelial cells exposed to epicatechin metabolites. Sci. Rep., 2018, 8(1), 15487.
[http://dx.doi.org/10.1038/s41598-018-33959-x] [PMID: 30341379]
[6]
Vanden Berghe, W. Epigenetic impact of dietary polyphenols in cancer chemoprevention: Lifelong remodeling of our epigenomes. Pharmacol. Res., 2012, 65(6), 565-576.
[http://dx.doi.org/10.1016/j.phrs.2012.03.007] [PMID: 22465217]
[7]
Block, T.; El-Osta, A. Epigenetic programming, early life nutrition and the risk of metabolic disease. Atherosclerosis, 2017, 266, 31-40.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.09.003] [PMID: 28950165]
[8]
Braun, K.V.E.; Dhana, K.; de Vries, P.S.; Voortman, T.; van Meurs, J.B.J.; Uitterlinden, A.G.; Hofman, A.; Hu, F.B.; Franco, O.H.; Dehghan, A. Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin. Epigenetics, 2017, 9, 15-2.
[http://dx.doi.org/10.1186/s13148-016-0304-4] [PMID: 28194238]
[9]
Szarc vel Szic, K.; Declerck, K.; Vidaković, M.; Vanden Berghe, W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin. Epigenetics, 2015, 7, 33-51.
[http://dx.doi.org/10.1186/s13148-015-0068-2] [PMID: 25861393]
[10]
Kirchner, H.; Sinha, I.; Gao, H.; Ruby, M.A.; Schönke, M.; Lindvall, J.M.; Barrès, R.; Krook, A.; Näslund, E.; Dahlman-Wright, K.; Zierath, J.R. Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Mol. Metab., 2016, 5(3), 171-183.
[http://dx.doi.org/10.1016/j.molmet.2015.12.004] [PMID: 26977391]
[11]
Kirchner, H.; Osler, M.E.; Krook, A.; Zierath, J.R. Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends Cell Biol., 2013, 23(5), 203-209.
[http://dx.doi.org/10.1016/j.tcb.2012.11.008] [PMID: 23277089]
[12]
Declerck, K.; Vanden Berghe, W. Back to the future: Epigenetic clock plasticity towards healthy aging. Mech. Ageing Dev., 2018, 174, 18-29.
[http://dx.doi.org/10.1016/j.mad.2018.01.002] [PMID: 29337038]
[13]
Declerck, K.; Szarc vel Szic, K.; Palagani, A.; Heyninck, K.; Haegeman, G.; Morand, C.; Milenkovic, D.; Vanden Berghe, W. Epigenetic control of cardiovascular health by nutritional polyphenols involves multiple chromatin-modifying writer-reader-eraser proteins. Curr. Top. Med. Chem., 2016, 16(7), 788-806.
[http://dx.doi.org/10.2174/1568026615666150825141720] [PMID: 26303416]
[14]
Martínez, J.A.; Cordero, P.; Campión, J.; Milagro, F.I. Interplay of early-life nutritional programming on obesity, inflammation and epigenetic outcomes. Proc. Nutr. Soc., 2012, 71(2), 276-283.
[http://dx.doi.org/10.1017/S0029665112000055] [PMID: 22390978]
[15]
Burdge, G.C.; Hoile, S.P.; Lillycrop, K.A. Epigenetics: are there implications for personalised nutrition? Curr. Opin. Clin. Nutr. Metab. Care, 2012, 15(5), 442-447.
[http://dx.doi.org/10.1097/MCO.0b013e3283567dd2] [PMID: 22878237]
[16]
Laker, R.C.; Garde, C.; Camera, D.M.; Smiles, W.J.; Zierath, J.R.; Hawley, J.A.; Barrès, R. Transcriptomic and epigenetic responses to short-term nutrient-exercise stress in humans. Sci. Rep., 2017, 7(1), 15134.
[http://dx.doi.org/10.1038/s41598-017-15420-7] [PMID: 29123172]
[17]
Sartore, G.; Burlina, S.; Ragazzi, E.; Ferraresso, S.; Valentini, R.; Lapolla, A. Mediterranean Diet and Red Yeast Rice Supplementation for the Management of Hyperlipidemia in Statin-Intolerant Patients with or without Type 2 Diabetes Evidence-Based Complementary and Alternative Medicine Volume; 7, 2013, Article ID 743473.
[18]
Moro, E. The Mediterranean Diet from Ancel Keys to the UNESCO Cultural Heritage. A Pattern of Sustainable Development between Myth and Reality. Procedia Soc. Behav. Sci., 2016, 223, 655-661.
[http://dx.doi.org/10.1016/j.sbspro.2016.05.380]
[19]
Shen, J.; Wilmot, K.A.; Ghasemzadeh, N.; Molloy, D.L.; Burkman, G.; Mekonnen, G.; Gongora, M.C.; Quyyumi, A.A.; Sperling, L.S. Mediterranean Dietary Patterns and Cardiovascular Health. Annu. Rev. Nutr., 2015, 35, 425-449.
[http://dx.doi.org/10.1146/annurev-nutr-011215-025104] [PMID: 25974696]
[20]
Hoevenaar-Blom, M.P.; Nooyens, A.C.; Kromhout, D.; Spijkerman, A.M.; Beulens, J.W.; van der, Schouw; Bueno-de Mesquita, B.; Verschuren, W.M. Mediterranean style diet and 12-year incidence of Cardiovascular Disease: The EPIC-NL Cohort study PLoS One,, 2012.7e454458
[http://dx.doi.org/10.1371/journal.pone.0045458]
[21]
Trichopoulou, A.; Martínez-González, M.A.; Tong, T.Y.N.; Forouhi, N.G.; Khandelwal, S.; Prabhakaran, D.; Mozaffarian, D.; de Lorgeril, M. Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC Med., 2014, 12, 112.
[http://dx.doi.org/10.1186/1741-7015-12-112] [PMID: 25055810]
[22]
Ros, E. How important is dietary management in hypercholesterolemia? Clin. Lipidol., 2012, 7(5), 489-492.
[http://dx.doi.org/10.2217/clp.12.57]
[23]
Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean diet, its components, and cardiovascular disease. Am. J. Med., 2015, 128(3), 229-238.
[http://dx.doi.org/10.1016/j.amjmed.2014.10.014] [PMID: 25447615]
[24]
Verschuren, W.M.; Jacobs, D.R.; Bloemberg, B.P.; Kromhout, D.; Menotti, A.; Aravanis, C.; Blackburn, H.; Buzina, R.; Dontas, A.S.; Fidanza, F. Serum total cholesterol and long-term coronary heart disease mortality in different cultures. Twenty-five-year follow-up of the seven countries study. JAMA, 1995, 274(2), 131-136.
[http://dx.doi.org/10.1001/jama.1995.03530020049031] [PMID: 7596000]
[25]
Romagnolo, D.F.; Selmin, O.I. Mediterranean Diet and Prevention of Chronic Diseases. Nutr. Today, 2017, 52(5), 208-222.
[http://dx.doi.org/10.1097/NT.0000000000000228] [PMID: 29051674]
[26]
Trichopoulou, A.; Bamia, C.; Trichopoulos, D. Anatomy of health effects of Mediterranean diet: Greek EPIC prospective cohort study. BMJ, 2009, 338, b2337.
[http://dx.doi.org/10.1136/bmj.b2337] [PMID: 19549997]
[27]
Kontogiorgis, C.A.; Bompou, E-M.; Ntella, M.; Vanden Berghe, W. Natural Products from Mediterranean Diet: From Anti-Inflammatory Agents to Dietary Epigenetic Modulators. Antiinflamm. Antiallergy Agents Med. Chem., 2010, 9, 101-124.
[http://dx.doi.org/10.2174/187152310791110652]
[28]
Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med., 2003, 348(26), 2599-2608.
[http://dx.doi.org/10.1056/NEJMoa025039] [PMID: 12826634]
[29]
Lorite Mingot, D.; Gesteiro, E.; Bastida, S.; Sánchez-Muniz, F.J. Epigenetic effects of the pregnancy Mediterranean diet adherence on the offspring metabolic syndrome markers. J. Physiol. Biochem., 2017, 73(4), 495-510.
[http://dx.doi.org/10.1007/s13105-017-0592-y] [PMID: 28921259]
[30]
House, J.S.; Mendez, M.; Maguire, R.L.; Gonzalez-Nahm, S.; Huang, Z.; Daniels, J.; Murphy, S.K.; Fuemmeler, B.F.; Wright, F.A.; Hoyo, C. Periconceptional maternal mediterranean diet is associated with favorable offspring behaviors and altered cpg methylation of imprinted genes. Front. Cell Dev. Biol., 2018, 6, 107.
[http://dx.doi.org/10.3389/fcell.2018.00107] [PMID: 30246009]
[31]
Arnoni, Y.; Berry, E.M. On the Origins and Evolution of the Mediterranean Diet. In: In The Mediterranean Diet: An Evidence-Based Approach; , 2014.
[32]
Garaulet, M. The Mediterranean Diet and Obesity from a Nutrigenetic and Epigenetics Perspective In: The Mediterranean Diet: An Evidence-Based Approach; , 2014; pp. 22237-247.
[33]
Van Dooren, C.; Marinussen, M.; Blonk, H.; Aiking, H.; Vellinga, P. Exploring Dietary Guidelines Based on Ecological and Nutritional Values: A Comparison of Six Dietary Patterns. Food Policy, 2014, 44, 36-46.
[http://dx.doi.org/10.1016/j.foodpol.2013.11.002]
[34]
Arpón, A.; Milagro, F.I.; Razquin, C.; Corella, D.; Estruch, R.; Fitó, M.; Marti, A.; Martínez-González, M.A.; Ros, E.; Salas-Salvadó, J.; Riezu-Boj, J.I.; Martínez, J.A. Impact of Consuming Extra-Virgin Olive Oil or Nuts within a Mediterranean Diet on DNA Methylation in Peripheral White Blood Cells within the PREDIMED-Navarra Randomized Controlled Trial: A Role for Dietary Lipids. Nutrients, 2017, 10(1)E15
[http://dx.doi.org/10.3390/nu10010015] [PMID: 29295516]
[35]
Romagnolo, D.F.; Selmin, O.I. Mediterranean Diet, Dietary Guidelines and Impact on Health and Disease In: Springer; Frankfurt/ Main. , 2016.
[36]
Gerhauser, C. Cancer chemoprevention and nutriepigenetics: state of the art and future challenges. Top. Curr. Chem., 2013, 329, 73-132.
[http://dx.doi.org/10.1007/128_2012_360] [PMID: 22955508]
[37]
Di Francesco, A.; Falconi, A.; Di Germanio, C.; Micioni Di Bonaventura, M.V.; Costa, A.; Caramuta, S.; Del Carlo, M.; Compagnone, D.; Dainese, E.; Cifani, C.; Maccarrone, M.; D’Addario, C. Extravirgin olive oil up-regulates CB1 tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms. J. Nutr. Biochem., 2015, 26(3), 250-258.
[http://dx.doi.org/10.1016/j.jnutbio.2014.10.013] [PMID: 25533906]
[38]
Voisin, S.; Almén, M.S.; Moschonis, G.; Chrousos, G.P.; Manios, Y.; Schiöth, H.B. Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of Greek preadolescents. Eur. J. Hum. Genet., 2015, 23(5), 654-662.
[http://dx.doi.org/10.1038/ejhg.2014.139] [PMID: 25074463]
[39]
Hoile, S.P.; Clarke-Harris, R.; Huang, R.C.; Calder, P.C.; Mori, T.A.; Beilin, L.J.; Lillycrop, K.A.; Burdge, G.C. Supplementation with N-3 long-chain polyunsaturated fatty acids or olive oil in men and women with renal disease induces differential changes in the DNA methylation of FADS2 and ELOVL5 in peripheral blood mononuclear cells. PLoS One, 2014, 9(10)e109896
[http://dx.doi.org/10.1371/journal.pone.0109896] [PMID: 25329159]
[40]
Lee, H.S.; Barraza-Villarreal, A.; Biessy, C.; Duarte-Salles, T.; Sly, P.D.; Ramakrishnan, U.; Rivera, J.; Herceg, Z.; Romieu, I. Dietary supplementation with polyunsaturated fatty acid during pregnancy modulates DNA methylation at IGF2/H19 imprinted genes and growth of infants. Physiol. Genomics, 2014, 46(23), 851-857.
[http://dx.doi.org/10.1152/physiolgenomics.00061.2014] [PMID: 25293351]
[41]
Zhang, F.F.; Morabia, A.; Carroll, J.; Gonzalez, K.; Fulda, K.; Kaur, M.; Vishwanatha, J.K.; Santella, R.M.; Cardarelli, R. Dietary patterns are associated with levels of global genomic DNA methylation in a cancer-free population. J. Nutr., 2011, 141(6), 1165-1171.
[http://dx.doi.org/10.3945/jn.110.134536] [PMID: 21525250]
[42]
Barchitta, M.; Maugeri, A.; Quattrocchi, A.; Barone, G.; Mazzoleni, P.; Catalfo, A.; De Guidi, G.; Iemmolo, M.G.; Crimi, N.; Agodi, A. Mediterranean diet and particulate matter exposure are associated with LINE-1 methylation: Results from a cross-sectional study in women. Front. Genet., 2018, 9, 514.
[http://dx.doi.org/10.3389/fgene.2018.00514] [PMID: 30425730]
[43]
Arpón, A.; Riezu-Boj, J.I.; Milagro, F.I.; Marti, A.; Razquin, C.; Martínez-González, M.A.; Corella, D.; Estruch, R.; Casas, R.; Fitó, M.; Ros, E.; Salas-Salvadó, J.; Martínez, J.A. Adherence to Mediterranean diet is associated with methylation changes in inflammation-related genes in peripheral blood cells. J. Physiol. Biochem., 2016, 73(3), 445-455.
[http://dx.doi.org/10.1007/s13105-017-0552-6] [PMID: 28181167]
[44]
Kelly, R.B. Diet and exercise in the management of hyperlipidemia. Am. Fam. Physician, 2010, 81(9), 1097-1102.
[PMID: 20433126]
[45]
Toledo, E.; Wang, D.D.; Ruiz-Canela, M.; Clish, C.B.; Razquin, C.; Zheng, Y.; Guasch-Ferré, M.; Hruby, A.; Corella, D.; Gómez-Gracia, E.; Fiol, M.; Estruch, R.; Ros, E.; Lapetra, J.; Fito, M.; Aros, F.; Serra-Majem, L.; Liang, L.; Salas-Salvadó, J.; Hu, F.B.; Martínez-González, M.A. Plasma lipidomic profiles and cardiovascular events in a randomized intervention trial with the Mediterranean diet. Am. J. Clin. Nutr., 2017, 106(4), 973-983.
[PMID: 28814398]
[46]
Ros, E.; Martínez-González, M.A.; Estruch, R.; Salas-Salvadó, J.; Fitó, M.; Martínez, J.A.; Corella, D. Mediterranean diet and cardiovascular health: Teachings of the PREDIMED study. Adv. Nutr., 2014, 5(3), 330S-336S.
[http://dx.doi.org/10.3945/an.113.005389] [PMID: 24829485]
[47]
Sayols-Baixeras, S.; Irvin, M.R.; Arnett, D.K.; Elosua, R.; Aslibekyan, S.W. Epigenetics of lipid phenotypes. Curr. Cardiovasc. Risk Rep., 2016, 10(10), 31.
[http://dx.doi.org/10.1007/s12170-016-0513-6] [PMID: 28496562]
[48]
Mertens, E.; Mullie, P.; Deforche, B.; Lefevre, J.; Charlier, R.; Huybrechts, I.; Clarys, P. Cross-sectional study on the relationship between the Mediterranean Diet Score and blood lipids. Nutr. J., 2014, 13, 88.
[http://dx.doi.org/10.1186/1475-2891-13-88] [PMID: 25189183]
[49]
Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; Lamuela-Raventos, R.M.; Serra-Majem, L.; Pintó, X.; Basora, J.; Muñoz, M.A.; Sorlí, J.V.; Martínez, J.A.; Fitó, M.; Gea, A.; Hernán, M.A.; Martínez-González, M.A. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med., 2018, 378(25)e34
[http://dx.doi.org/10.1056/NEJMoa1800389] [PMID: 29897866]
[50]
Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E. Benefits of the Mediterranean Diet: Insights from the PREDIMED Study. Prog. Cardiovasc. Dis., 2015, 58(1), 50-60.
[http://dx.doi.org/10.1016/j.pcad.2015.04.003] [PMID: 25940230]
[51]
Montserrat-de la Paz, S.; Bermudez, B.; Cardelo, M.P.; Lopez, S.; Abia, R.; Muriana, F.J.G. Olive oil and postprandial hyperlipidemia: implications for atherosclerosis and metabolic syndrome. Food Funct., 2016, 7(12), 4734-4744.
[http://dx.doi.org/10.1039/C6FO01422D] [PMID: 27885367]
[52]
García-Meseguer, M.J.; Burriel, F.C.; García, C.V.; Serrano-Urrea, R. Adherence to Mediterranean diet in a Spanish university population. Appetite, 2014, 78, 156-164.
[http://dx.doi.org/10.1016/j.appet.2014.03.020] [PMID: 24681406]
[53]
Bondia-Pons, I.; Martinez, J.A.; de la Iglesia, R.; Lopez-Legarrea, P.; Poutanen, K.; Hanhineva, K.; Zulet, M. de los Á. Effects of short- and long-term mediterranean-based dietary treatment on plasma LC-QTOF/MS metabolic profiling of subjects with metabolic syndrome features: The Metabolic Syndrome Reduction in Navarra (RESMENA). Randomized Controlled Trial. Mol. Nutr. Food Res., 2015, 59(4), 711-728.
[http://dx.doi.org/10.1002/mnfr.201400309] [PMID: 25641909]
[54]
Bower, A.; Marquez, S.; de Mejia, E.G. The health benefits of selected culinary herbs and spices found in the traditional mediterranean diet. Crit. Rev. Food Sci. Nutr., 2016, 56(16), 2728-2746.
[http://dx.doi.org/10.1080/10408398.2013.805713] [PMID: 25749238]
[55]
Rouhi-Boroujeni, H.; Rouhi-Boroujeni, H.; Heidarian, E.; Mohammadizadeh, F.; Rafieian-Kopaei, M. Herbs with anti-lipid effects and their interactions with statins as a chemical antihyperlipidemia group drugs: A systematic review ARYA Atheroscler., 11(4), 244-251.2015,
[56]
Harnafi, H.; Ramchoun, M.; Tits, M.; Wauters, J.N.; Frederich, M.; Angenot, L.; Aziz, M.; Alem, C.; Amrani, S. Phenolic acid-rich extract of sweet basil restores cholesterol and triglycerides metabolism in high fat diet-fed mice: A comparison with fenofibrate. Biomed. Prev. Nutr., 2013, 3, 393-397.
[http://dx.doi.org/10.1016/j.bionut.2013.03.005]
[57]
Touiss, I.; Khatib, S.; Bekkouch, O.; Amrani, S.; Harnafi, H. Phenolic extract from Ocimum basilicum restores lipid metabolism in triton WR-1339-induced hyperlipidemic mice and prevents lipoprotein-rich plasma oxidation. Food Sci. Hum. Wellness, 2017, 6, 28-33.
[http://dx.doi.org/10.1016/j.fshw.2017.02.002]
[58]
Romo Vaquero, M.; Yáñez-Gascón, M.J.; García Villalba, R.; Larrosa, M.; Fromentin, E.; Ibarra, A.; Roller, M.; Tomás-Barberán, F.; Espín de Gea, J.C.; García-Conesa, M.T. Inhibition of gastric lipase as a mechanism for body weight and plasma lipids reduction in Zucker rats fed a rosemary extract rich in carnosic acid. PLoS One, 2012, 7(6)e39773
[http://dx.doi.org/10.1371/journal.pone.0039773] [PMID: 22745826]
[59]
Hassani, F.V.; Shirani, K.; Hosseinzadeh, H. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: a review. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(9), 931-949.
[http://dx.doi.org/10.1007/s00210-016-1256-0] [PMID: 27178264]
[60]
Al Sheyab, F.M.; Abuharfeil, N.; Salloum, L.; Hani, B.R.; Awad, D.S. The effect of rosemary (Rosmarinus officinalis. L) plant extracts on the immune response and lipid profile in mice. J. Biol. Life Sci., 2012, 3, 1.
[http://dx.doi.org/10.5296/jbls.v3i1.906]
[61]
Ou, J.; Huang, J.; Zhao, D.; Du, B.; Wang, M. Protective effect of rosmarinic acid and carnosic acid against streptozotocin-induced oxidation, glycation, inflammation and microbiota imbalance in diabetic rats. Food Funct., 2018, 9(2), 851-860.
[http://dx.doi.org/10.1039/C7FO01508A] [PMID: 29372208]
[62]
Borzoei, A.; Rafraf, M.; Niromanesh, S.; Farzadi, L.; Narimani, F.; Doostan, F. Effects of cinnamon supplementation on antioxidant status and serum lipids in women with polycystic ovary syndrome. J. Tradit. Complement. Med., 2017, 8(1), 128-133.
[http://dx.doi.org/10.1016/j.jtcme.2017.04.008] [PMID: 29322000]
[63]
Zare, R.; Nadjarzadeh, A.; Zarshenas, M.M.; Shams, M.; Heydari, M. Efficacy of cinnamon in patients with type ii diabetes mellitus: A randomized controlled clinical trial Clin. Nutr, 2018, S02615614(18), 30114-30116.
[64]
Anderson, R.A.; Zhan, Z.; Luo, R.; Guo, X.; Guo, Q.; Zhou, J.; Kong, J.; Davis, P.A.; Stoecker, B.J. Cinnamon extract lowers glucose, insulin and cholesterol in people with elevated serum glucose. J. Tradit. Complement. Med., 2015, 6(4), 332-336.
[http://dx.doi.org/10.1016/j.jtcme.2015.03.005] [PMID: 27774415]
[65]
Qin, B.; Dawson, H.D.; Schoene, N.W.; Polansky, M.M.; Anderson, R.A. Cinnamon polyphenols regulate multiple metabolic pathways involved in insulin signaling and intestinal lipoprotein metabolism of small intestinal enterocytes. Nutrition, 2012, 28(11-12), 1172-1179.
[http://dx.doi.org/10.1016/j.nut.2012.03.020] [PMID: 22858201]
[66]
Kumar, P.; Bhandari, U. Protective effect of Trigonella foenum-graecum Linn. on monosodium glutamate-induced dyslipidemia and oxidative stress in rats. Indian J. Pharmacol., 2013, 45(2), 136-140.
[http://dx.doi.org/10.4103/0253-7613.108288] [PMID: 23716888]
[67]
Chaturvedi, U.; Shrivastava, A.; Bhadauria, S.; Saxena, J.K.; Bhatia, G. A mechanism-based pharmacological evaluation of efficacy of Trigonella foenum graecum (fenugreek) seeds in regulation of dyslipidemia and oxidative stress in hyperlipidemic rats. J. Cardiovasc. Pharmacol., 2013, 61(6), 505-512.
[http://dx.doi.org/10.1097/FJC.0b013e31828b7822] [PMID: 23429594]
[68]
Khalatbari Soltani, S.; Jamaluddin, R.; Tabibi, H.; Mohd Yusof, B.N.; Atabak, S.; Loh, S.P.; Rahmani, L. Effects of flaxseed consumption on systemic inflammation and serum lipid profile in hemodialysis patients with lipid abnormalities. Hemodial. Int., 2013, 17(2), 275-281.
[http://dx.doi.org/10.1111/j.1542-4758.2012.00754.x] [PMID: 22998533]
[69]
Kianbakht, S.; Abasi, B.; Perham, M.; Hashem Dabaghian, F. Antihyperlipidemic effects of Salvia officinalis L. leaf extract in patients with hyperlipidemia: A randomized double-blind placebo-controlled clinical trial. Phytother. Res., 2011, 25(12), 1849-1853.
[http://dx.doi.org/10.1002/ptr.3506] [PMID: 21506190]
[70]
Kianbakht, S.; Dabaghian, F.H. Improved glycemic control and lipid profile in hyperlipidemic type 2 diabetic patients consuming Salvia officinalis L. leaf extract: a randomized placebo. Controlled clinical trial. Complement. Ther. Med., 2013, 21(5), 441-446.
[http://dx.doi.org/10.1016/j.ctim.2013.07.004] [PMID: 24050577]
[71]
Kianbakht, S.; Nabati, F.; Abasi, B. Salvia officinalis (Sage) Leaf extract as add-on to statin therapy in hypercholesterolemic type 2 diabetic patients: A randomized clinical trial. Int. J. Mol. Cell. Med., 2016, 5(3), 141-148.
[PMID: 27942500]
[72]
Ozkol, H.; Tuluce, Y.; Dilsiz, N.; Koyuncu, I. Therapeutic potential of some plant extracts used in Turkish traditional medicine on streptozocin-induced type 1 diabetes mellitus in rats. J. Membr. Biol., 2013, 246(1), 47-55.
[http://dx.doi.org/10.1007/s00232-012-9503-x] [PMID: 23052826]
[73]
Zadmajid, V.; Mohammadi, C. Dietary thyme essential oil (Thymus vulgaris) Changes serum stress markers, enzyme activity, and hematological parameters in gibel carp (Carassius auratus Gibelio) exposed to silver nanoparticles. Iran. J. Fish. Sci., 2017, 16(3), 1063-1084.
[74]
El-Newary, S.A.; Shaffie, N.M.; Omer, E.A. The protection of Thymus vulgaris leaves alcoholic extract against hepatotoxicity of alcohol in rats. Asian Pac. J. Trop. Med., 2017, 10(4), 361-371.
[http://dx.doi.org/10.1016/j.apjtm.2017.03.023] [PMID: 28552106]
[75]
Bagheri, S.; Ahmadvand, H.; Khosrowbeygi, A.; Ghazanfari, F.; Jafari, N.; Nazem, H.; Hosseini, R.H. Antioxidant properties and inhibitory effects of Satureja khozestanica essential oil on LDL oxidation induced-CuSO(4) in vitro. Asian Pac. J. Trop. Biomed., 2013, 3(1), 22-27.
[http://dx.doi.org/10.1016/S2221-1691(13)60018-0] [PMID: 23570012]
[76]
Ahmadvand, H.; Tavafi, M.; Khalatbary, A.R. Hepatoprotective and hypolipidemic effects of Satureja khuzestanica essential oil in alloxan-induced type 1 diabetic rats. Iran. J. Pharm. Res., 2012, 11(4)(Suppl. 2), 1219-1226.
[PMID: 24250556]
[77]
Hafezi, H.; Vahdati, A.; Sepehrimanesh, M. Effect of Satureja Khuzestanica Jamzad extract on serum lipid profile, blood glucose level and body weight gain in diabetes mellitus: A rattus norvegicus model. Comp. Clin. Pathol., 2015, 24(5), 1033-1037.
[http://dx.doi.org/10.1007/s00580-014-2024-5]
[78]
Nikaein, F.; Babajafari, S.; Mazloomi, S.; Zibaeenezhad, M.; Zargaran, A.F. The effects of Satureja hortensis L. Dried leaves on serum sugar, lipid profiles, hs-crp, and blood pressure in metabolic syndrome patients: A double-blind randomized clinical trial. Iran. Red Crescent Med. J., 2017.e34931
[79]
Ribas, S.A.; Cunha, D.B.; Sichieri, R.; Santana da Silva, L.C. Effects of psyllium on LDL-cholesterol concentrations in Brazilian children and adolescents: a randomised, placebo-controlled, parallel clinical trial. Br. J. Nutr., 2015, 113(1), 134-141.
[http://dx.doi.org/10.1017/S0007114514003419] [PMID: 25391814]
[80]
de Bock, M.; Derraik, J.G.B.; Brennan, C.M.; Biggs, J.B.; Smith, G.C.; Cameron-Smith, D.; Wall, C.R.; Cutfield, W.S. Psyllium supplementation in adolescents improves fat distribution & lipid profile: a randomized, participant-blinded, placebo-controlled, crossover trial. PLoS One, 2012, 7(7)e41735
[http://dx.doi.org/10.1371/journal.pone.0041735] [PMID: 22848584]
[81]
Samer, S.; El-Sayed, A. Hepatoprotective effect of Pimpinella anisum and Foeniculum vulgare against carbon tetrachloride induced fibrosis in rats. World J. Pharm. Pharm. Sci., 2015, 4, 78-88.
[82]
Rezq, A.A. Beneficial health effects of fennel seeds (Shamar) on male rats feeding high fat-diet. Med. J. Cairo Univ., 2012, 80, 101-113.
[83]
Afiat, M.; Amini, E.; Ghazanfarpour, M.; Nouri, B.; Mousavi, M.S.; Babakhanian, M.; Rakhshandeh, H. the effect of short-term treatment with fennel on lipid profile in postmenopausal women: A randomized controlled trial. J. Menopausal Med., 2018, 24(1), 29-33.
[http://dx.doi.org/10.6118/jmm.2018.24.1.29] [PMID: 29765924]
[84]
Hosseinzadeh, H.; Alaw Qotbi, A.A.; Seidavi, A.; Norris, D.; Brown, D. Effects of different levels of coriander (Coriandrum sativum) seed powder and extract on serum biochemical parameters, microbiota, and immunity in broiler chicks Scientif. World J., 2014.2014628979
[http://dx.doi.org/10.1155/2014/628979] [PMID: 25614892]
[85]
Aslani, Z.; Mirmiran, P.; Alipur, B.; Bahadoran, Z.; Abbassalizade Farhangi, M. Lentil sprouts effect on serum lipids of overweight and obese patients with type 2 diabetes. Health Promot. Perspect., 2015, 5(3), 215-224.
[http://dx.doi.org/10.15171/hpp.2015.026] [PMID: 26634200]
[86]
Ahmad, M.N. The effect of lentil on cholesterol-induced changes of serum lipid cardiovascular indexes in rats. Prog. Nutr., 2017, 19(1), 48-6.
[87]
Ahmad, M.N. The effect of dehulling and cooking of lentils (Lens culinaris, L.) on serum glucose and lipid and lipoprotein concentrations in rats fed cholesterol- supplemented diets. Life Sci. J., 2014, 11(11), 924-931.
[88]
Samarghandian, S.; Azimi-Nezhad, M.; Samini, F. Ameliorative effect of saffron aqueous extract on hyperglycemia, hyperlipidemia, and oxidative stress on diabetic encephalopathy in Streptozotocin induced experimental diabetes mellitus. BioMed Res. Int., 2014.2014920857
[http://dx.doi.org/10.1155/2014/920857] [PMID: 25114929]
[89]
Mashmoul, M.; Azlan, A.; Yusof, B.N.M.; Khaza’ai, H.; Mohtarrudin, N.; Boroushaki, M.T. Effects of saffron extract and Crocin on anthropometrical, nutritional and lipid profile parameters of rats fed a high fat diet. J. Funct. Foods, 2014, 16(1), 401.
[http://dx.doi.org/10.1016/j.jff.2014.03.017]
[90]
Hoshyar, R.; Hosseinian, M.; Naghandar, M.R.; Hemmati, M.; Zarban, A.; Amini, Z.; Valavi, M.; Beyki, M.Z.; Mehrpour, O. Anti-dyslipidemic properties of saffron: Reduction in the associated risks of atherosclerosis and insulin resistance. Iran. Red Crescent Med. J., 2016, 18(12)e36226
[http://dx.doi.org/10.5812/ircmj.36226]
[91]
Javandoost, A.; Afshari, A.; Nikbakht-Jam, I.; Khademi, M.; Eslami, S.; Nosrati, M.; Foroutan-Tanha, M.; Sahebkar, A.; Tavalaie, S.; Ghayour-Mobarhan, M.; Ferns, G.; Hadizadeh, F.; Tabassi, A.; Mohajeri, A. Effect of crocin, a carotenoid from saffron, on plasma cholesteryl ester transfer protein and lipid profile in subjects with metabolic syndrome: A double blind randomized clinical trial. ARYA Atheroscler., 2017, 13(5), 245-252.
[PMID: 29371871]
[92]
Chiu, H.F.; Huang, Y.C.; Lu, Y.Y.; Han, Y.C.; Shen, Y.C.; Golovinskaia, O.; Venkatakrishnan, K.; Wang, C.K. Regulatory/modulatory effect of prune essence concentrate on intestinal function and blood lipids. Pharm. Biol., 2017, 55(1), 974-979.
[http://dx.doi.org/10.1080/13880209.2017.1285323] [PMID: 28164731]
[93]
Liperoti, R.; Vetrano, D.L.; Bernabei, R.; Onder, G. Herbal medications in cardiovascular medicine. J. Am. Coll. Cardiol., 2017, 69(9), 1188-1199.
[http://dx.doi.org/10.1016/j.jacc.2016.11.078] [PMID: 28254182]
[94]
Kim, J.Y.; Hong, J.H.; Jung, H.K.; Jeong, Y.S.; Cho, K.H. Grape skin and loquat leaf extracts and acai puree have potent anti-atherosclerotic and anti-diabetic activity in vitro and in vivo in hypercholesterolemic zebrafish. Int. J. Mol. Med., 2012, 30(3), 606-614.
[http://dx.doi.org/10.3892/ijmm.2012.1045] [PMID: 22751734]
[95]
Razavi, S-M.; Gholamin, S.; Eskandari, A.; Mohsenian, N.; Ghorbanihaghjo, A.; Delazar, A.; Rashtchizadeh, N.; Keshtkar-Jahromi, M.; Argani, H. Red grape seed extract improves lipid profiles and decreases oxidized low-density lipoprotein in patients with mild hyperlipidemia. J. Med. Food, 2013, 16(3), 255-258.
[http://dx.doi.org/10.1089/jmf.2012.2408] [PMID: 23437789]
[96]
Skala, T.; Ostadal, P.; Adam, T.; Moravec, O.; Gloger, V.; Schee, A.; Taborsky, M. The influence of wine on cholesterol levels in people with low to middle cardiovascular risk (in vino veritas sub-analysis). Cardiol. Lett., 2017, 118(5), 292-298.
[97]
Lee, D.H.; Choi, S.S.; Kim, B.B.; Kim, S.Y.; Kang, B.S.; Lee, S.J.; Park, H.J. Effect of alcohol-free red wine concentrates on cholesterol homeostasis: An in vitro and in vivo study. Process Biochem., 2013, 48, 1964-1971.
[http://dx.doi.org/10.1016/j.procbio.2013.09.007]
[98]
Martínez, N.; Casós, K.; Simonetti, P.; Sáiz, M.P.; Moreno, J.J.; Mitjavila, M.T. De-alcoholised white and red wines decrease inflammatory markers and NF-κB in atheroma plaques in apoE-deficient mice. Eur. J. Nutr., 2013, 52(2), 737-747.
[http://dx.doi.org/10.1007/s00394-012-0379-4] [PMID: 22645106]
[99]
Taborsky, M.; Ostadal, P.; Adam, T.; Moravec, O.; Gloger, V.; Schee, A.; Skala, T. Red or white wine consumption effect on atherosclerosis in healthy individuals (in vino veritas study). Bratisl. Lek Listy, 2017, 118(5), 292-298.
[http://dx.doi.org/10.4149/BLL_2017_072] [PMID: 28516793]
[100]
Droste, D.W.; Iliescu, C.; Vaillant, M.; Gantenbein, M.; De Bremaeker, N.; Lieunard, C.; Velez, T.; Meyer, M.; Guth, T.; Kuemmerle, A.; Gilson, G.; Chioti, A. A daily glass of red wine associated with lifestyle changes independently improves blood lipids in patients with carotid arteriosclerosis: Results from a randomized controlled trial. Nutr. J., 2013, 12(1), 147.
[http://dx.doi.org/10.1186/1475-2891-12-147] [PMID: 24228901]
[101]
Lee, H.; Woo, M.; Kim, M.; Noh, J.S.; Song, Y.O. Antioxidative and cholesterol-lowering effects of lemon essential oil in hypercholesterolemia-induced rabbits. Prev. Nutr. Food Sci., 2018, 23(1), 8-14.
[http://dx.doi.org/10.3746/pnf.2018.23.1.8] [PMID: 29662842]
[102]
Mojtahedin, A.; Seifdavati, J.; Seyedsharifi, R. Effects of different levels of dietary Citrus Limon essential oil on some blood parameters and antioxidant status in Afshari Ewes. Cell. Mol. Biol., 2018, 64(1), 47-51.
[http://dx.doi.org/10.14715/cmb/2018.64.1.9] [PMID: 29412793]
[103]
Oboh, G.; Bello, F.O.; Ademosun, A.O.; Akinyemi, A.J.; Adewuni, T.M. Antioxidant, hypolipidemic, and anti-angiotensin-1-converting enzyme properties of lemon (Citrus limon) and lime (Citrus aurantifolia). Juices. Comp. Clin. Path., 2015, 24, 1395-1406.
[http://dx.doi.org/10.1007/s00580-015-2088-x]
[104]
Kurian, N.; Bredenkamp, C. Reduction of cholesterol and triglycerides in volunteers using lemon and apple. Int. J. Humanit. Soc. Sci., 2013, 3(18), 60-64.
[105]
Hashemipour, M.; Kargar, M.; Ghannadi, A.; Kelishadi, R. The effect of Citrus Aurantifolia (Lemon) peels on cardiometabolic risk factors and markers of endothelial function in adolescents with excess weight: A triple-masked randomized controlled trial. Med. J. Islam. Repub. Iran, 2016, 30, 429.
[PMID: 28210594]
[106]
Lv, O.; Wang, L.; Li, J.; Ma, Q.; Zhao, W. Effects of pomegranate peel polyphenols on lipid accumulation and cholesterol metabolic transformation in L-02 human hepatic cells via the PPARγ-ABCA1/CYP7A1 pathway. Food Funct., 2016, 7(12), 4976-4983.
[http://dx.doi.org/10.1039/C6FO01261B] [PMID: 27845788]
[107]
Neyrinck, A.M.; Van Hée, V.F.; Bindels, L.B.; De Backer, F.; Cani, P.D.; Delzenne, N.M. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: Potential implication of the gut microbiota. Br. J. Nutr., 2013, 109(5), 802-809.
[http://dx.doi.org/10.1017/S0007114512002206] [PMID: 22676910]
[108]
Gliozzi, M.; Walker, R.; Muscoli, S.; Vitale, C.; Gratteri, S.; Carresi, C.; Musolino, V.; Russo, V.; Janda, E.; Ragusa, S.; Aloe, A.; Palma, E.; Muscoli, C.; Romeo, F.; Mollace, V. Bergamot polyphenolic fraction enhances rosuvastatin-induced effect on LDL-cholesterol, LOX-1 expression and protein kinase B phosphorylation in patients with hyperlipidemia. Int. J. Cardiol., 2013, 170(2), 140-145.
[http://dx.doi.org/10.1016/j.ijcard.2013.08.125] [PMID: 24239156]
[109]
Cai, Y.; Xing, G.; Shen, T.; Zhang, S.; Rao, J.; Shi, R. Effects of 12-week supplementation of Citrus bergamia extracts-based formulation CitriCholess on cholesterol and body weight in older adults with dyslipidemia: a randomized, double-blind, placebo-controlled trial. Lipids Health Dis., 2017, 16(1), 251.
[http://dx.doi.org/10.1186/s12944-017-0640-1] [PMID: 29273027]
[110]
Yao, N.; He, R.R.; Zeng, X.H.; Huang, X.J.; Du, T.L.; Cui, J.C.; Hiroshi, K. Hypotriglyceridemic effects of apple polyphenols extract via up-regulation of lipoprotein lipase in triton WR-1339-induced mice. Chin. J. Integr. Med., 2014, 20(1), 31-35.
[http://dx.doi.org/10.1007/s11655-012-1243-3] [PMID: 23001493]
[111]
Ravn-Haren, G.; Dragsted, L.O.; Buch-Andersen, T.; Jensen, E.N.; Jensen, R.I.; Németh-Balogh, M.; Paulovicsová, B.; Bergström, A.; Wilcks, A.; Licht, T.R.; Markowski, J.; Bügel, S. Intake of whole apples or clear apple juice has contrasting effects on plasma lipids in healthy volunteers. Eur. J. Nutr., 2013, 52(8), 1875-1889.
[http://dx.doi.org/10.1007/s00394-012-0489-z] [PMID: 23271615]
[112]
Aptekmann, N.P.; Cesar, T.B. Long-term orange juice consumption is associated with low LDL-cholesterol and apolipoprotein B in normal and moderately hypercholesterolemic subjects. Lipids Health Dis., 2013, 12, 119.
[http://dx.doi.org/10.1186/1476-511X-12-119] [PMID: 23919812]
[113]
Haidari, F.; Rashidi, M.R.; Mohammad-Shahi, M. Effects of orange juice and hesperetin on serum paraoxonase activity and lipid profile in hyperuricemic rats. Bioimpacts, 2012, 2(1), 39-45.
[PMID: 23678440]
[114]
Ko, S-H.; Park, J.H.; Kim, S.Y.; Lee, S.W.; Chun, S.S.; Park, E. Antioxidant effects of spinach (Spinacia oleracea L.) supplementation in hyperlipidemic rats. Prev. Nutr. Food Sci., 2014, 19(1), 19-26.
[http://dx.doi.org/10.3746/pnf.2014.19.1.019] [PMID: 24772405]
[115]
Pradana, D.A.; Rahmah, F.S.; Setyaningrum, T.R. Potential of red spinach leaves (Amaranthus tricolor L.) ethanolic extract standardized as antihyperlipidemia: in vivo study based on LDL (Low Density Lipoprotein) parameter. J Sains Farm Klin., 2016, 3(1), 6-13.
[http://dx.doi.org/10.29208/jsfk.2016.3.1.89]
[116]
Hafez Hetta, M.; Moawad, A.S.; Abdel-Aziz Hamed, M.; Sabri, A.I. In-vitro and In-vivo hypolipidemic activity of spinach roots and flowers. Iran. J. Pharm. Res., 2017, 16(4), 1509-1519.
[PMID: 29552059]
[117]
Bohn, T.; McDougall, G.J.; Alegría, A.; Alminger, M.; Arrigoni, E.; Aura, A.M.; Brito, C.; Cilla, A.; El, S.N.; Karakaya, S.; Martínez-Cuesta, M.C.; Santos, C.N. Mind the gap-deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites--a position paper focusing on carotenoids and polyphenols. Mol. Nutr. Food Res., 2015, 59(7), 1307-1323.
[http://dx.doi.org/10.1002/mnfr.201400745] [PMID: 25988374]
[118]
Huang, J.; Plass, C.; Gerhauser, C. Cancer chemoprevention by targeting the epigenome. Curr. Drug Targets, 2011, 12(13), 1925-1956.
[http://dx.doi.org/10.2174/138945011798184155] [PMID: 21158707]
[119]
Hore, T.A. Modulating epigenetic memory through vitamins and TET: implications for regenerative medicine and cancer treatment. Epigenomics, 2017, 9(6), 863-871.
[http://dx.doi.org/10.2217/epi-2017-0021] [PMID: 28554227]
[120]
Liu, J. Oleanolic acid and ursolic acid: research perspectives. J. Ethnopharmacol., 2005, 100(1-2), 92-94.
[http://dx.doi.org/10.1016/j.jep.2005.05.024] [PMID: 15994040]
[121]
Yuliang, W.; Zejian, W.; Hanlin, S.; Ming, Y.; Kexuan, T. The hypolipidemic effect of artesunate and ursolic acid in rats. Pak. J. Pharm. Sci., 2015, 28(3), 871-874.
[PMID: 26004719]
[122]
Wang, W.; Zhao, C.; Jou, D.; Lü, J.; Zhang, C.; Lin, L.; Lin, J. Ursolic acid inhibits the growth of colon cancer-initiating cells by targeting STAT3. Anticancer Res., 2013, 33(10), 4279-4284.
[PMID: 24122993]
[123]
Lu, T.M.; Chiu, H.F.; Shen, Y.C.; Chung, C.C.; Venkatakrishnan, K.; Wang, C.K. Hypocholesterolemic efficacy of quercetin rich onion juice in healthy mild hypercholesterolemic adults: A pilot study. Plant Foods Hum. Nutr., 2015, 70(4), 395-400.
[http://dx.doi.org/10.1007/s11130-015-0507-4] [PMID: 26385226]
[124]
Rotimi, S.O.; Adelani, I.B.; Bankole, G.E.; Rotimi, O.A. Naringin enhances reverse cholesterol transport in high fat/low streptozocin induced diabetic rats. Biomed. Pharmacother., 2018, 101, 430-437.
[http://dx.doi.org/10.1016/j.biopha.2018.02.116] [PMID: 29501765]
[125]
Zhu, L.; Luo, X.; Jin, Z. Effect of resveratrol on serum and liver lipid profile and antioxidant activity in hyperlipidemia rats. Asian-Australasian. J. Anim. Sci., 2008, 21(6), 890-895.
[126]
Faghihzadeh, F.; Adibi, P.; Hekmatdoost, A. The effects of resveratrol supplementation on cardiovascular risk factors in patients with non-alcoholic fatty liver disease: A randomised, double-blind, placebo-controlled study. Br. J. Nutr., 2015, 114(5), 796-803.
[http://dx.doi.org/10.1017/S0007114515002433] [PMID: 26234526]
[127]
Berbée, J.F.P.; Wong, M.C.; Wang, Y.; van der Hoorn, J.W.A.; Khedoe, P.P.S.J.; van Klinken, J.B.; Mol, I.M.; Hiemstra, P.S.; Tsikas, D.; Romijn, J.A.; Havekes, L.M.; Princen, H.M.; Rensen, P.C. Resveratrol protects against atherosclerosis, but does not add to the antiatherogenic effect of atorvastatin, in APOE*3-Leiden.CETP mice. J. Nutr. Biochem., 2013, 24(8), 1423-1430.
[http://dx.doi.org/10.1016/j.jnutbio.2012.11.009] [PMID: 23337345]
[128]
Militaru, C.; Donoiu, I.; Craciun, A.; Scorei, I.D.; Bulearca, A.M.; Scorei, R.I. Oral resveratrol and calcium fructoborate supplementation in subjects with stable angina pectoris: effects on lipid profiles, inflammation markers, and quality of life. Nutrition, 2013, 29(1), 178-183.
[http://dx.doi.org/10.1016/j.nut.2012.07.006] [PMID: 23153742]
[129]
Chen, S.; Zhao, X.; Ran, L.; Wan, J.; Wang, X.; Qin, Y.; Shu, F.; Gao, Y.; Yuan, L.; Zhang, Q.; Mi, M. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Dig. Liver Dis., 2015, 47(3), 226-232.
[http://dx.doi.org/10.1016/j.dld.2014.11.015] [PMID: 25577300]
[130]
Haghighatdoost, F.; Hariri, M. Effect of resveratrol on lipid profile: An updated systematic review and meta-analysis on randomized clinical trials. Pharmacol. Res., 2018, 129, 141-150.
[http://dx.doi.org/10.1016/j.phrs.2017.12.033] [PMID: 29305228]
[131]
Azorín-Ortuño, M.; Yáñez-Gascón, M.J.; González-Sarrías, A.; Larrosa, M.; Vallejo, F.; Pallarés, F.J.; Lucas, R.; Morales, J.C.; Tomás-Barberán, F.A.; García-Conesa, M.T.; Espín, J.C. Effects of long-term consumption of low doses of resveratrol on diet-induced mild hypercholesterolemia in pigs: A transcriptomic approach to disease prevention. J. Nutr. Biochem., 2012, 23(7), 829-837.
[http://dx.doi.org/10.1016/j.jnutbio.2011.04.007] [PMID: 21852083]
[132]
Matos, R.S.; Baroncini, L.A.V.; Précoma, L.B.; Winter, G.; Lambach, P.H.; Caron, E.Y.; Kaiber, F.; Précoma, D.B. Resveratrol causes antiatherogenic effects in an animal model of atherosclerosis. Arq. Bras. Cardiol., 2012, 98(2), 136-142.
[http://dx.doi.org/10.1590/S0066-782X2012005000006] [PMID: 22231915]
[133]
Voloshyna, I.; Teboul, I.; Littlefield, M.J.; Siegart, N.M.; Turi, G.K.; Fazzari, M.J.; Carsons, S.E.; DeLeon, J.; Reiss, A.B. Resveratrol counters systemic lupus erythematosus-associated atherogenicity by normalizing cholesterol efflux. Exp. Biol. Med. (Maywood), 2016, 241(14), 1611-1619.
[http://dx.doi.org/10.1177/1535370216647181] [PMID: 27190277]
[134]
Chang, G.R.; Chen, P.L.; Hou, P.H.; Mao, F.C. Resveratrol protects against diet-induced atherosclerosis by reducing low-density lipoprotein cholesterol and inhibiting inflammation in apolipoprotein E-deficient mice. Iran. J. Basic Med. Sci., 2015, 18(11), 1063-1071.
[PMID: 26949492]
[135]
Xie, Y.D.; Chen, Z.Z.; Li, N.; Lu, W.F.; Xu, Y.H.; Lin, Y.Y.; Shao, L.H.; Wang, Q.T.; Guo, L.Y.; Gao, Y.Q.; Yang, G.D.; Li, Y.P.; Bian, X.L. Hydroxytyrosol nicotinate, a new multifunctional hypolipidemic and hypoglycemic agent. Biomed. Pharmacother., 2018, 99, 715-724.
[http://dx.doi.org/10.1016/j.biopha.2018.01.123] [PMID: 29710469]
[136]
Szarc vel Szic, K.; Ndlovu, M.N.; Haegeman, G.; Vanden Berghe, W. Nature or nurture: Let food be your epigenetic medicine in chronic inflammatory disorders. Biochem. Pharmacol., 2010, 80(12), 1816-1832.
[http://dx.doi.org/10.1016/j.bcp.2010.07.029] [PMID: 20688047]
[137]
Remely, M.; Lovrecic, L.; de la Garza, A.L.; Migliore, L.; Peterlin, B.; Milagro, F.I.; Martinez, A.J.; Haslberger, A.G. Therapeutic perspectives of epigenetically active nutrients. Br. J. Pharmacol., 2015, 172(11), 2756-2768.
[http://dx.doi.org/10.1111/bph.12854] [PMID: 25046997]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy