Review Article

High Mobility Group Box 1: An Immune-regulatory Protein

Author(s): Jingjing Zhao, Tianle Sun, Shengdi Wu* and Yufeng Liu*

Volume 19, Issue 2, 2019

Page: [100 - 109] Pages: 10

DOI: 10.2174/1566523219666190621111604

Price: $65

Abstract

High mobility group box 1 (HMGB1) presents in almost all somatic cells as a component of the cell nucleus. It is necessary for transcription regulation during cell development. Recent studies indicate that extracellular HMGB1, coming from necrotic cells or activated immune cells, triggers inflammatory response whereas intracellular HMGB1 controls the balance between autophagy and apoptosis. In addition, reduced HMGB1 can effectively mediate tissue regeneration. HMGB1, therefore, is regarded as a therapeutic target for inflammatory diseases. In this review, we summarized and discussed the immunomodulatory effect of HMGB1.

Keywords: HMGB1, inflammatory response, autophagy, apoptosis, tissue regeneration, NLSs.

Next »
Graphical Abstract

[1]
Yang H, Antoine DJ, Andersson U, Tracey KJ. The many faces of HMGB1: Molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 2013; 93(6): 865-73.
[http://dx.doi.org/10.1189/jlb.1212662] [PMID: 23446148]
[2]
Bustin M. Revised nomenclature for High Mobility Group (HMG) chromosomal proteins. Trends Biochem Sci 2001; 26(3): 152-3.
[http://dx.doi.org/10.1016/S0968-0004(00)01777-1] [PMID: 11246012]
[3]
Goodwin GH, Sanders C, Johns EW. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem 1973; 38(1): 14-9.
[http://dx.doi.org/10.1111/j.1432-1033.1973.tb03026.x] [PMID: 4774120]
[4]
Ulloa L, Batliwalla FM, Andersson U, Gregersen PK, Tracey KJ. High mobility group box chromosomal protein 1 as a nuclear protein, cytokine, and potential therapeutic target in arthritis. Arthritis Rheum 2003; 48(4): 876-81.
[http://dx.doi.org/10.1002/art.10854] [PMID: 12687528]
[5]
Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nat Rev Immunol 2005; 5(4): 331-42.
[http://dx.doi.org/10.1038/nri1594] [PMID: 15803152]
[6]
Ulloa L, Messmer D. High-Mobility Group Box 1 (HMGB1) protein: Friend and foe. Cytokine Growth Factor Rev 2006; 17(3): 189-201.
[http://dx.doi.org/10.1016/j.cytogfr.2006.01.003] [PMID: 16513409]
[7]
Müller S, Ronfani L, Bianchi ME. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med 2004; 255(3): 332-43.
[http://dx.doi.org/10.1111/j.1365-2796.2003.01296.x] [PMID: 14871457]
[8]
Bianchi ME, Manfredi AA. High-Mobility Group Box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 2007; 220: 35-46.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00574.x] [PMID: 17979838]
[9]
Bianchi ME, Manfredi A. Chromatin and cell death. Biochim Biophys Acta 2004; 1677(1-3): 181-6.
[http://dx.doi.org/10.1016/j.bbaexp.2003.10.017] [PMID: 15020058]
[10]
Bianchi ME. Significant (re)location: How to use chromatin and/or abundant proteins as messages of life and death. Trends Cell Biol 2004; 14(6): 287-93.
[http://dx.doi.org/10.1016/j.tcb.2004.04.004] [PMID: 15183185]
[11]
Yang H, Wang H, Chavan SS, Andersson U. High Mobility Group Box Protein 1 (HMGB1): The prototypical endogenous danger molecule. Mol Med 2015; 21: S6-S12.
[http://dx.doi.org/10.2119/molmed.2015.00087] [PMID: 26605648]
[12]
Bianchi ME, Crippa MP, Manfredi AA, Mezzapelle R, Rovere Querini P, Venereau E. High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol Rev 2017; 280(1): 74-82.
[http://dx.doi.org/10.1111/imr.12601] [PMID: 29027228]
[13]
Rouhiainen A, Imai S, Rauvala H, Parkkinen J. Occurrence of amphoterin (HMG1) as an endogenous protein of human platelets that is exported to the cell surface upon platelet activation. Thromb Haemost 2000; 84(6): 1087-94.
[PMID: 11154118]
[14]
Merenmies J, Pihlaskari R, Laitinen J, Wartiovaara J, Rauvala H. 30-kDa heparin-binding protein of brain (amphoterin) involved in neurite outgrowth. Amino acid sequence and localization in the filopodia of the advancing plasma membrane. J Biol Chem 1991; 266(25): 16722-9.
[PMID: 1885601]
[15]
Livesey KM, Kang R, Vernon P, et al. p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res 2012; 72(8): 1996-2005.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2291] [PMID: 22345153]
[16]
Bonaldi T, Talamo F, Scaffidi P, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 2003; 22(20): 5551-60.
[http://dx.doi.org/10.1093/emboj/cdg516] [PMID: 14532127]
[17]
Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285(5425): 248-51.
[http://dx.doi.org/10.1126/science.285.5425.248] [PMID: 10398600]
[18]
Andersson U, Wang H, Palmblad K, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 2000; 192(4): 565-70.
[http://dx.doi.org/10.1084/jem.192.4.565] [PMID: 10952726]
[19]
Wang H, Vishnubhakat JM, Bloom O, et al. Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulates release of high mobility group protein-1 by pituicytes. Surgery 1999; 126(2): 389-92.
[http://dx.doi.org/10.1016/S0039-6060(99)70182-0] [PMID: 10455911]
[20]
Sparatore B, Passalacqua M, Patrone M, Melloni E, Pontremoli S. Extracellular high-mobility group 1 protein is essential for murine erythroleukaemia cell differentiation. Biochem J 1996; 320(Pt 1): 253-6.
[http://dx.doi.org/10.1042/bj3200253] [PMID: 8947495]
[21]
Gardella S, Andrei C, Ferrera D, et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep 2002; 3(10): 995-1001.
[http://dx.doi.org/10.1093/embo-reports/kvf198] [PMID: 12231511]
[22]
Lu B, Nakamura T, Inouye K, et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature 2012; 488(7413): 670-4.
[http://dx.doi.org/10.1038/nature11290] [PMID: 22801494]
[23]
Lu B, Wang H, Andersson U, Tracey KJ. Regulation of HMGB1 release by inflammasomes. Protein Cell 2013; 4(3): 163-7.
[http://dx.doi.org/10.1007/s13238-012-2118-2] [PMID: 23483477]
[24]
Youn JH, Shin JS. Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J Immunol 2006; 177(11): 7889-97.
[http://dx.doi.org/10.4049/jimmunol.177.11.7889] [PMID: 17114460]
[25]
Li J, Wang H, Mason JM, et al. Recombinant HMGB1 with cytokine-stimulating activity. J Immunol Methods 2004; 289(1-2): 211-23.
[http://dx.doi.org/10.1016/j.jim.2004.04.019] [PMID: 15251426]
[26]
Ito I, Fukazawa J, Yoshida M. Post-translational methylation of High Mobility Group Box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J Biol Chem 2007; 282(22): 16336-44.
[http://dx.doi.org/10.1074/jbc.M608467200] [PMID: 17403684]
[27]
Lu B, Antoine DJ, Kwan K, et al. JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc Natl Acad Sci USA 2014; 111(8): 3068-73.
[http://dx.doi.org/10.1073/pnas.1316925111] [PMID: 24469805]
[28]
Wei S, Gao Y, Dai X, et al. SIRT1-mediated HMGB1 deacetylation suppresses sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 2019; 316(1): F20-31.
[http://dx.doi.org/10.1152/ajprenal.00119.2018] [PMID: 30379096]
[29]
Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418(6894): 191-5.
[http://dx.doi.org/10.1038/nature00858] [PMID: 12110890]
[30]
Dumitriu IE, Baruah P, Manfredi AA, Bianchi ME, Rovere-Querini P. HMGB1: Guiding immunity from within. Trends Immunol 2005; 26(7): 381-7.
[http://dx.doi.org/10.1016/j.it.2005.04.009] [PMID: 15978523]
[31]
Falciola L, Spada F, Calogero S, et al. High mobility group 1 protein is not stably associated with the chromosomes of somatic cells. J Cell Biol 1997; 137(1): 19-26.
[http://dx.doi.org/10.1083/jcb.137.1.19] [PMID: 9105033]
[32]
Venereau E, Casalgrandi M, Schiraldi M, et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 2012; 209(9): 1519-28.
[http://dx.doi.org/10.1084/jem.20120189] [PMID: 22869893]
[33]
Walker LE, Frigerio F, Ravizza T, et al. Molecular isoforms of high-mobility group box 1 are mechanistic biomarkers for epilepsy. J Clin Invest 2017; 127(6): 2118-32.
[http://dx.doi.org/10.1172/JCI92001] [PMID: 28504645]
[34]
Murai S, Yamaguchi Y, Shirasaki Y, et al. A FRET biosensor for necroptosis uncovers two different modes of the release of DAMPs. Nat Commun 2018; 9(1): 4457.
[http://dx.doi.org/10.1038/s41467-018-06985-6] [PMID: 30367066]
[35]
Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity 2013; 38(2): 209-23.
[http://dx.doi.org/10.1016/j.immuni.2013.02.003] [PMID: 23438821]
[36]
Xu Z, Jin Y, Yan H, et al. High-mobility group box 1 protein-mediated necroptosis contributes to dasatinib-induced cardiotoxicity. Toxicol Lett 2018; 296: 39-47.
[http://dx.doi.org/10.1016/j.toxlet.2018.08.003] [PMID: 30086328]
[37]
Chen J, Jiang Z, Zhou X, et al. Dexmedetomidine preconditioning protects cardiomyocytes against Hypoxia/Reoxygenation-Induced Necroptosis by inhibiting HMGB1-Mediated inflammation. Cardiovasc Drugs Ther 2019; 33(1): 45-54.
[http://dx.doi.org/10.1007/s10557-019-06857-1] [PMID: 30675709]
[38]
Bangert A, Andrassy M, Müller AM, et al. Critical role of RAGE and HMGB1 in inflammatory heart disease. Proc Natl Acad Sci USA 2016; 113(2): E155-64.
[http://dx.doi.org/10.1073/pnas.1522288113] [PMID: 26715748]
[39]
Li J, Kokkola R, Tabibzadeh S, et al. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med 2003; 9(1-2): 37-45.
[http://dx.doi.org/10.1007/BF03402105] [PMID: 12765338]
[40]
Park JS, Arcaroli J, Yum HK, et al. Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol 2003; 284(4): C870-9.
[http://dx.doi.org/10.1152/ajpcell.00322.2002] [PMID: 12620891]
[41]
Park JS, Svetkauskaite D, He Q, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004; 279(9): 7370-7.
[http://dx.doi.org/10.1074/jbc.M306793200] [PMID: 14660645]
[42]
Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: Current perspectives. J Inflamm Res 2015; 8: 15-27.
[PMID: 25653548]
[43]
Lamkanfi M, Sarkar A, Vande Walle L, et al. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J Immunol 2010; 185(7): 4385-92.
[http://dx.doi.org/10.4049/jimmunol.1000803] [PMID: 20802146]
[44]
Bui FQ, Johnson L, Roberts J, et al. Fusobacterium nucleatum infection of gingival epithelial cells leads to NLRP3 inflammasome-dependent secretion of IL-1β and the danger signals ASC and HMGB1. Cell Microbiol 2016; 18(7): 970-81.
[http://dx.doi.org/10.1111/cmi.12560] [PMID: 26687842]
[45]
Kang R, Chen R, Zhang Q, et al. HMGB1 in health and disease. Mol Aspects Med 2014; 40: 1-116.
[http://dx.doi.org/10.1016/j.mam.2014.05.001] [PMID: 25010388]
[46]
Lv R, Du L, Liu X, Zhou F, Zhang Z, Zhang L. Rosmarinic acid attenuates inflammatory responses through inhibiting HMGB1/TLR4/NF-κB signaling pathway in a mouse model of Parkinson’s disease. Life Sci 2019; 223: 158-65.
[http://dx.doi.org/10.1016/j.lfs.2019.03.030] [PMID: 30880023]
[47]
Zhao X, Yin L, Fang L, et al. Protective effects of dioscin against systemic inflammatory response syndromevia adjusting TLR2/MyD88/NF-κb signal pathway. Int Immunopharmacol 2018; 65: 458-69.
[http://dx.doi.org/10.1016/j.intimp.2018.10.036] [PMID: 30390593]
[48]
Chandrashekaran V, Seth RK, Dattaroy D, et al. HMGB1-RAGE pathway drives peroxynitrite signaling-induced IBD-like inflammation in murine nonalcoholic fatty liver disease. Redox Biol 2017; 13: 8-19.
[http://dx.doi.org/10.1016/j.redox.2017.05.005] [PMID: 28551086]
[49]
Song E, Jahng JW, Chong LP, et al. Lipocalin-2 induces NLRP3 inflammasome activation via HMGB1 induced TLR4 signaling in heart tissue of mice under pressure overload challenge. Am J Transl Res 2017; 9(6): 2723-35.
[PMID: 28670364]
[50]
Wietzorrek G, Drexel M, Trieb M, Santos-Sierra S. Anti-inflammatory activity of small-molecule antagonists of Toll-Like Receptor 2 (TLR2) in mice. Immunobiology 2019; 224(1): 1-9.
[http://dx.doi.org/10.1016/j.imbio.2018.11.004] [PMID: 30509503]
[51]
Stark K, Philippi V, Stockhausen S, et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 2016; 128(20): 2435-49.
[http://dx.doi.org/10.1182/blood-2016-04-710632] [PMID: 27574188]
[52]
Yang H, Lundbäck P, Ottosson L, et al. Redox modification of cysteine residues regulates the cytokine activity of High Mobility Group Box-1 (HMGB1). Mol Med 2012; 18: 250-9.
[http://dx.doi.org/10.2119/molmed.2011.00389] [PMID: 22105604]
[53]
Yang H, Wang H, Ju Z, et al. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. J Exp Med 2015; 212(1): 5-14.
[http://dx.doi.org/10.1084/jem.20141318] [PMID: 25559892]
[54]
Tohme S, Yazdani HO, Liu Y, et al. Hypoxia mediates mitochondrial biogenesis in hepatocellular carcinoma to promote tumor growth through HMGB1 and TLR9 interaction. Hepatology 2017; 66(1): 182-97.
[http://dx.doi.org/10.1002/hep.29184] [PMID: 28370295]
[55]
Li X, Yue Y, Zhu Y, Xiong S. Extracellular, but not intracellular HMGB1, facilitates self-DNA induced macrophage activation via promoting DNA accumulation in endosomes and contributes to the pathogenesis of lupus nephritis. Mol Immunol 2015; 65(1): 177-88.
[http://dx.doi.org/10.1016/j.molimm.2015.01.023] [PMID: 25660970]
[56]
Jiang S, Chen X. Expression of High-Mobility Group Box 1 Protein (HMGB1) and Toll-Like Receptor 9 (TLR9) in Retinas of Diabetic Rats. Med Sci Monit 2017; 23: 3115-22.
[http://dx.doi.org/10.12659/MSM.902193] [PMID: 28647749]
[57]
Das N, Dewan V, Grace PM, et al. HMGB1 activates proinflammatory signaling via TLR5 leading to allodynia. Cell Rep 2016; 17(4): 1128-40.
[http://dx.doi.org/10.1016/j.celrep.2016.09.076] [PMID: 27760316]
[58]
Lee G, Espirito Santo AI, Zwingenberger S, et al. Fully reduced HMGB1 accelerates the regeneration of multiple tissues by transitioning stem cells to GAlert. Proc Natl Acad Sci USA 2018; 115(19): E4463-72.
[http://dx.doi.org/10.1073/pnas.1802893115] [PMID: 29674451]
[59]
Manfredi AA, Capobianco A, Esposito A, et al. Maturing dendritic cells depend on RAGE for in vivo homing to lymph nodes. J Immunol 2008; 180(4): 2270-5.
[http://dx.doi.org/10.4049/jimmunol.180.4.2270] [PMID: 18250435]
[60]
Rouhiainen A, Kuja-Panula J, Tumova S, Rauvala H. RAGE-mediated cell signaling. Methods Mol Biol 2013; 963: 239-63.
[http://dx.doi.org/10.1007/978-1-62703-230-8_15] [PMID: 23296615]
[61]
Schiraldi M, Raucci A, Muñoz LM, et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med 2012; 209(3): 551-63.
[http://dx.doi.org/10.1084/jem.20111739] [PMID: 22370717]
[62]
Tao X, Sun M, Chen M, et al. HMGB1-modified mesenchymal stem cells attenuate radiation-induced vascular injury possibly via their high motility and facilitation of endothelial differentiation. Stem Cell Res Ther 2019; 10(1): 92.
[http://dx.doi.org/10.1186/s13287-019-1197-x] [PMID: 30867070]
[63]
Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 2002; 12(1): 9-18.
[http://dx.doi.org/10.1038/sj.cr.7290105] [PMID: 11942415]
[64]
Dai Z, Li Y, Quarles LD, et al. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 2007; 14(12): 806-14.
[65]
Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res 2015; 35(6): 600-4.
[http://dx.doi.org/10.3109/10799893.2015.1030412] [PMID: 26096166]
[66]
Liu X, Sun J. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappaB pathways. Biomaterials 2010; 31(32): 8198-209.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.069] [PMID: 20727582]
[67]
Stramucci L, Pranteda A, Bossi G. Insights of crosstalk between p53 protein and the MKK3/MKK6/p38 MAPK signaling pathway in cancer. Cancers (Basel) 2018; 10(5)E131
[http://dx.doi.org/10.3390/cancers10050131] [PMID: 29751559]
[68]
Calogero S, Grassi F, Aguzzi A, et al. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat Genet 1999; 22(3): 276-80.
[http://dx.doi.org/10.1038/10338] [PMID: 10391216]
[69]
Yanai H, Matsuda A, An J, et al. Conditional ablation of HMGB1 in mice reveals its protective function against endotoxemia and bacterial infection. Proc Natl Acad Sci USA 2013; 110(51): 20699-704.
[http://dx.doi.org/10.1073/pnas.1320808110] [PMID: 24302768]
[70]
Zhu XM, Yao FH, Yao YM, Dong N, Yu Y, Sheng ZY. Endoplasmic reticulum stress and its regulator XBP-1 contributes to dendritic cell maturation and activation induced by high mobility group box-1 protein. Int J Biochem Cell Biol 2012; 44(7): 1097-105.
[http://dx.doi.org/10.1016/j.biocel.2012.03.018] [PMID: 22504285]
[71]
Yanai H, Ban T, Wang Z, et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 2009; 462(7269): 99-103.
[http://dx.doi.org/10.1038/nature08512] [PMID: 19890330]
[72]
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132(1): 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[73]
Tang D, Kang R, Livesey KM, et al. Endogenous HMGB1 regulates autophagy. J Cell Biol 2010; 190(5): 881-92.
[http://dx.doi.org/10.1083/jcb.200911078] [PMID: 20819940]
[74]
Nishida Y, Arakawa S, Fujitani K, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009; 461(7264): 654-8.
[http://dx.doi.org/10.1038/nature08455] [PMID: 19794493]
[75]
Tang D, Kang R, Livesey KM, et al. High-mobility group box 1 is essential for mitochondrial quality control. Cell Metab 2011; 13(6): 701-11.
[http://dx.doi.org/10.1016/j.cmet.2011.04.008] [PMID: 21641551]
[76]
Kang R, Tang D, Schapiro NE, et al. The Receptor for Advanced Glycation End products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ 2010; 17(4): 666-76.
[http://dx.doi.org/10.1038/cdd.2009.149] [PMID: 19834494]
[77]
Kang R, Tang D, Loze MT, Zeh HJ. Apoptosis to autophagy switch triggered by the MHC class III-encoded Receptor for Advanced Glycation Endproducts (RAGE). Autophagy 2011; 7(1): 91-3.
[http://dx.doi.org/10.4161/auto.7.1.13852] [PMID: 20978368]
[78]
Liu K, Huang J, Xie M, et al. MIR34A regulates autophagy and apoptosis by targeting HMGB1 in the retinoblastoma cell. Autophagy 2014; 10(3): 442-52.
[http://dx.doi.org/10.4161/auto.27418] [PMID: 24418846]
[79]
Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003; 11(3): 577-90.
[http://dx.doi.org/10.1016/S1097-2765(03)00050-9] [PMID: 12667443]
[80]
Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004; 303(5660): 1010-4.
[http://dx.doi.org/10.1126/science.1092734] [PMID: 14963330]
[81]
Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 2005; 309(5741): 1732-5.
[http://dx.doi.org/10.1126/science.1114297] [PMID: 16151013]
[82]
Yao L, Sun T. Glycyrrhizin administration ameliorates Streptococcus aureus-induced acute lung injury. Int Immunopharmacol 2019; 70: 504-11.
[http://dx.doi.org/10.1016/j.intimp.2019.02.046] [PMID: 30884430]
[83]
Bauzá MDR, Giménez CS, Locatelli P, et al. High-dose intramyocardial HMGB1 induces long-term cardioprotection in sheep with myocardial infarction. Drug Deliv Transl Res 2019.
[http://dx.doi.org/10.1007/s13346-019-00628-z] [PMID: 30859393]
[84]
Guo X, Guo R, Luo X, Zhou L. Ethyl pyruvate ameliorates experimental colitis in mice by inhibiting the HMGB1-Th17 and Th1/Tc1 responses. Int Immunopharmacol 2015; 29(2): 454-61.
[http://dx.doi.org/10.1016/j.intimp.2015.10.015] [PMID: 26541861]
[85]
Okuma Y, Liu K, Wake H, et al. Glycyrrhizin inhibits traumatic brain injury by reducing HMGB1-RAGE interaction. Neuropharmacology 2014; 85: 18-26.
[http://dx.doi.org/10.1016/j.neuropharm.2014.05.007] [PMID: 24859607]
[86]
Zhang J, Wu Y, Weng Z, Zhou T, Feng T, Lin Y. Glycyrrhizin protects brain against ischemia-reperfusion injury in mice through HMGB1-TLR4-IL-17A signaling pathway. Brain Res 2014; 1582: 176-86.
[http://dx.doi.org/10.1016/j.brainres.2014.07.002] [PMID: 25111887]
[87]
Zandarashvili L, Sahu D, Lee K, et al. Real-time kinetics of High-Mobility Group Box 1 (HMGB1) oxidation in extracellular fluids studied by in situ protein NMR spectroscopy. J Biol Chem 2013; 288(17): 11621-7.
[http://dx.doi.org/10.1074/jbc.M113.449942] [PMID: 23447529]
[88]
Schierbeck H, Lundbäck P, Palmblad K, et al. Monoclonal anti-HMGB1 (high mobility group box chromosomal protein 1) antibody protection in two experimental arthritis models. Mol Med 2011; 17(9-10): 1039-44.
[http://dx.doi.org/10.2119/molmed.2010.00264] [PMID: 21666956]
[89]
Zhang F, Huang G, Hu B, Qian GS, Song Y. Recombinant HMGB1 A box protein inhibits Th17 responses in mice with neutrophilic asthma by suppressing dendritic cell-mediated Th17 polarization. Int Immunopharmacol 2015; 24(1): 110-8.
[http://dx.doi.org/10.1016/j.intimp.2014.11.005] [PMID: 25479722]
[90]
Hwang YH, Kim MJ, Lee YK, Lee M, Lee DY. HMGB1 modulation in pancreatic islets using a cell-permeable A-box fragment. J Control Release 2017; 246: 155-63.
[91]
Fu Y, Lei J, Zhuang Y, Zhang K, Lu D. Overexpression of HMGB1 A-box reduced IL-1β-induced MMP expression and the production of inflammatory mediators in human chondrocytes. Exp Cell Res 2016; 349(1): 184-90.
[http://dx.doi.org/10.1016/j.yexcr.2016.10.014] [PMID: 27771306]
[92]
Zheng X, Lv Y, Li S, Zhang Q, Zhang X, Hao Z. Adeno-associated virus-mediated colonic secretory expression of HMGB1 A box attenuates experimental colitis in mice. J Gene Med 2016; 18(10): 261-72.
[http://dx.doi.org/10.1002/jgm.2899] [PMID: 27572454]
[93]
Gong W, Zheng Y, Chao F, et al. The anti-inflammatory activity of HMGB1 A box is enhanced when fused with C-terminal acidic tail. J Biomed Biotechnol 2010; 2010915234
[http://dx.doi.org/10.1155/2010/915234] [PMID: 20379370]
[94]
Mollica L, De Marchis F, Spitaleri A, et al. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol 2007; 14(4): 431-41.
[http://dx.doi.org/10.1016/j.chembiol.2007.03.007] [PMID: 17462578]
[95]
Menegazzi M, Di Paola R, Mazzon E, et al. Glycyrrhizin attenuates the development of carrageenan-induced lung injury in mice. Pharmacol Res 2008; 58(1): 22-31.
[http://dx.doi.org/10.1016/j.phrs.2008.05.012] [PMID: 18590825]
[96]
Zhao H, Zhao M, Wang Y, Li F, Zhang Z. Glycyrrhizic acid prevents Sepsis-Induced acute lung injury and mortality in rats. J Histochem Cytochem 2016; 64(2): 125-37.
[http://dx.doi.org/10.1369/0022155415610168] [PMID: 26385569]
[97]
Zhang H, Song Y, Zhang Z. Glycyrrhizin administration ameliorates coxsackievirus B3-induced myocarditis in mice. Am J Med Sci 2012; 344(3): 206-10.
[http://dx.doi.org/10.1097/MAJ.0b013e31823e2867] [PMID: 22197982]
[98]
Zhai CL, Zhang MQ, Zhang Y, et al. Glycyrrhizin protects rat heart against ischemia-reperfusion injury through blockade of HMGB1-dependent phospho-JNK/Bax pathway. Acta Pharmacol Sin 2012; 33(12): 1477-87.
[http://dx.doi.org/10.1038/aps.2012.112] [PMID: 23064724]
[99]
Ohnishi M, Katsuki H, Fukutomi C, et al. HMGB1 inhibitor glycyrrhizin attenuates intracerebral hemorrhage-induced injury in rats. Neuropharmacology 2011; 61(5-6): 975-80.
[http://dx.doi.org/10.1016/j.neuropharm.2011.06.026] [PMID: 21752338]
[100]
Kim YM, Kim HJ, Chang KC. Glycyrrhizin reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and endotoxemic mice by p38/Nrf2-dependent induction of HO-1. Int Immunopharmacol 2015; 26(1): 112-8.
[http://dx.doi.org/10.1016/j.intimp.2015.03.014] [PMID: 25812767]
[101]
Abe N, Ebina T, Ishida N. Interferon induction by glycyrrhizin and glycyrrhetinic acid in mice. Microbiol Immunol 1982; 26(6): 535-9.
[http://dx.doi.org/10.1111/j.1348-0421.1982.tb00207.x] [PMID: 6290851]
[102]
Ulloa L, Ochani M, Yang H, et al. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci USA 2002; 99(19): 12351-6.
[http://dx.doi.org/10.1073/pnas.192222999] [PMID: 12209006]
[103]
Jang IS, Park MY, Shin IW, Sohn JT, Lee HK, Chung YK. Ethyl pyruvate has anti-inflammatory and delayed myocardial protective effects after regional ischemia/reperfusion injury. Yonsei Med J 2010; 51(6): 838-44.
[http://dx.doi.org/10.3349/ymj.2010.51.6.838] [PMID: 20879048]
[104]
Uchiyama T, Delude RL, Fink MP. Dose-dependent effects of ethyl pyruvate in mice subjected to mesenteric ischemia and reperfusion. Intensive Care Med 2003; 29(11): 2050-8.
[http://dx.doi.org/10.1007/s00134-003-1966-x] [PMID: 12955182]
[105]
Yu Y, Yu Y, Liu M, et al. Ethyl pyruvate attenuated coxsackievirus B3-induced acute viral myocarditis by suppression of HMGB1/RAGE/NF-KB pathway. Springerplus 2016; 5: 215.
[http://dx.doi.org/10.1186/s40064-016-1857-6] [PMID: 27026909]
[106]
Davé SH, Tilstra JS, Matsuoka K, et al. Ethyl pyruvate decreases HMGB1 release and ameliorates murine colitis. J Leukoc Biol 2009; 86(3): 633-43.
[http://dx.doi.org/10.1189/jlb.1008662] [PMID: 19454652]
[107]
Li W, Li J, Ashok M, et al. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1. J Immunol 2007; 178(6): 3856-64.
[http://dx.doi.org/10.4049/jimmunol.178.6.3856] [PMID: 17339485]
[108]
Hagiwara S, Iwasaka H, Noguchi T. Retraction note to: Nafamostat mesilate inhibits the expression of HMGB1 in lipopolysaccharide-induced acute lung injury. J Anesth 2015; 29(3): 484.
[http://dx.doi.org/10.1007/s00540-015-2013-0] [PMID: 25940319]
[109]
Hidaka S, Iwasaka H, Hagiwara S, Noguchi T. Gabexate mesilate inhibits the expression of HMGB1 in lipopolysaccharide-induced acute lung injury. J Surg Res 2011; 165(1): 142-50.
[http://dx.doi.org/10.1016/j.jss.2009.05.039] [PMID: 19766246]
[110]
Hagiwara S, Iwasaka H, Togo K, Noguchi T. A neutrophil elastase inhibitor, sivelestat, reduces lung injury following endotoxin-induced shock in rats by inhibiting HMGB1. Inflammation 2008; 31(4): 227-34.
[http://dx.doi.org/10.1007/s10753-008-9069-z] [PMID: 18536984]
[111]
Wang L, Zhang X, Liu L, Yang R, Cui L, Li M. Atorvastatin protects rat brains against permanent focal ischemia and downregulates HMGB1, HMGB1 receptors (RAGE and TLR4), NF-kappaB expression. Neurosci Lett 2010; 471(3): 152-6.
[http://dx.doi.org/10.1016/j.neulet.2010.01.030] [PMID: 20100543]
[112]
Liu M, Yu Y, Jiang H, et al. Simvastatin suppresses vascular inflammation and atherosclerosis in ApoE(-/-) mice by downregulating the HMGB1-RAGE axis. Acta Pharmacol Sin 2013; 34(6): 830-6.
[http://dx.doi.org/10.1038/aps.2013.8] [PMID: 23564080]
[113]
Li N, Liu XX, Hong M, et al. Sodium butyrate alleviates LPS-induced acute lung injury in mice via inhibiting HMGB1 release. Int Immunopharmacol 2018; 56: 242-8.
[http://dx.doi.org/10.1016/j.intimp.2018.01.017] [PMID: 29414658]
[114]
Kuroiwa Y, Takakusagi Y, Kusayanagi T, et al. Identification and characterization of the direct interaction between methotrexate (MTX) and high-mobility group box 1 (HMGB1) protein. PLoS One 2013; 8(5)e63073
[http://dx.doi.org/10.1371/journal.pone.0063073] [PMID: 23658798]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy