Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Inhibitors of Cyclin-Dependent Kinase 1/2 for Anticancer Treatment

Author(s): Jiajia Mou*, Danghui Chen and Yanru Deng

Volume 16, Issue 3, 2020

Page: [307 - 325] Pages: 19

DOI: 10.2174/1573406415666190626113900

Price: $65

Abstract

Background: The cell cycle is regulated by cyclin-dependent kinases (CDKs) and their cognate cyclins, along with their endogenous inhibitors (CDKIs). CDKs act as central regulators in this process. Different CDKs play relevant roles in different phases. Among all CDKs, CDK1 is indispensible, which can drive all events that are required in the cell cycle in the absence of interphase CDKs (CDK2, CDK3, CDK4 and CDK6). So, CDK1 is an attractive target for anticancer drug development.

Methods: CDK1 and CDK2 have 89.19% similar residues and 74.32% identical residues, their structures especially the ATP-binding sites are of great similarity. So, it is difficult to inhibit CDK1 and CDK2 individually. In this review, recent advances about CDK1/2 inhibitors were summarized. The chemical structures of different classes of CDK1/2 inhibitors and their structure activity are presented.

Results: 19 kinds of CDK1/2 or CDK1 inhibitors with different scaffolds, including CDK2 allosteric inhibitors, were summarized. Some inhibitors are nature derived, for example, phenanthrene derivatives, nortopsentin derivatives, variolin B derivatives and meridians.

Conclusion: Nature products, especially marine ones are potential resources for CDK1 inhibitors development. The findings of CDK2 allosteric inhibitors open an avenue to the discovery of novel selective CDK1 or other CDKs allosteric inhibitors.

Keywords: The cell cycle, cyclin-dependent kinase1, cyclin, inhibitor, DNA replication, mitotic.

Graphical Abstract

[1]
Hu, X.; Moscinski, L.C. Cdc2: a monopotent or pluripotent CDK? Cell Prolif., 2011, 44(3), 205-211.
[http://dx.doi.org/10.1111/j.1365-2184.2011.00753.x] [PMID: 21535261 ]
[2]
Lapenna, S.; Giordano, A. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov., 2009, 8(7), 547-566.
[http://dx.doi.org/10.1038/nrd2907] [PMID: 19568282]
[3]
Liu, N.; Fang, H.; Li, Y.; Xu, W. Recent research in selective cyclin-dependent kinase 4 inhibitors for anti-cancer treatment. Curr. Med. Chem., 2009, 16(36), 4869-4888.
[http://dx.doi.org/10.2174/092986709789909611] [PMID: 19929781]
[4]
Sánchez-Martínez, C.; Gelbert, L.M.; Lallena, M.J.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg. Med. Chem. Lett., 2015, 25(17), 3420-3435.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.100] [PMID: 26115571]
[5]
Roskoski, R., Jr Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacol. Res., 2016, 107, 249-275.
[http://dx.doi.org/10.1016/j.phrs.2016.03.012] [PMID: 26995305]
[6]
Kalra, S.; Joshi, G.; Munshi, A.; Kumar, R. Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors. Eur. J. Med. Chem., 2017, 142, 424-458.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.071] [PMID: 28911822]
[7]
Swaffer, M.P.; Jones, A.W.; Flynn, H.R.; Snijders, A.P.; Nurse, P. CDK substrate phosphorylation and ordering the cell cycle. Cell, 2016, 167(7), 1750-1761.e16.
[http://dx.doi.org/10.1016/j.cell.2016.11.034] [PMID: 27984725]
[8]
Day, P.J.; Cleasby, A.; Tickle, I.J.; O’Reilly, M.; Coyle, J.E.; Holding, F.P.; McMenamin, R.L.; Yon, J.; Chopra, R.; Lengauer, C.; Jhoti, H. Crystal structure of human CDK4 in complex with a D-type cyclin. Proc. Natl. Acad. Sci. USA, 2009, 106(11), 4166-4170.
[http://dx.doi.org/10.1073/pnas.0809645106] [PMID: 19237565]
[9]
Whittaker, S.R.; Mallinger, A.; Workman, P.; Clarke, P.A. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol. Ther., 2017, 173, 83-105.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.008] [PMID: 28174091]
[10]
Chohan, T.A.; Qayyum, A.; Rehman, K.; Tariq, M.; Akash, M.S.H. An insight into the emerging role of cyclin-dependent kinase inhibitors as potential therapeutic agents for the treatment of advanced cancers. Biomed. Pharmacother., 2018, 107, 1326-1341.
[http://dx.doi.org/10.1016/j.biopha.2018.08.116] [PMID: 30257348]
[11]
Besser, A.; Slingerland, J. Cell Division/Death: Cell Cycle: CDK inhibitors in normal and malignant cells. Encyclopedia Cell Biol., 2016, 3, 437-446.
[12]
Pavletich, N.P. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol., 1999, 287(5), 821-828.
[http://dx.doi.org/10.1006/jmbi.1999.2640] [PMID: 10222191]
[13]
Segev, A.; Nili, N.; Qiang, B.; Osherov, A.B.; Giordano, F.J.; Jaffe, R.; Gauldie, J.; Sparkes, J.D.; Fraser, A.R.; Ladouceur-Wodzak, M.; Butany, J.; Strauss, B.H. Inhibition of intimal hyperplasia after stenting by over-expression of p15: a member of the INK4 family of cyclin-dependent kinase inhibitors. J. Mol. Cell. Cardiol., 2011, 50(3), 417-425.
[http://dx.doi.org/10.1016/j.yjmcc.2010.11.007] [PMID: 21081134]
[14]
Tane, S.; Ikenishi, A.; Okayama, H.; Iwamoto, N.; Nakayama, K.I.; Takeuchi, T. CDK inhibitors, p21(Cip1) and p27(Kip1), participate in cell cycle exit of mammalian cardiomyocytes. Biochem. Biophys. Res. Commun., 2014, 443(3), 1105-1109.
[http://dx.doi.org/10.1016/j.bbrc.2013.12.109] [PMID: 24380855]
[15]
Starostina, N.G.; Kipreos, E.T. Multiple degradation pathways regulate versatile CIP/KIP CDK inhibitors. Trends Cell Biol., 2012, 22(1), 33-41.
[http://dx.doi.org/10.1016/j.tcb.2011.10.004] [PMID: 22154077]
[16]
Morris-Hanon, O.; Furmento, V.A.; Rodríguez-Varela, M.S.; Mucci, S.; Fernandez-Espinosa, D.D.; Romorini, L.; Sevlever, G.E.; Scassa, M.E.; Videla-Richardson, G.A. The cell cycle inhibitors p21 Cip1 and p27 Kip1 control proliferation but enhance DNA damage resistance of glioma stem cells. Neoplasia, 2017, 19(7), 519-529.
[http://dx.doi.org/10.1016/j.neo.2017.04.001] [PMID: 28582703]
[17]
Deshpande, A.; Sicinski, P.; Hinds, P.W. Cyclins and cdks in development and cancer: a perspective. Oncogene, 2005, 24(17), 2909-2915.
[http://dx.doi.org/10.1038/sj.onc.1208618] [PMID: 15838524]
[18]
Uziel, T.; Zindy, F.; Sherr, C.J.; Roussel, M.F. The CDK inhibitor p18Ink4c is a tumor suppressor in medulloblastoma. Cell Cycle, 2006, 5(4), 363-365.
[http://dx.doi.org/10.4161/cc.5.4.2475] [PMID: 16479172]
[19]
Toogood, P.L. Cyclin-dependent kinase inhibitors for treating cancer. Med. Res. Rev., 2001, 21(6), 487-498.
[http://dx.doi.org/10.1002/med.1021] [PMID: 11607930]
[20]
Sielecki, T.M.; Boylan, J.F.; Benfield, P.A.; Trainor, G.L. Cyclin-dependent kinase inhibitors: useful targets in cell cycle regulation. J. Med. Chem., 2000, 43(1), 1-18.
[http://dx.doi.org/10.1021/jm990256j] [PMID: 10633033]
[21]
Sharma, P.S.; Sharma, R.; Tyagi, R. Inhibitors of cyclin dependent kinases: useful targets for cancer treatment. Curr. Cancer Drug Targets, 2008, 8(1), 53-75.
[http://dx.doi.org/10.2174/156800908783497131] [PMID: 18288944]
[22]
Węsierska-Gądek, J.; Chamrád, I.; Kryštof, V. Novel potent pharmacological cyclin-dependent kinase inhibitors. Future Med. Chem., 2009, 1(9), 1561-1581.
[http://dx.doi.org/10.4155/fmc.09.110] [PMID: 21425979]
[23]
Huwe, A.; Mazitschek, R.; Giannis, A. Small molecules as inhibitors of cyclin-dependent kinases. Angew. Chem. Int. Ed. Engl., 2003, 42(19), 2122-2138.
[http://dx.doi.org/10.1002/anie.200200540] [PMID: 12761741]
[24]
McInnes, C. Progress in the evaluation of CDK inhibitors as anti-tumor agents. Drug Discov. Today, 2008, 13(19-20), 875-881.
[http://dx.doi.org/10.1016/j.drudis.2008.06.012] [PMID: 18639646]
[25]
Tutone, M.; Almerico, A.M. Recent advances on CDK inhibitors: An insight by means of in silico methods. Eur. J. Med. Chem., 2017, 142, 300-315.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.067] [PMID: 28802482]
[26]
Han, Y.K.; Lee, J.H.; Park, G.Y.; Chun, S.H.; Han, J.Y.; Kim, S.D.; Lee, J.; Lee, C.W.; Yang, K.; Lee, C.G. A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy. Biochem. Biophys. Res. Commun., 2013, 430(4), 1329-1333.
[http://dx.doi.org/10.1016/j.bbrc.2012.10.119] [PMID: 23261434]
[27]
Muranen, T.; Meric-Bernstam, F.; Mills, G.B. Promising rationally derived combination therapy with PI3K and CDK4/6 inhibitors. Cancer Cell, 2014, 26(1), 7-9.
[http://dx.doi.org/10.1016/j.ccr.2014.06.020] [PMID: 25026206]
[28]
Shapiro, G.I. Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol., 2006, 24(11), 1770-1783.
[http://dx.doi.org/10.1200/JCO.2005.03.7689] [PMID: 16603719]
[29]
Santamaría, D.; Barrière, C.; Cerqueira, A.; Hunt, S.; Tardy, C.; Newton, K.; Cáceres, J.F.; Dubus, P.; Malumbres, M.; Barbacid, M. Cdk1 is sufficient to drive the mammalian cell cycle. Nature, 2007, 448(7155), 811-815.
[http://dx.doi.org/10.1038/nature06046] [PMID: 17700700]
[30]
Vassilev, L.T.; Tovar, C.; Chen, S.; Knezevic, D.; Zhao, X.; Sun, H.; Heimbrook, D.C.; Chen, L. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc. Natl. Acad. Sci. USA, 2006, 103(28), 10660-10665.
[http://dx.doi.org/10.1073/pnas.0600447103] [PMID: 16818887]
[31]
Canduri, F.; Uchoa, H.B.; de Azevedo, W.F. Jr Molecular models of cyclin-dependent kinase 1 complexed with inhibitors. Biochem. Biophys. Res. Commun., 2004, 324(2), 661-666.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.109] [PMID: 15474478]
[32]
Palmieri, L.; Rastelli, G. αC helix displacement as a general approach for allosteric modulation of protein kinases. Drug Discov. Today, 2013, 18(7-8), 407-414.
[http://dx.doi.org/10.1016/j.drudis.2012.11.009] [PMID: 23195331]
[33]
Wang, Q.; Su, L.; Liu, N.; Zhang, L.; Xu, W.; Fang, H. Cyclin dependent kinase 1 inhibitors: a review of recent progress. Curr. Med. Chem., 2011, 18(13), 2025-2043.
[http://dx.doi.org/10.2174/092986711795590110] [PMID: 21517772]
[34]
Lee, J.; Kim, K.H.; Jeong, S. Discovery of a novel class of 2-aminopyrimidines as CDK1 and CDK2 inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(14), 4203-4205.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.081] [PMID: 21684737]
[35]
Fu, Y.; Tang, S.; Su, Y.; Lan, X.; Ye, Y.; Zha, C.; Li, L.; Cao, J.; Chen, Y.; Jiang, L.; Huang, Y.; Ding, J.; Geng, M.; Huang, M.; Wan, H. Discovery of a class of diheteroaromatic amines as orally bioavailable CDK1/4/6 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(23), 5332-5336.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.050] [PMID: 29074254]
[36]
Le Brazidec, J.Y.; Pasis, A.; Tam, B.; Boykin, C.; Black, C.; Wang, D.; Claassen, G.; Chong, J.H.; Chao, J.; Fan, J.; Nguyen, K.; Silvian, L.; Ling, L.; Zhang, L.; Choi, M.; Teng, M.; Pathan, N.; Zhao, S.; Li, T.; Taveras, A. Synthesis, SAR and biological evaluation of 1,6-disubstituted-1H-pyrazolo[3,4-d]pyrimidines as dual inhibitors of Aurora kinases and CDK1. Bioorg. Med. Chem. Lett., 2012, 22(5), 2070-2074.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.019] [PMID: 22326168]
[37]
Ganga Reddy, V.; Srinivasa Reddy, T.; Lakshma Nayak, V.; Prasad, B.; Reddy, A.P.; Ravikumar, A.; Taj, S.; Kamal, A. Design, synthesis and biological evaluation of N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-1,3-diphenyl-1H-pyrazole-4-carboxamides as CDK1/Cdc2 inhibitors. Eur. J. Med. Chem., 2016, 122, 164-177.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.011] [PMID: 27344493]
[38]
Jorda, R.; Schütznerová, E.; Cankař, P.; Brychtová, V.; Navrátilová, J.; Kryštof, V. Novel arylazopyrazole inhibitors of cyclin-dependent kinases. Bioorg. Med. Chem., 2015, 23(9), 1975-1981.
[http://dx.doi.org/10.1016/j.bmc.2015.03.025] [PMID: 25835357]
[39]
Chen, S.; Chen, L.; Le, N.T.; Zhao, C.; Sidduri, A.; Lou, J.P.; Michoud, C.; Portland, L.; Jackson, N.; Liu, J.J.; Konzelmann, F.; Chi, F.; Tovar, C.; Xiang, Q.; Chen, Y.; Wen, Y.; Vassilev, L.T. Synthesis and activity of quinolinyl-methylene-thiazolinones as potent and selective cyclin-dependent kinase 1 inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(8), 2134-2138.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.081] [PMID: 17303421]
[40]
Huang, S.; Li, R.; Connolly, P.J.; Emanuel, S.; Fuentes-Pesquera, A.; Adams, M.; Gruninger, R.H.; Seraj, J.; Middleton, S.A.; Davis, J.M.; Moffat, D.F.C. Synthesis and biological study of 2-amino-4-aryl-5-chloropyrimidine analogues as inhibitors of VEGFR-2 and cyclin dependent kinase 1 (CDK1). Bioorg. Med. Chem. Lett., 2007, 17(8), 2179-2183.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.086] [PMID: 17317182]
[41]
Zhang, S.; Ma, J.; Bao, Y.; Yang, P.; Zou, L.; Li, K.; Sun, X. Nitrogen-containing flavonoid analogues as CDK1/cyclin B inhibitors: synthesis, SAR analysis, and biological activity. Bioorg. Med. Chem., 2008, 16(15), 7128-7133.
[http://dx.doi.org/10.1016/j.bmc.2008.06.055] [PMID: 18639462]
[42]
Kunick, C.; Schultz, C.; Lemcke, T.; Zaharevitz, D.W.; Gussio, R.; Jalluri, R.K.; Sausville, E.A.; Leost, M.; Meijer, L. 2-Substituted paullones: CDK1/cyclin B-inhibiting property and in vitro antiproliferative activity. Bioorg. Med. Chem. Lett., 2000, 10(6), 567-569.
[http://dx.doi.org/10.1016/S0960-894X(00)00048-2] [PMID: 10741555]
[43]
Lee, J.; Choi, H.; Kim, K.H.; Jeong, S.; Park, J.W.; Baek, C.S.; Lee, S.H. Synthesis and biological evaluation of 3,5-diaminoindazoles as cyclin-dependent kinase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(7), 2292-2295.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.002] [PMID: 18353638]
[44]
Lin, R.; Lu, Y.; Wetter, S.K.; Connolly, P.J.; Turchi, I.J.; Murray, W.V.; Emanuel, S.L.; Gruninger, R.H.; Fuentes-Pesquera, A.R.; Adams, M.; Pandey, N.; Moreno-Mazza, S.; Middleton, S.A.; Jolliffe, L.K. 3-Acyl-2,6-diaminopyridines as cyclin-dependent kinase inhibitors: synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2005, 15(9), 2221-2224.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.024] [PMID: 15837297]
[45]
Logé, C.; Testard, A.; Thiéry, V.; Lozach, O.; Blairvacq, M.; Robert, J.M.; Meijer, L.; Besson, T. Novel 9-oxo-thiazolo[5,4-f]quinazoline-2-carbonitrile derivatives as dual cyclin-dependent kinase 1 (CDK1)/glycogen synthase kinase-3 (GSK-3) inhibitors: synthesis, biological evaluation and molecular modeling studies. Eur. J. Med. Chem., 2008, 43(7), 1469-1477.
[http://dx.doi.org/10.1016/j.ejmech.2007.09.020] [PMID: 17981370]
[46]
Imbach, P.; Capraro, H.G.; Furet, P.; Mett, H.; Meyer, T.; Zimmermann, J. 2,6,9-trisubstituted purines: optimization towards highly potent and selective CDK1 inhibitors. Bioorg. Med. Chem. Lett., 1999, 9(1), 91-96.
[http://dx.doi.org/10.1016/S0960-894X(98)00691-X] [PMID: 9990463]
[47]
Moravec, J.; Kryštof, V.; Hanuš, J.; Havlícek, L.; Moravcová, D.; Fuksová, K.; Kuzma, M.; Lenobel, R.; Otyepka, M.; Strnad, M. 2,6,8,9-tetrasubstituted purines as new CDK1 inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(18), 2993-2996.
[http://dx.doi.org/10.1016/S0960-894X(03)00632-2] [PMID: 12941319]
[48]
Apel, C.; Dumontet, V.; Lozach, O.; Meijer, L.; Guéritte, F.; Litaudon, M. Phenanthrene derivatives from Appendicula reflexa as new CDK1/cyclin B inhibitors. Phytochem. Lett., 2012, 5(4), 814-818.
[http://dx.doi.org/10.1016/j.phytol.2012.09.008]
[49]
Jiang, B.; Gu, X.H. Syntheses and cytotoxicity evaluation of bis(in-dolyl)thiazole, bis(indolyl)pyrazinone and bis(indolyl)pyrazine: analogues of cytotoxic marine bis(indole) alkaloid. Bioorg. Med. Chem., 2000, 8(2), 363-371.
[http://dx.doi.org/10.1016/S0968-0896(99)00290-4] [PMID: 10722159]
[50]
Diana, P.; Carbone, A.; Barraja, P.; Montalbano, A.; Martorana, A.; Dattolo, G.; Gia, O.; Dalla Via, L.; Cirrincione, G. Synthesis and antitumor properties of 2,5-bis(3′-indolyl)thiophenes: analogues of marine alkaloid nortopsentin. Bioorg. Med. Chem. Lett., 2007, 17(8), 2342-2346.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.065] [PMID: 17306531]
[51]
Diana, P.; Carbone, A.; Barraja, P.; Martorana, A.; Gia, O. DallaVia, L.; Cirrincione, G. 3,5-bis(3′-indolyl)pyrazoles, analogues of marine alkaloid nortopsentin: synthesis and antitumor properties. Bioorg. Med. Chem. Lett., 2007, 17(22), 6134-6137.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.042] [PMID: 17911018]
[52]
Diana, P.; Carbone, A.; Barraja, P.; Kelter, G.; Fiebig, H.H.; Cirrincione, G. Synthesis and antitumor activity of 2,5-bis(3′-indolyl)-furans and 3,5-bis(3′-indolyl)-isoxazoles, nortopsentin analogues. Bioorg. Med. Chem., 2010, 18(12), 4524-4529.
[http://dx.doi.org/10.1016/j.bmc.2010.04.061] [PMID: 20472437]
[53]
Diana, P.; Carbone, A.; Barraja, P.; Montalbano, A.; Parrino, B.; Lopergolo, A.; Pennati, M.; Zaffaroni, N.; Cirrincione, G. Synthesis and antitumor activity of 3-(2-phenyl-1,3-thiazol-4-yl)-1H-indoles and 3-(2-phenyl-1,3-thiazol-4-yl)-1H-7-azaindoles. ChemMedChem, 2011, 6(7), 1300-1309.
[http://dx.doi.org/10.1002/cmdc.201100078] [PMID: 21523912]
[54]
Carbone, A.; Pennati, M.; Parrino, B.; Lopergolo, A.; Barraja, P.; Montalbano, A.; Spanò, V.; Sbarra, S.; Doldi, V.; De Cesare, M.; Cirrincione, G.; Diana, P.; Zaffaroni, N. Novel 1H-pyrrolo[2,3-b]pyridine derivative nortopsentin analogues: synthesis and antitumor activity in peritoneal mesothelioma experimental models. J. Med. Chem., 2013, 56(17), 7060-7072.
[http://dx.doi.org/10.1021/jm400842x] [PMID: 23919303]
[55]
Parrino, B.; Attanzio, A.; Spanò, V.; Cascioferro, S.; Montalbano, A.; Barraja, P.; Tesoriere, L.; Diana, P.; Cirrincione, G.; Carbone, A. Synthesis, antitumor activity and CDK1 inhibiton of new thiazole nortopsentin analogues. Eur. J. Med. Chem., 2017, 138, 371-383.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.052] [PMID: 28688277]
[56]
Carbone, A.; Parrino, B.; Di Vita, G.; Attanzio, A.; Spanò, V.; Montalbano, A.; Barraja, P.; Tesoriere, L.; Livrea, M.A.; Diana, P.; Cirrincione, G. Synthesis and antiproliferative activity of thiazolyl-bis-pyrrolo[2,3-b]pyridines and indolyl-thiazolyl-pyrrolo[2,3-c]pyridines, nortopsentin analogues. Mar. Drugs, 2015, 13(1), 460-492.
[http://dx.doi.org/10.3390/md13010460] [PMID: 25603343]
[57]
Simone, M.; Erba, E.; Damia, G.; Vikhanskaya, F.; Di Francesco, A.M.; Riccardi, R.; Bailly, C.; Cuevas, C.; Fernandez Sousa-Faro, J.M.; D’Incalci, M. Variolin B and its derivate deoxy-variolin B: new marine natural compounds with cyclin-dependent kinase inhibitor activity. Eur. J. Cancer, 2005, 41(15), 2366-2377.
[http://dx.doi.org/10.1016/j.ejca.2005.05.015] [PMID: 16181779]
[58]
Gompel, M.; Leost, M.; De Kier Joffe, E.B.; Puricelli, L.; Franco, L.H.; Palermo, J.; Meijer, L. Meridianins, a new family of protein kinase inhibitors isolated from the ascidian Aplidium meridianum. Bioorg. Med. Chem. Lett., 2004, 14(7), 1703-1707.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.050] [PMID: 15026054]
[59]
Huang, S.; Li, R.; Connolly, P.J.; Emanuel, S.; Middleton, S.A. Synthesis of 2-amino-4-(7-azaindol-3-yl)pyrimidines as cyclin dependent kinase 1 (CDK1) inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(18), 4818-4821.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.073] [PMID: 16870444]
[60]
Bettayeb, K.; Tirado, O.M.; Marionneau-Lambot, S.; Ferandin, Y.; Lozach, O.; Morris, J.C.; Mateo-Lozano, S.; Drueckes, P.; Schächtele, C.; Kubbutat, M.H.G.; Liger, F.; Marquet, B.; Joseph, B.; Echalier, A.; Endicott, J.A.; Notario, V.; Meijer, L. Meriolins, a new class of cell death inducing kinase inhibitors with enhanced selectivity for cyclin-dependent kinases. Cancer Res., 2007, 67(17), 8325-8334.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1826] [PMID: 17804748]
[61]
Echalier, A.; Bettayeb, K.; Ferandin, Y.; Lozach, O.; Clément, M.; Valette, A.; Liger, F.; Marquet, B.; Morris, J.C.; Endicott, J.A.; Joseph, B.; Meijer, L. Meriolins (3-(pyrimidin-4-yl)-7-azaindoles): synthesis, kinase inhibitory activity, cellular effects, and structure of a CDK2/cyclin A/meriolin complex. J. Med. Chem., 2008, 51(4), 737-751.
[http://dx.doi.org/10.1021/jm700940h] [PMID: 18232649]
[62]
Betzi, S.; Alam, R.; Martin, M.; Lubbers, D.J.; Han, H.; Jakkaraj, S.R.; Georg, G.I.; Schönbrunn, E. Discovery of a potential allosteric ligand binding site in CDK2. ACS Chem. Biol., 2011, 6(5), 492-501.
[http://dx.doi.org/10.1021/cb100410m] [PMID: 21291269]
[63]
Rastelli, G.; Anighoro, A.; Chripkova, M.; Carrassa, L.; Broggini, M. Structure-based discovery of the first allosteric inhibitors of cyclin-dependent kinase 2. Cell Cycle, 2014, 13(14), 2296-2305.
[http://dx.doi.org/10.4161/cc.29295] [PMID: 24911186]
[64]
Christodoulou, M.S.; Caporuscio, F.; Restelli, V.; Carlino, L.; Cannazza, G.; Costanzi, E.; Citti, C.; Lo Presti, L.; Pisani, P.; Battistutta, R.; Broggini, M.; Passarella, D.; Rastelli, G. Probing an allosteric pocket of CDK2 with small-molecules. ChemMedChem, 2017, 12(1), 33-41.
[http://dx.doi.org/10.1002/cmdc.201600474] [PMID: 27860401]
[65]
Carlino, L.; Christodoulou, M.S.; Restelli, V.; Caporuscio, F.; Foschi, F.; Semrau, M.S.; Costanzi, E.; Tinivella, A.; Pinzi, L.; Lo Presti, L.; Battistutta, R.; Storici, P.; Broggini, M.; Passarella, D.; Rastelli, G. Structure-activity relationships of hexahydrocyclopenta[c]quinoline derivatives as allosteric inhibitors of CDK2 and EGFR. ChemMedChem, 2018, 13(24), 2627-2634.
[http://dx.doi.org/10.1002/cmdc.201800687] [PMID: 30457710]
[66]
Hu, Y.; Li, S.; Liu, F.; Geng, L.; Shu, X.; Zhang, J. Discovery of novel nonpeptide allosteric inhibitors interrupting the interaction of CDK2/cyclin A3 by virtual screening and bioassays. Bioorg. Med. Chem. Lett., 2015, 25(19), 4069-4073.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.050] [PMID: 26316466]
[67]
Lu, F.; Luo, G.; Qiao, L.; Jiang, L.; Li, G.; Zhang, Y. Virtual screening for potential allosteric inhibitors of cyclin-dependent kinase 2 from traditional chinese medicine. Molecules, 2016, 21(9), 1259-1272.
[http://dx.doi.org/10.3390/molecules21091259] [PMID: 27657032]
[68]
Rescifina, A.; Scala, A.; Sciortino, M.T.; Colao, I.; Siracusano, G.; Mazzaglia, A.; Chiacchio, U.; Grassi, G. Decorated 6,6′,7,7′-tetrahydro-1H,1‘H-2,3’-biindole scaffold as promising candidate for recognition of CDK2 allosteric site. MedChemComm, 2015, 6, 311-318.
[http://dx.doi.org/10.1039/C4MD00364K]
[69]
Saikia, S.; Kolita, B.; Dutta, P.P.; Dutta, D.J. Neipihoi; Nath, S.; Bordoloi, M.; Quan, P.M.; Thuy, T.T.; Phuong, D.L.; Long, P.Q. Marine steroids as potential anticancer drug candidates: In silico investigation in search of inhibitors of Bcl-2 and CDK-4/Cyclin D1. Steroids, 2015, 102(41), 7-16.
[http://dx.doi.org/10.1016/j.steroids.2015.06.012] [PMID: 26111591]
[70]
Aleem, E. The Cyclin-dependent kinase 1 inhibitor CGP74514A inhibits cell proliferation, induces apoptosis and causes downregulation of Cyclin B1and accumulation of p53 in HepG2 cells. J. Am. Sci., 2011, 7(11), 379-385.
[71]
Blagosklonny, M.V. Flavopiridol, an inhibitor of transcription: implications, problems and solutions. Cell Cycle, 2004, 3(12), 1537-1542.
[http://dx.doi.org/10.4161/cc.3.12.1278] [PMID: 15539947]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy