Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Cardiotoxicity Assessment of Drugs Using Human iPS Cell-Derived Cardiomyocytes: Toward Proarrhythmic Risk and Cardio-Oncology

Author(s): Ayano Satsuka and Yasunari Kanda*

Volume 21, Issue 9, 2020

Page: [765 - 772] Pages: 8

DOI: 10.2174/1389201020666190628143345

Price: $65

Abstract

Growing evidence suggests that Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) can be used as a new human cell-based platform to assess cardiac toxicity/safety during drug development. Cardiotoxicity assessment is highly challenging due to species differences and various toxicities, such as electrophysiological and contractile toxicities, which can result in proarrhythmia and heart failure. To explore proarrhythmic risk, the Multi-Electrode Array (MEA) platform is widely used to assess QT-interval prolongation and the proarrhythmic potential of drug candidates using hiPSC-CMs. Several consortiums, including the Comprehensive in vitro Proarrhythmia Assay (CiPA) and the Japanese iPS Cardiac Safety Assessment (JiCSA), have demonstrated the applicability of hiPSC-CMs/MEA for assessing the torsadogenic potential of drug candidates. Additionally, contractility is a key safety issue in drug development, and efforts have been undertaken to measure contractility by a variety of imaging-based methods using iPS-CMs. Therefore, hiPSC-CMs might represent a standard testing tool for evaluating the proarrhythmic and contractile potentials. This review provides new insights into the practical application of hiPSC-CMs in early or late-stage nonclinical testing during drug development.

Keywords: Cardiac safety, human iPS cells, multi-electrode array, proarrhythmia, contractility, standardization.

Graphical Abstract

[1]
Redfern, W.S.; Carlsson, L.; Davis, A.S.; Lynch, W.G.; MacKenzie, I.; Palethorpe, S.; Siegl, P.K.S.; Strang, I.; Sullivan, A.T.; Wallis, R.; Camm, A.J.; Hammond, T.G. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: Evidence for a provisional safety margin in drug development. Cardiovasc. Res., 2003, 58(1), 32-45.
[http://dx.doi.org/10.1016/S0008-6363(02)00846-5] [PMID: 12667944]
[2]
Harmonised Tripartite Guideline, I.C.H. The Non-Clinical Evaluation of Ptential for Delayed Ventricular Repolarization., 2005.www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S7B/Step4/S7B_Guideline.pdf
[4]
Stockbridge, N.; Morganroth, J.; Shah, R.R.; Garnett, C. Dealing with global safety issues: Was the response to QT-liability of non cardiac drugs well coordinated? Drug Saf., 2013, 36(3), 167-182.
[http://dx.doi.org/10.1007/s40264-013-0016-z] [PMID: 23417505]
[5]
Ma, J.; Guo, L.; Fiene, S.J.; Anson, B.D.; Thomson, J.A.; Kamp, T.J.; Kolaja, K.L.; Swanson, B.J.; January, C.T. High purity human-induced pluripotent stem cell-derived cardiomyocytes: Electrophysiological properties of action potentials and ionic currents. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(5), H2006-H2017.
[http://dx.doi.org/10.1152/ajpheart.00694.2011] [PMID: 21890694]
[6]
The Plan for Promotion of Medical Research and Development, by the Headquarters for Healthcare Policy, July 22, 2014 Partially Revised February 17, 2017.www.kantei.go.jp/jp/singi/kenkouiryou/en/pdf/2017_plan.pdf [(Accessed Feb 8, 2019)]
[7]
Sager, P.T.; Gintant, G.; Turner, J.R.; Pettit, S.; Stockbridge, N. Rechanneling the cardiac proarrhythmia safety paradigm: A meeting report from the Cardiac Safety Research Consortium. Am. Heart J., 2014, 167(3), 292-300.
[http://dx.doi.org/10.1016/j.ahj.2013.11.004] [PMID: 24576511]
[9]
Kanda, Y.; Yamazaki, D.; Kurokawa, J.; Inutsuka, T.; Sekino, Y. Points to consider for a validation study of iPS cell-derived cardiomyocytes using a multi-electrode array system. J. Pharmacol. Toxicol. Methods, 2016, 81(81), 196-200.
[http://dx.doi.org/10.1016/j.vascn.2016.06.007] [PMID: 27369811]
[10]
Yamamoto, W.; Asakura, K.; Ando, H.; Taniguchi, T.; Ojima, A.; Uda, T.; Osada, T.; Hayashi, S.; Kasai, C.; Miyamoto, N.; Tashibu, H.; Yoshinaga, T.; Yamazaki, D.; Sugiyama, A.; Kanda, Y.; Sawada, K.; Sekino, Y. Electrophysiological characteristics of human iPSC-derived cardiomyocytes for the assessment of drug-induced proarrhythmic potential. PLoS One, 2016, 11(12) e0167348
[http://dx.doi.org/10.1371/journal.pone.0167348] [PMID: 27923051]
[11]
Asakura, K.; Hayashi, S.; Ojima, A.; Taniguchi, T.; Miyamoto, N.; Nakamori, C.; Nagasawa, C.; Kitamura, T.; Osada, T.; Honda, Y.; Kasai, C.; Ando, H.; Kanda, Y.; Sekino, Y.; Sawada, K. Improvement of acquisition and analysis methods in multi-electrode array experiments with iPS cell-derived cardiomyocytes. J. Pharmacol. Toxicol. Methods, 2015, 75, 17-26.
[http://dx.doi.org/10.1016/j.vascn.2015.04.002] [PMID: 25910965]
[12]
Sagie, A.; Larson, M.G.; Goldberg, R.J.; Bengtson, J.R.; Levy, D. An improved method for adjusting the QT interval for heart rate (The Framingham Heart Study). J. Pharmacol. Toxicol. Methods, 1920, 70(7), 797-801.
[http://dx.doi.org/10.1016/0002-9149(92)90562-d] [PMID: 1519533]
[13]
Ando, H.; Yoshinaga, T.; Yamamoto, W.; Asakura, K.; Uda, T.; Taniguchi, T.; Ojima, A.; Shinkyo, R.; Kikuchi, K.; Osada, T.; Hayashi, S.; Kasai, C.; Miyamoto, N.; Tashibu, H.; Yamazaki, D.; Sugiyama, A.; Kanda, Y.; Sawada, K.; Sekino, Y. A new paradigm for drug-induced torsadogenic risk assessment using human iPS cell-derived cardiomyocytes. J. Pharmacol. Toxicol. Methods, 2017, 84, 111-127.
[http://dx.doi.org/10.1016/j.vascn.2016.12.003] [PMID: 27956204]
[14]
[15]
Blinova, K.; Dang, Q.; Millard, D.; Smith, G.; Pierson, J.; Guo, L.; Brock, M.; Lu, H.R.; Kraushaar, U.; Zeng, H.; Shi, H.; Zhang, X.; Sawada, K.; Osada, T.; Kanda, Y.; Sekino, Y.; Pang, L.; Feaster, T.K.; Kettenhofen, R.; Stockbridge, N.; Strauss, D.G.; Gintant, G. International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Rep., 2018, 24(13), 3582-3592.
[http://dx.doi.org/10.1016/j.celrep.2018.08.079] [PMID: 30257217]
[16]
Kanda, Y.; Yamazaki, D.; Osada, T.; Yoshinaga, T.; Sawada, K. Development of torsadogenic risk assessment using human induced pluripotent stem cell-derived cardiomyocytes: Japan iPS Cardiac Safety Assessment (JiCSA) update. J. Pharmacol. Sci., 2018, 138(4), 233-239.
[http://dx.doi.org/10.1016/j.jphs.2018.10.010] [PMID: 30415824]
[17]
Chadda, K.R.; Jeevaratnam, K.; Lei, M.; Huang, C.L.H. Sodium channel biophysics, late sodium current and genetic arrhythmic syndromes. Pflugers Arch., 2017, 469(5-6), 629-641.
[http://dx.doi.org/10.1007/s00424-017-1959-1] [PMID: 28265756]
[18]
Piccini, J.P.; Pritchett, E.L.C.; Davison, B.A.; Cotter, G.; Wiener, L.E.; Koch, G.; Feld, G.; Waldo, A.; van Gelder, I.C.; Camm, A.J.; Kowey, P.R.; Iwashita, J.; Dittrich, H.C. Randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of a single oral dose of vanoxerine for the conversion of subjects with recent onset atrial fibrillation or flutter to normal sinus rhythm: RESTORE SR. Heart Rhythm, 2016, 13(9), 1777-1783.
[http://dx.doi.org/10.1016/j.hrthm.2016.04.012] [PMID: 27108936]
[19]
Obejero-Paz, C.A.; Bruening-Wright, A.; Kramer, J.; Hawryluk, P.; Tatalovic, M.; Dittrich, H.C.; Brown, A.M. Quantitative profiling of the effects of vanoxerine on human cardiac ion channels and its application to cardiac risk. Sci. Rep., 2015, 5, 17623.
[http://dx.doi.org/10.1038/srep17623] [PMID: 26616666]
[20]
Kitaguchi, T.; Moriyama, Y.; Taniguchi, T.; Maeda, S.; Ando, H.; Uda, T.; Otabe, K.; Oguchi, M.; Shimizu, S.; Saito, H.; Toratani, A.; Asayama, M.; Yamamoto, W.; Matsumoto, E.; Saji, D.; Ohnaka, H.; Miyamoto, N. CSAHi study: Detection of drug-induced ion channel/receptor responses, QT prolongation, and arrhythmia using multi-electrode arrays in combination with human induced pluripotent stem cell-derived cardiomyocytes. J. Pharmacol. Toxicol. Methods, 2017, 85, 73-81.
[http://dx.doi.org/10.1016/j.vascn.2017.02.001] [PMID: 28163191]
[21]
Lenneman, C.G.; Sawyer, D.B. Cardio-oncology: An update on cardiotoxicity of cancer-related treatment. Circ. Res., 2016, 118(6), 1008-1020.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.303633] [PMID: 26987914]
[22]
Armenian, S.H.; Lacchetti, C.; Barac, A.; Carver, J.; Constine, L.S.; Denduluri, N.; Dent, S.; Douglas, P.S.; Durand, J.B.; Ewer, M.; Fabian, C.; Hudson, M.; Jessup, M.; Jones, L.W.; Ky, B.; Mayer, E.L.; Moslehi, J.; Oeffinger, K.; Ray, K.; Ruddy, K.; Lenihan, D. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol., 2017, 35(8), 893-911.
[http://dx.doi.org/10.1200/JCO.2016.70.5400] [PMID: 27918725]
[23]
Hayakawa, T.; Kunihiro, T.; Ando, T.; Kobayashi, S.; Matsui, E.; Yada, H.; Kanda, Y.; Kurokawa, J.; Furukawa, T. Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology. J. Mol. Cell. Cardiol., 2014, 77, 178-191.
[http://dx.doi.org/10.1016/j.yjmcc.2014.09.010] [PMID: 25257913]
[24]
Isobe, T.; Honda, M.; Komatsu, R.; Tabo, M. Conduction and contraction properties of human iPS cell-derived cardiomyocytes: Analysis by motion field imaging compared with the guinea-pig isolated heart model. J. Toxicol. Sci., 2018, 43(8), 493-506.
[http://dx.doi.org/10.2131/jts.43.493] [PMID: 30078835]
[25]
Kopljar, I.; De Bondt, A.; Vinken, P.; Teisman, A.; Damiano, B.; Goeminne, N.; Van den Wyngaert, I.; Gallacher, D.J.; Lu, H.R. Chronic drug-induced effects on contractile motion properties and cardiac biomarkers in human induced pluripotent stem cell-derived cardiomyocytes. Br. J. Pharmacol., 2017, 174(21), 3766-3779.
[http://dx.doi.org/10.1111/bph.13713] [PMID: 28094846]
[26]
Germanguz, I.; Sedan, O.; Zeevi-Levin, N.; Shtrichman, R.; Barak, E.; Ziskind, A.; Eliyahu, S.; Meiry, G.; Amit, M.; Itskovitz-Eldor, J.; Binah, O. Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells. J. Cell. Mol. Med., 2011, 15(1), 38-51.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00996.x] [PMID: 20041972]
[27]
Nguyen, N.; Nguyen, W.; Nguyenton, B.; Ratchada, P.; Page, G.; Miller, P.E.; Ghetti, A.; Abi-Gerges, N. Adult human primary cardiomyocyte-based model for the simultaneous prediction of drug-induced inotropic and pro-arrhythmia risk. Front. Physiol., 2017, 8, 1073.
[http://dx.doi.org/10.3389/fphys.2017.01073] [PMID: 29311989]
[28]
Yang, X.; Pabon, L.; Murry, C.E. Engineering adolescence: Maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res., 2014, 114(3), 511-523.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.300558] [PMID: 24481842]
[29]
Liu, J.; Laksman, Z.; Backx, P.H. The electrophysiological development of cardiomyocytes. Adv. Drug Deliv. Rev., 2016, 96, 253-273.
[http://dx.doi.org/10.1016/j.addr.2015.12.023] [PMID: 26788696]
[30]
van den Heuvel, N.H.L.; van Veen, T.A.B.; Lim, B.; Jonsson, M.K.B. Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes. J. Mol. Cell. Cardiol., 2014, 67, 12-25.
[http://dx.doi.org/10.1016/j.yjmcc.2013.12.011] [PMID: 24370890]
[31]
Mannhardt, I.; Eder, A.; Dumotier, B.; Prondzynski, M.; Krämer, E.; Traebert, M.; Söhren, K.D.; Flenner, F.; Stathopoulou, K.; Lemoine, M.D.; Carrier, L.; Christ, T.; Eschenhagen, T.; Hansen, A. Blinded Contractility Analysis in hiPSC-cardiomyocytes in engineered heart tissue format: Comparison with human atrial trabeculae. Toxicol. Sci., 2017, 158(1), 164-175.
[http://dx.doi.org/10.1093/toxsci/kfx081] [PMID: 28453742]
[32]
Li, M.; Kanda, Y.; Ashihara, T.; Sasano, T.; Nakai, Y.; Kodama, M.; Hayashi, E.; Sekino, Y.; Furukawa, T.; Kurokawa, J. Overexpression of KCNJ2 in induced pluripotent stem cell-derived cardiomyocytes for the assessment of QT-prolonging drugs. J. Pharmacol. Sci., 2017, 134(2), 75-85.
[http://dx.doi.org/10.1016/j.jphs.2017.05.004] [PMID: 28615142]
[33]
O’Hara, T.; Virág, L.; Varró, A.; Rudy, Y. Simulation of the undiseased human cardiac ventricular action potential: Model formulation and experimental validation. PLOS Comput. Biol., 2011, 7(5) e1002061
[http://dx.doi.org/10.1371/journal.pcbi.1002061] [PMID: 21637795]
[34]
Shinozawa, T.; Furukawa, H.; Sato, E.; Takami, K. A novel purification method of murine embryonic stem cell- and human-induced pluripotent stem cell-derived cardiomyocytes by simple manual dissociation. J. Biomol. Screen., 2012, 17(5), 683-691.
[http://dx.doi.org/10.1177/1087057111434145] [PMID: 22274911]
[35]
Burridge, P.W.; Li, Y.F.; Matsa, E.; Wu, H.; Ong, S.G.; Sharma, A.; Holmström, A.; Chang, A.C.; Coronado, M.J.; Ebert, A.D.; Knowles, J.W.; Telli, M.L.; Witteles, R.M.; Blau, H.M.; Bernstein, D.; Altman, R.B.; Wu, J.C. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat. Med., 2016, 22(5), 547-556.
[http://dx.doi.org/10.1038/nm.4087] [PMID: 27089514]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy