Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Advances in Pharmaceutical Potential of Brown Algal Polysaccharides and their Derivatives

Author(s): Jun Li, Chao Cai*, Chendong Yang, Jianghua Li, Tiantian Sun and Guangli Yu

Volume 25, Issue 11, 2019

Page: [1290 - 1311] Pages: 22

DOI: 10.2174/1381612825666190618143952

Price: $65

Abstract

Marine plants, animals and microorganisms display steady growth in the ocean and are abundant carbohydrate resources. Specifically, natural polysaccharides obtained from brown algae have been drawing increasing attention owing to their great potential in pharmaceutical applications. This review describes the structural and biological features of brown algal polysaccharides, including alginates, fucoidans, and laminarins, and it highlights recently developed approaches used to obtain the oligo- and polysaccharides with defined structures. Functional modification of these polysaccharides promotes their advanced applications in biomedical materials for controlled release and targeted drug delivery, etc. Moreover, brown algal polysaccharides and their derivatives possess numerous biological activities with anticancer, anticoagulant, wound healing, and antiviral properties. In addition, we also discuss carbohydrate- based substrates from brown algae, which are currently in clinical and preclinical studies, as well as the marine drugs that are already on the market. The present review summarizes the recent development in carbohydratebased products from brown algae, with promising findings that could rapidly facilitate the future discovery of novel marine drugs.

Keywords: Brown algae, alginate, fucoidan, laminarin, oligosaccharides, polysaccharides, marine drugs.

[1]
Shang Q, Jiang H, Cai C, Hao J, Li G, Yu G. Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview. Carbohydr Polym 2018; 179: 173-85.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.059] [PMID: 29111040]
[2]
Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 2011; 9(2): 196-223.
[http://dx.doi.org/10.3390/md9020196] [PMID: 21566795]
[3]
Xu SY, Huang X, Cheong KL. Recent advances in marine Algae polysaccharides: isolation, structure, and activities. Mar Drugs 2017; 15(12): 388-403.
[http://dx.doi.org/10.3390/md15120388] [PMID: 29236064]
[4]
Stanford E. Improvements in the manufacture of useful products from seaweeds British Patent 5259531881.
[5]
Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci 2012; 37(1): 106-26.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[6]
Kylin H. Biochemistry of sea algae. Hz Physiol Chem 1913; 84: 171-97.
[http://dx.doi.org/10.1515/bchm2.1913.83.3.171]
[7]
Pomin VH. Fucanomics and galactanomics: marine distribution, medicinal impact, conceptions, and challenges. Mar Drugs 2012; 10(4): 793-811.
[http://dx.doi.org/10.3390/md10040793] [PMID: 22690144]
[8]
Usov AI, Bilan MI. Fucoidans-sulfated polysaccharides of brown algae. Russ Chem Rev 2009; 78: 785-99.
[http://dx.doi.org/10.1070/RC2009v078n08ABEH004063]
[9]
Cumashi A, Ushakova NA, Preobrazhenskaya ME, et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007; 17(5): 541-52.
[http://dx.doi.org/10.1093/glycob/cwm014] [PMID: 17296677]
[10]
Schmiedeberg JEO. Gesellschaft deutscher naturforscher und arzte: Leipzig. Tageblatt Der Versammlung 1885; 58: 427.
[11]
Rioux LE, Turgeon SL, Beaulieu M. Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry 2010; 71(13): 1586-95.
[http://dx.doi.org/10.1016/j.phytochem.2010.05.021] [PMID: 20599236]
[12]
Vasconcelos AA, Pomin VH. Marine carbohydrate-based compounds with medicinal properties. Mar Drugs 2018; 16(7): 233-60.
[http://dx.doi.org/10.3390/md16070233] [PMID: 29987239]
[13]
Xu X, Bi D, Wan M. Characterization and immunological evaluation of low-molecular-weight alginate derivatives. Curr Top Med Chem 2016; 16(8): 874-87.
[http://dx.doi.org/10.2174/1568026615666150827101239] [PMID: 26311423]
[14]
Flórez-fernández N, Torres MD, González-muñoz MJ, Domínguez H. Potential of intensification techniques for the extraction and depolymerization of fucoidan. Algal Res 2018; 30: 128-48.
[http://dx.doi.org/10.1016/j.algal.2018.01.002]
[15]
Iwamoto M, Kurachi M, Nakashima T, et al. Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. FEBS Lett 2005; 579(20): 4423-9.
[http://dx.doi.org/10.1016/j.febslet.2005.07.007] [PMID: 16055120]
[16]
Sari-chmayssem N, Taha S, Mawlawi H, Guégan J, Jeftić J, Benvegnu T. Extracted and depolymerized alginates from brown algae Sargassum vulgare of Lebanese origin: chemical, rheological, and antioxidant properties. J Appl Phycol 2016; 28: 1915-29.
[http://dx.doi.org/10.1007/s10811-015-0676-4]
[17]
Wu J, Zhang M, Zhang Y, Zeng Y, Zhang L, Zhao X. Anticoagulant and FGF/FGFR signal activating activities of the heparinoid propylene glycol alginate sodium sulfate and its oligosaccharides. Carbohydr Polym 2016; 136: 641-8.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.059] [PMID: 26572396]
[18]
Hwang P, Yan M, Kuo K, Phan NN, Lin Y. A mechanism of low molecular weight fucoidans degraded by enzymatic and acidic hydrolysis for the prevention of UVB damage. J Appl Phycol 2017; 29: 521-9.
[http://dx.doi.org/10.1007/s10811-016-0929-x]
[19]
Azofeifa K, Angulo Y, Lomonte B. Ability of fucoidan to prevent muscle necrosis induced by snake venom myotoxins: comparison of high- and low-molecular weight fractions. Toxicon 2008; 51(3): 373-80.
[http://dx.doi.org/10.1016/j.toxicon.2007.10.008] [PMID: 18061642]
[20]
Pielesz A, Biniaś W, Paluch J. Mild acid hydrolysis of fucoidan: characterization by electrophoresis and FT-Raman spectroscopy. Carbohydr Res 2011; 346(13): 1937-44.
[http://dx.doi.org/10.1016/j.carres.2011.05.016] [PMID: 21703598]
[21]
Moon IS, So JH, Jung YM, et al. Fucoidan promotes mechanosensory hair cell regeneration following amino glycoside-induced cell death. Hear Res 2011; 282(1-2): 236-42.
[http://dx.doi.org/10.1016/j.heares.2011.07.007] [PMID: 21810458]
[22]
Sinurat E, Saepudin E, Peranginangin R, Hudiyono S. Immunostimulatory activity of brown seaweed-derived fucoidans at different molecular weights and purity levels towards white spot syndrome virus (WSSV) in shrimp Litopenaeus vannamei. J Appl Pharm Sci 2016; 6: 82-91.
[http://dx.doi.org/10.7324/JAPS.2016.601011]
[23]
Yang C, Chung D, Shin IS, et al. Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. Int J Biol Macromol 2008; 43(5): 433-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2008.08.006] [PMID: 18789961]
[24]
Rioux LE, Turgeon SL, Beaulieu M. Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry 2010; 71(13): 1586-95.
[http://dx.doi.org/10.1016/j.phytochem.2010.05.021] [PMID: 20599236]
[25]
Devillé C, Damas J, Forget P, Dandrifosse G, Peulen O. Laminarin in the dietary fibre concept. J Sci Food Agric 2004; 84: 1030-8.
[http://dx.doi.org/10.1002/jsfa.1754]
[26]
Ermakova S, Men’shova R, Vishchuk O, et al. Water-soluble polysaccharides from the brown alga Eisenia bicyclis: Structural characteristics and antitumor activity. Algal Res 2013; 2: 51-8.
[http://dx.doi.org/10.1016/j.algal.2012.10.002]
[27]
Voronova YG, Rekhina NI, Nikolaeva TA, et al. Extraction of carbohydrates from Laminaria and their utilization. J Appl Phycol 1991; 3: 243-5.
[http://dx.doi.org/10.1007/BF00003582]
[28]
Rioux LE, Turgeon SL, Beaulieu M. Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry 2010; 71(13): 1586-95.
[http://dx.doi.org/10.1016/j.phytochem.2010.05.021] [PMID: 20599236]
[29]
Li X, Xu A, Xie H, et al. Preparation of low molecular weight alginate by hydrogen peroxide depolymerization for tissue engineering. Carbohydr Polym 2010; 79: 660-4.
[http://dx.doi.org/10.1016/j.carbpol.2009.09.020]
[30]
Hou Y, Wang J, Jin W, Zhang H, Zhang Q. Degradation of Laminaria japonica fucoidan by hydrogen peroxide and antioxidant activities of the degradation products of different molecular weights. Carbohydr Polym 2012; 87: 153-9.
[http://dx.doi.org/10.1016/j.carbpol.2011.07.031]
[31]
Yang Z, Li J, Guan H. Preparation and characterization of oligomannuronates from alginate degraded by hydrogen peroxide. Carbohydr Polym 2004; 58: 115-21.
[http://dx.doi.org/10.1016/j.carbpol.2004.04.022]
[32]
Mao S, Zhang T, Sun W, Ren X. The depolymerization of sodium alginate by oxidative degradation. Pharm Dev Technol 2012; 17(6): 763-9.
[http://dx.doi.org/10.3109/10837450.2011.583927] [PMID: 21615219]
[33]
Larsen B, Haug A, Painter T. Sulphated polysaccharides in brown algae. 3. The native state of dfucoidan in Ascophyllum nodosum and Fucus vesiculosus. Acta Chem Scand 1970; 24(9): 3339-52.
[http://dx.doi.org/10.3891/acta.chem.scand.24-3339] [PMID: 5501728]
[34]
Li X, Wang J, Zhang H, Zhang Q. Renoprotective effect of low-molecular-weight sulfated polysaccharide from the seaweed Laminaria japonica on glycerol-induced acute kidney injury in rats. Int J Biol Macromol 2017; 95: 132-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.051] [PMID: 27865951]
[35]
Chen A, Lan Y, Liu J, et al. The structure property and endothelial protective activity of fucoidan from Laminaria japonica. Int J Biol Macromol 2017; 105(Pt 2): 1421-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.148] [PMID: 28754625]
[36]
Burana-osot J, Hosoyama S, Nagamoto Y, Suzuki S, Linhardt RJ, Toida T. Photolytic depolymerization of alginate. Carbohydr Res 2009; 344(15): 2023-7.
[http://dx.doi.org/10.1016/j.carres.2009.06.027] [PMID: 19616772]
[37]
Sen M, Atik H. The antioxidant properties of oligo sodium alginates prepared by radiation-induced degradation in aqueous and hydrogen peroxide solutions. Radiat Phys Chem 2012; 81: 816-22.
[http://dx.doi.org/10.1016/j.radphyschem.2012.03.025]
[38]
Park E, Choi J. Melanogenesis inhibitory effect of low molecular weight fucoidan from Undaria pinnatifida. J Appl Phycol 2017; 29: 2213-7.
[http://dx.doi.org/10.1007/s10811-016-1048-4]
[39]
Choi JI, Kim HJ. Preparation of low molecular weight fucoidan by gamma-irradiation and its anticancer activity. Carbohydr Polym 2013; 97(2): 358-62.
[http://dx.doi.org/10.1016/j.carbpol.2013.05.002] [PMID: 23911457]
[40]
Choi J, Lee SG, Han SJ, Cho M, Lee PC. Effect of gamma irradiation on the structure of fucoidan. Radiat Phys Chem 2014; 100: 54-8.
[http://dx.doi.org/10.1016/j.radphyschem.2014.03.018]
[41]
Falkeborg M, Cheong LZ, Gianfico C, et al. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chem 2014; 164: 185-94.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.053] [PMID: 24996323]
[42]
Kim HT, Chung JH, Wang D, et al. Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40. Appl Microbiol Biotechnol 2012; 93(5): 2233-9.
[http://dx.doi.org/10.1007/s00253-012-3882-x] [PMID: 22281843]
[43]
Silchenko AS, Kusaykin MI, Zakharenko AM, et al. Endo-1,4-fucoidanase from Vietnamese marine mollusk Lambis sp. which producing sulphated fucooligosaccharides. J Mol Catal, B Enzym 2014; 102: 154-60.
[http://dx.doi.org/10.1016/j.molcatb.2014.02.007]
[44]
Kim DH, Kim DH, Lee SH, Kim KH. A novel β-glucosidase from Saccharophagus degradans 2-40T for the efficient hydrolysis of laminarin from brown macroalgae. Biotechnol Biofuels 2018; 11: 64-73.
[http://dx.doi.org/10.1186/s13068-018-1059-2] [PMID: 29563967]
[45]
Kumagai Y, Satoh T, Inoue A, Ojima T. A laminaribiose-hydrolyzing enzyme, AkLab, from the common sea hare Aplysia kurodai and its transglycosylation activity. Comp Biochem Physiol B Biochem Mol Biol 2014; 167: 1-7.
[http://dx.doi.org/10.1016/j.cbpb.2013.07.008] [PMID: 23912026]
[46]
Kusaykin MI, Silchenko AS, Zakharenko AM, Zvyagintseva TN. Fucoidanases. Glycobiology 2016; 26(1): 3-12.
[PMID: 26347522]
[47]
Wong TY, Preston LA, Schiller NL. ALGINATE LYASE: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 2000; 54: 289-340.
[http://dx.doi.org/10.1146/annurev.micro.54.1.289] [PMID: 11018131]
[48]
Kim HT, Ko HJ, Kim N, et al. Characterization of a recombinant endo-type alginate lyase (Alg7D) from Saccharophagus degradans. Biotechnol Lett 2012; 34(6): 1087-92.
[http://dx.doi.org/10.1007/s10529-012-0876-9] [PMID: 22391735]
[49]
Park HH, Kam N, Lee EY, Kim HS. Cloning and characterization of a novel oligoalginate lyase from a newly isolated bacterium Sphingomonas sp. MJ-3. Mar Biotechnol (NY) 2012; 14(2): 189-202.
[http://dx.doi.org/10.1007/s10126-011-9402-7] [PMID: 21826589]
[50]
Jagtap SS, Hehemann JH, Polz MF, Lee JK, Zhao H. Comparative biochemical characterization of three exolytic oligoalginate lyases from Vibrio splendidus reveals complementary substrate scope, temperature, and pH adaptations. Appl Environ Microbiol 2014; 80(14): 4207-14.
[http://dx.doi.org/10.1128/AEM.01285-14] [PMID: 24795372]
[51]
Huang L, Zhou J, Li X, Peng Q, Lu H, Du Y. Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20. J Ind Microbiol Biotechnol 2013; 40(1): 113-22.
[http://dx.doi.org/10.1007/s10295-012-1210-1] [PMID: 23111633]
[52]
Cao L, Xie L, Xue X, Tan H, Liu Y, Zhou S. Purification and characterization of alginate lyase from streptomyces species strain A5 isolated from banana rhizosphere. J Agric Food Chem 2007; 55(13): 5113-7.
[http://dx.doi.org/10.1021/jf0704514] [PMID: 17536832]
[53]
Kobayashi T, Uchimura K, Miyazaki M, Nogi Y, Horikoshi K. A new high-alkaline alginate lyase from a deep-sea bacterium Agarivorans sp. Extremophiles 2009; 13(1): 121-9.
[http://dx.doi.org/10.1007/s00792-008-0201-7] [PMID: 19002649]
[54]
Zhu B, Yin H. Alginate lyase: Review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 2015; 6(3): 125-31.
[http://dx.doi.org/10.1080/21655979.2015.1030543] [PMID: 25831216]
[55]
Qin HM, Miyakawa T, Inoue A, et al. Structural basis for controlling the enzymatic properties of polymannuronate preferred alginate lyase FlAlyA from the PL-7 family. Chem Commun (Camb) 2018; 54(5): 555-8.
[http://dx.doi.org/10.1039/C7CC06523J] [PMID: 29292806]
[56]
Badur AH, Jagtap SS, Yalamanchili G, Lee JK, Zhao H, Rao CV. Alginate lyases from alginate-degrading Vibrio splendidus 12B01 are endolytic. Appl Environ Microbiol 2015; 81(5): 1865-73.
[http://dx.doi.org/10.1128/AEM.03460-14] [PMID: 25556193]
[57]
Zhu B, Tan H, Qin Y, Xu Q, Du Y, Yin H. Characterization of a new endo-type alginate lyase from Vibrio sp. W13. Int J Biol Macromol 2015; 75: 330-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.053] [PMID: 25661880]
[58]
Zhu X, Li X, Shi H, et al. Characterization of a novel alginate lyase from marine bacterium Vibrio furnissii H1. Mar Drugs 2018; 16(1): 30.
[http://dx.doi.org/10.3390/md16010030] [PMID: 29342949]
[59]
Holtkamp AD, Kelly S, Ulber R, Lang S. Fucoidans and fucoidanases--focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Appl Microbiol Biotechnol 2009; 82(1): 1-11.
[http://dx.doi.org/10.1007/s00253-008-1790-x] [PMID: 19043701]
[60]
Shchipunov Y, Burtseva Y, Karpenko T, Shevchenko N, Zvyagintseva T. Highly efficient immobilization of endo-1,3-β-d-glucanases (laminarinases) from marine mollusks in novel hybrid polysaccharide-silica nanocomposites with regulated composition. J Mol Catal, B Enzym 2006; 40: 16-23.
[http://dx.doi.org/10.1016/j.molcatb.2006.02.002]
[61]
Burtseva YV, Verigina NS, Sova VV, Pivkin MV, Zvyagintseva TN. Filamentous marine fungi as producers of O-glycosylhydrolases: β-1,3-glucanase from Chaetomium indicum. Mar Biotechnol (NY) 2003; 5(4): 349-59.
[http://dx.doi.org/10.1007/s10126-002-0070-2] [PMID: 14719163]
[62]
Kumagai Y, Ojima T. Isolation and characterization of two types of β-1,3-glucanases from the common sea hare Aplysia kurodai. Comp Biochem Physiol B Biochem Mol Biol 2010; 155(2): 138-44.
[http://dx.doi.org/10.1016/j.cbpb.2009.10.013] [PMID: 19883786]
[63]
Becker S, Scheffel A, Polz MF, Hehemann JH. Accurate quantification of laminarin in marine organic matter with enzymes from marine microbes. Appl Environ Microbiol 2017; 83(9): 3389-16.
[http://dx.doi.org/10.1128/AEM.03389-16] [PMID: 28213541]
[64]
Franklin MJ, Douthit SA, McClure MA. Evidence that the algI/algJ gene cassette, required for O acetylation of Pseudomonas aeruginosa alginate, evolved by lateral gene transfer. J Bacteriol 2004; 186(14): 4759-73.
[http://dx.doi.org/10.1128/JB.186.14.4759-4773.2004] [PMID: 15231808]
[65]
Franklin MJ, Ohman DE. Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa. J Bacteriol 2002; 184(11): 3000-7.
[http://dx.doi.org/10.1128/JB.184.11.3000-3007.2002] [PMID: 12003941]
[66]
Chamberlain NH, Cunningham GE, Speakman JB. Alginic acid diacetate. Nature 1946; 158: 553.
[http://dx.doi.org/10.1038/158553b0]
[67]
Matsumoto Y, Ishii D, Iwata T. Synthesis and characterization of alginic acid ester derivatives. Carbohydr Polym 2017; 171: 229-35.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.001] [PMID: 28578958]
[68]
Pawar SN, Edgar KJ. Chemical modification of alginates in organic solvent systems. Biomacromolecules 2011; 12(11): 4095-103.
[http://dx.doi.org/10.1021/bm201152a] [PMID: 22004188]
[69]
Wang J, Liu L, Zhang Q, Zhang Z, Qi H, Li P. Synthesized oversulphated, acetylated and benzoylated derivatives of fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro. Food Chem 2009; 114: 1285-90.
[http://dx.doi.org/10.1016/j.foodchem.2008.10.082]
[70]
Wang J, Zhang Q, Zhang Z, Li Z. Preparation and in vitro antioxidative activity of acetylated fucoidan extracted from Laminaria japonica. Chin J Mar Drugs 2008; 27: 50-4.
[71]
Lee KW, Jeong D, Na K. Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment. Carbohydr Polym 2013; 94(2): 850-6.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.018] [PMID: 23544642]
[72]
Chirila TV. Zainuddin. Calcification of synthetic polymers functionalized with negatively ionizable groups: A critical review. React Funct Polym 2007; 67: 165-72.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2006.10.008]
[73]
Coleman RJ, Lawrie G, Lambert LK, Whittaker M, Jack KS, Grøndahl L. Phosphorylation of alginate: synthesis, characterization, and evaluation of in vitro mineralization capacity. Biomacromolecules 2011; 12(4): 889-97.
[http://dx.doi.org/10.1021/bm1011773] [PMID: 21381703]
[74]
Li Q, Li C, Yang C, Liu C, Yu G, Guan H. Preparation, characterization and antioxidant activities of polymannuronic acid phosphate, H-phosphonate and sulfate. Int J Biol Macromol 2013; 62: 281-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.09.012] [PMID: 24060457]
[75]
Wang J, Zhang Q, Zhang Z, Zhang J, Li P. Synthesized phosphorylated and aminated derivatives of fucoidan and their potential antioxidant activity in vitro. Int J Biol Macromol 2009; 44(2): 170-4.
[http://dx.doi.org/10.1016/j.ijbiomac.2008.11.010] [PMID: 19101588]
[76]
Alban S, Schauerte A, Franz G. Anticoagulant sulfated polysaccharides: Part I. Synthesis and structure-activity relationships of new pullulan sulfates. Carbohydr Polym 2002; 47: 267-76.
[http://dx.doi.org/10.1016/S0144-8617(01)00178-3]
[77]
Kokoulin MS, Kuzmich AS, Kalinovsky AI, et al. Structure and in vitro anticancer activity of sulfated O-polysaccharide from marine bacterium Poseidonocella pacifica KMM 9010T. Carbohydr Polym 2017; 178: 406-11.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.052] [PMID: 29050611]
[78]
Wijesekara I, Pangestuti R, Kim S. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 2011; 84: 14-21.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.062]
[79]
Ronghua H, Yumin D, Jianhong Y. Preparation and in vitro anticoagulant activities of alginate sulfate. Carbohydr Polym 2003; 52: 19-24.
[http://dx.doi.org/10.1016/S0144-8617(02)00258-8]
[80]
Freeman I, Kedem A, Cohen S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 2008; 29(22): 3260-8.
[http://dx.doi.org/10.1016/j.biomaterials.2008.04.025] [PMID: 18462788]
[81]
Koyanagi S, Tanigawa N, Nakagawa H, Soeda S, Shimeno H. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem Pharmacol 2003; 65(2): 173-9.
[http://dx.doi.org/10.1016/S0006-2952(02)01478-8] [PMID: 12504793]
[82]
Cho ML, Lee BY, You SG. Relationship between oversulfation and conformation of low and high molecular weight fucoidans and evaluation of their in vitro anticancer activity. Molecules 2010; 16(1): 291-7.
[http://dx.doi.org/10.3390/molecules16010291] [PMID: 21266942]
[83]
Ménard R, Alban S, de Ruffray P, et al. β-1,3 glucan sulfate, but not β-1,3 glucan, induces the salicylic acid signaling pathway in tobacco and Arabidopsis. Plant Cell 2004; 16(11): 3020-32.
[http://dx.doi.org/10.1105/tpc.104.024968] [PMID: 15494557]
[84]
Ji CF, Ji YB, Meng DY. Sulfated modification and anti-tumor activity of laminarin. Exp Ther Med 2013; 6(5): 1259-64.
[http://dx.doi.org/10.3892/etm.2013.1277] [PMID: 24223655]
[85]
de Jesus Raposo MF, de Morais AM, de Morais RM. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 2015; 13(5): 2967-3028.
[http://dx.doi.org/10.3390/md13052967] [PMID: 25988519]
[86]
Yang JS, Xie YJ, He W. Research progress on chemical modification of alginate: A review. Carbohydr Polym 2011; 84: 33-9.
[http://dx.doi.org/10.1016/j.carbpol.2010.11.048]
[87]
Laurienzo P. Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 2010; 8(9): 2435-65.
[http://dx.doi.org/10.3390/md8092435] [PMID: 20948899]
[88]
Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci 2012; 37(1): 106-26.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[89]
Paques JP, van der Linden E, van Rijn CJ, Sagis LM. Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci 2014; 209: 163-71.
[http://dx.doi.org/10.1016/j.cis.2014.03.009] [PMID: 24745976]
[90]
Aderibigbe BA, Buyana B. Alginate in wound dressings. Pharmaceutics 2018; 10(2): 42-60.
[http://dx.doi.org/10.3390/pharmaceutics10020042] [PMID: 29614804]
[91]
Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm 2002; 28(6): 621-30.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[92]
Russo R, Malinconico M, Santagata G. Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules 2007; 8(10): 3193-7.
[http://dx.doi.org/10.1021/bm700565h] [PMID: 17803277]
[93]
Mandal S, Basu SK, Sa B. Ca2+ ion cross-linked interpenetrating network matrix tablets of polyacrylamide-grafted-sodium alginate and sodium alginate for sustained release of diltiazem hydrochloride. Carbohydr Polym 2010; 82: 867-73.
[http://dx.doi.org/10.1016/j.carbpol.2010.06.009]
[94]
Giri TK, Thakur D, Alexander A, Ajazuddin P, Badwaik H, Tripathi DK. Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications. Curr Drug Deliv 2012; 9(6): 539-55.
[http://dx.doi.org/10.2174/156720112803529800] [PMID: 22998675]
[95]
Wells LA, Sheardown H. Extended release of high pI proteins from alginate microspheres via a novel encapsulation technique. Eur J Pharm Biopharm 2007; 65(3): 329-35.
[http://dx.doi.org/10.1016/j.ejpb.2006.10.018] [PMID: 17156984]
[96]
Ahmad Z, Khuller GK. Alginate-based sustained release drug delivery systems for tuberculosis. Expert Opin Drug Deliv 2008; 5(12): 1323-34.
[http://dx.doi.org/10.1517/17425240802600662] [PMID: 19040395]
[97]
Zhang C, Wang W, Liu T, et al. Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials 2012; 33(7): 2187-96.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.045] [PMID: 22169820]
[98]
Bidarra SJ, Barrias CC, Granja PL. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 2014; 10(4): 1646-62.
[http://dx.doi.org/10.1016/j.actbio.2013.12.006] [PMID: 24334143]
[99]
Fonseca KB, Gomes DB, Lee K, et al. Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems. Biomacromolecules 2014; 15(1): 380-90.
[http://dx.doi.org/10.1021/bm4016495] [PMID: 24345197]
[100]
Li B, Juenet M, Aid-Launais R, et al. Development of polymer microcapsules functionalized with fucoidan to target P-selectin overexpressed in cardiovascular diseases. Adv Healthc Mater 2017; 6(4): 1601200-10.
[http://dx.doi.org/10.1002/adhm.201601200] [PMID: 27943662]
[101]
Juenet M, Aid-Launais R, Li B, et al. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials 2018; 156: 204-16.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.047] [PMID: 29216534]
[102]
Mukherjee S, Sau S, Madhuri D, et al. Green synthesis and characterization of monodispersed gold nanoparticles: toxicity study, delivery of doxorubicin and its bio-distribution in mouse model. J Biomed Nanotechnol 2016; 12(1): 165-81.
[http://dx.doi.org/10.1166/jbn.2016.2141] [PMID: 27301182]
[103]
Ma J, Zou Y, Jiang Z, et al. An in situ XAFS study--the formation mechanism of gold nanoparticles from X-ray-irradiated ionic liquid. Phys Chem Chem Phys 2013; 15(28): 11904-8.
[http://dx.doi.org/10.1039/c3cp51743h] [PMID: 23765109]
[104]
Manivasagan P, Venkatesan J, Kang KH, Sivakumar K, Park SJ, Kim SK. Production of α-amylase for the biosynthesis of gold nanoparticles using Streptomyces sp. MBRC-82. Int J Biol Macromol 2015; 72: 71-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.07.045] [PMID: 25128097]
[105]
Manivasagan P, Bharathiraja S, Bui NQ, et al. Doxorubicin-loaded fucoidan capped gold nanoparticles for drug delivery and photoacoustic imaging. Int J Biol Macromol 2016; 91: 578-88.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.007] [PMID: 27267570]
[106]
Manivasagan P, Bharathiraja S, Santha Moorthy M, et al. Anti-EGFR antibody conjugation of fucoidan-coated gold nanorods as novel photothermal ablation agents for cancer therapy. ACS Appl Mater Interfaces 2017; 9(17): 14633-46.
[http://dx.doi.org/10.1021/acsami.7b00294] [PMID: 28398713]
[107]
Chiang CS, Lin YJ, Lee R, et al. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat Nanotechnol 2018; 13(8): 746-54.
[http://dx.doi.org/10.1038/s41565-018-0146-7] [PMID: 29760523]
[108]
Ren X, Liu L, Zhou Y, et al. Nanoparticle siRNA against BMI-1 with a polyethylenimine–laminarin conjugate for gene therapy in human breast cancer. Bioconjug Chem 2016; 27(1): 66-73.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00650] [PMID: 26629893]
[109]
Yu Y, Zou S, Wang K, et al. Synthesis, characterization and in vitro evaluation of dual pH/redox sensitive marine laminarin-based nanomedicine carrier biomaterial for cancer therapy. J Biomed Nanotechnol 2018; 14(9): 1568-77.
[http://dx.doi.org/10.1166/jbn.2018.2609] [PMID: 29958551]
[110]
da Silva CL, Del Ciampo JO, Rossetti FC, Bentley MV, Pierre MB. PLGA nanoparticles as delivery systems for protoporphyrin IX in topical PDT: cutaneous penetration of photosensitizer observed by fluorescence microscopy. J Nanosci Nanotechnol 2013; 13(10): 6533-40.
[http://dx.doi.org/10.1166/jnn.2013.7789] [PMID: 24245111]
[111]
Savarimuthu WP, Gananathan P, Rao AP, Manickam E, Singaravelu G. Protoporphyrin IX-gold nanoparticle conjugates for targeted photodynamic therapy-an in vitro Study. J Nanosci Nanotechnol 2015; 15(8): 5577-84.
[http://dx.doi.org/10.1166/jnn.2015.10302] [PMID: 26369120]
[112]
Kim J, Lim W, Kim S, et al. Photodynamic therapy (PDT) resistance by PARP1 regulation on PDT-induced apoptosis with autophagy in head and neck cancer cells. J Oral Pathol Med 2014; 43(9): 675-84.
[http://dx.doi.org/10.1111/jop.12195] [PMID: 24931630]
[113]
Chi FC, Kulkarni SS, Zulueta MM, Hung SC. Synthesis of alginate oligosaccharides containing L-guluronic acids. Chem Asian J 2009; 4(3): 386-90.
[http://dx.doi.org/10.1002/asia.200800406] [PMID: 19097129]
[114]
Dinkelaar J, van den Bos LJ, Hogendorf WF, et al. Stereoselective synthesis of L-guluronic acid alginates. Chemistry 2008; 14(30): 9400-11.
[http://dx.doi.org/10.1002/chem.200800960] [PMID: 18770512]
[115]
Codée JDC, van den Bos LJ, de Jong AR, et al. The stereodirecting effect of the glycosyl C5-carboxylate ester: stereoselective synthesis of β-mannuronic acid alginates. J Org Chem 2009; 74(1): 38-47.
[http://dx.doi.org/10.1021/jo8020192] [PMID: 19035740]
[116]
van den Bos LJ, Dinkelaar J, Overkleeft HS, van der Marel GA. Stereocontrolled synthesis of β-D-mannuronic acid esters: synthesis of an alginate trisaccharide. J Am Chem Soc 2006; 128(40): 13066-7.
[http://dx.doi.org/10.1021/ja064787q] [PMID: 17017782]
[117]
Tang SL, Pohl NLB. Automated Solution-Phase Synthesis of β-1,4-mannuronate and β-1,4-mannan. Org Lett 2015; 17(11): 2642-5.
[http://dx.doi.org/10.1021/acs.orglett.5b01013] [PMID: 25955886]
[118]
Zhang Q. Van rijssel ER, Walvoort MTC, Overkleeft HS, Van der marel GA, Codée JDC. Acceptor reactivity in the total synthesis of alginate fragments containing α-L-guluronic acid and β-D-mannuronic acid. Angew Chem Int Ed 2015; 127: 7780-3.
[http://dx.doi.org/10.1002/ange.201502581]
[119]
Plante OJ, Palmacci ER, Seeberger PH. Automated solid-phase synthesis of oligosaccharides. Science 2001; 291(5508): 1523-7.
[http://dx.doi.org/10.1126/science.1057324] [PMID: 11222853]
[120]
Walvoort MTC, van den Elst H, Plante OJ, et al. Automated solid-phase synthesis of β-mannuronic acid alginates. Angew Chem Int Ed Engl 2012; 51(18): 4393-6.
[http://dx.doi.org/10.1002/anie.201108744] [PMID: 22334421]
[121]
Tang SL, Pohl NLB. Automated solution-phase synthesis of β-1,4-mannuronate and β-1,4-mannan. Org Lett 2015; 17(11): 2642-5.
[http://dx.doi.org/10.1021/acs.orglett.5b01013] [PMID: 25955886]
[122]
Khatuntseva EA, Ustuzhanina NE, Zatonskii GV, Shashkov AS, Usov AI, Nifant’ev NE. Synthesis, NMR and conformational studies of fucoidan fragments 1:1 desulfated 2,3- and 3,4-branched trisaccharide fragments and constituting disaccharides. J Carbohydr Chem 2000; 19: 1151-73.
[http://dx.doi.org/10.1080/07328300008544140]
[123]
Hua Y, Du Y, Yu G, Chu S. Synthesis and biological activities of octyl 2,3-di-O-sulfo-α-l-fucopyranosyl-(1→3)-2-O-sulfo-α-l-fucopyranosyl-(1→4)-2,3-di-O-sulfo-α-l-fucopyranosyl-(1→3)-2-O-sulfo-α-l-fucopyranosyl-(1→4)-2,3-di-O-sulfo-β-l-fucopyranoside. Carbohydr Res 2004; 339: 2083-90.
[http://dx.doi.org/10.1016/j.carres.2004.06.006] [PMID: 15280053]
[124]
Zong C, Li Z, Sun T, Wang P, Ding N, Li Y. Convenient synthesis of sulfated oligofucosides. Carbohydr Res 2010; 345(11): 1522-32.
[http://dx.doi.org/10.1016/j.carres.2010.04.006] [PMID: 20510394]
[125]
Kasai A, Arafuka S, Koshiba N, Takahashi D, Toshima K. Systematic synthesis of low-molecular weight fucoidan derivatives and their effect on cancer cells. Org Biomol Chem 2015; 13(42): 10556-68.
[http://dx.doi.org/10.1039/C5OB01634G] [PMID: 26340595]
[126]
Tengdelius M, Cheung KY, Griffith M, Påhlsson P, Konradsson P. Improved antiviral properties of chain end lipophilic fucoidan-mimetic glycopolymers synthesized by RAFT polymerization. Eur Polym J 2018; 98: 285-94.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.11.025]
[127]
Tengdelius M, Gurav D, Konradsson P, Påhlsson P, Griffith M, Oommen OP. Synthesis and anticancer properties of fucoidan-mimetic glycopolymer coated gold nanoparticles. Chem Commun (Camb) 2015; 51(40): 8532-5.
[http://dx.doi.org/10.1039/C5CC02387D] [PMID: 25892661]
[128]
Tengdelius M, Kardeby C, Fälker K, et al. Fucoidan-mimetic glycopolymers as tools for studying molecular and cellular responses in human blood platelets. Macromol Biosci 2017; 17(2): 1600257-65.
[http://dx.doi.org/10.1002/mabi.201600257] [PMID: 27616165]
[129]
Fan F, Cai C, Wang W, et al. Synthesis of fucoidan-mimetic glycopolymers with well-defined sulfation patterns via emulsion ring-opening metathesis polymerization. ACS Macro Lett 2018; 7: 330-5.
[http://dx.doi.org/10.1021/acsmacrolett.8b00056]
[130]
Adamo R, Tontini M, Brogioni G, et al. Synthesis of Laminarin fragments and evaluation of a β-(1,3)-glucan hexasaccaride-CRM197 conjugate as vaccine candidate against candida albicans. J Carbohydr Chem 2011; 30: 249-80.
[http://dx.doi.org/10.1080/07328303.2011.604453]
[131]
Tanaka H, Kawai T, Adachi Y, Ohno N, Takahashi T. β(1,3) Branched heptadeca- and linear hexadeca-saccharides possessing an aminoalkyl group as a strong ligand to dectin-1. Chem Commun (Camb) 2010; 46(43): 8249-51.
[http://dx.doi.org/10.1039/c0cc03153d] [PMID: 20890487]
[132]
Weishaupt MW, Hahm HS, Geissner A, Seeberger PH. Automated glycan assembly of branched β-(1,3)-glucans to identify antibody epitopes. Chem Commun (Camb) 2017; 53(25): 3591-4.
[http://dx.doi.org/10.1039/C7CC00520B] [PMID: 28291272]
[133]
Xu X, Wu X, Wang Q, et al. Immunomodulatory effects of alginate oligosaccharides on murine macrophage RAW264.7 cells and their structure-activity relationships. J Agric Food Chem 2014; 62(14): 3168-76.
[http://dx.doi.org/10.1021/jf405633n] [PMID: 24628671]
[134]
Xu X, Bi D, Wu X, et al. Unsaturated guluronate oligosaccharide enhances the antibacterial activities of macrophages. FASEB J 2014; 28(6): 2645-54.
[http://dx.doi.org/10.1096/fj.13-247791] [PMID: 24599964]
[135]
Bi D, Zhou R, Cai N, et al. Alginate enhances Toll-like receptor 4-mediated phagocytosis by murine RAW264.7 macrophages. Int J Biol Macromol 2017; 105(Pt 2): 1446-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.129] [PMID: 28739412]
[136]
Choi EM, Kim AJ, Kim YO, Hwang JK. Immunomodulating activity of arabinogalactan and fucoidan in vitro. J Med Food 2005; 8(4): 446-53.
[http://dx.doi.org/10.1089/jmf.2005.8.446] [PMID: 16379554]
[137]
Kim MH, Joo HG. Immunostimulatory effects of fucoidan on bone marrow-derived dendritic cells. Immunol Lett 2008; 115(2): 138-43.
[http://dx.doi.org/10.1016/j.imlet.2007.10.016] [PMID: 18077003]
[138]
Jin JO, Zhang W, Du JY, Wong KW, Oda T, Yu Q. Fucoidan can function as an adjuvant in vivo to enhance dendritic cell maturation and function and promote antigen-specific T cell immune responses. PLoS One 2014; 9(6)e99396
[http://dx.doi.org/10.1371/journal.pone.0099396] [PMID: 24911024]
[139]
Kawashima T, Murakami K, Nishimura I, Nakano T, Obata A. A sulfated polysaccharide, fucoidan, enhances the immunomodulatory effects of lactic acid bacteria. Int J Mol Med 2012; 29(3): 447-53.
[PMID: 22160132]
[140]
Vannucci L, Krizan J, Sima P, et al. Immunostimulatory properties and antitumor activities of glucans (Review). Int J Oncol 2013; 43(2): 357-64. [Review].
[http://dx.doi.org/10.3892/ijo.2013.1974] [PMID: 23739801]
[141]
Lee JY, Kim YJ, Kim HJ, Kim YS, Park W. Immunostimulatory effect of laminarin on RAW 264.7 mouse macrophages. Molecules 2012; 17(5): 5404-11.
[http://dx.doi.org/10.3390/molecules17055404] [PMID: 22569419]
[142]
Russo R, Malinconico M, Santagata G. Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules 2007; 8(10): 3193-7.
[http://dx.doi.org/10.1021/bm700565h] [PMID: 17803277]
[143]
Laurienzo P, Malinconico M, Motta A, Vicinanza A. Synthesis and characterization of a novel alginate - poly(ethylene glycol) graft copolymer. Carbohydr Polym 2005; 62: 274-82.
[http://dx.doi.org/10.1016/j.carbpol.2005.08.005]
[144]
Seifert DB, Phillips JA. Porous alginate--poly(ethylene glycol) entrapment system for the cultivation of mammalian cells. Biotechnol Prog 1997; 13(5): 569-76.
[http://dx.doi.org/10.1021/bp970071a] [PMID: 9336976]
[145]
Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci 2006; 6(8): 623-33.
[http://dx.doi.org/10.1002/mabi.200600069] [PMID: 16881042]
[146]
Gilchrist T, Martin AM. Wound treatment with Sorbsan--an alginate fibre dressing. Biomaterials 1983; 4(4): 317-20.
[http://dx.doi.org/10.1016/0142-9612(83)90036-4] [PMID: 6640060]
[147]
Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 2014; 463(2): 127-36.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.015] [PMID: 24368109]
[148]
Qin Y. Alginate fibres: an overview of the production processes and applications in wound management. Polym Int 2008; 57: 171-80.
[http://dx.doi.org/10.1002/pi.2296]
[149]
Zahedi P, Rezaeian I, Ranaei-siadat S, Jafari S, Supaphol P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 2010; 21: 77-95.
[150]
Doyle JW, Roth TP, Smith RM, Li YQ, Dunn RM. Effects of calcium alginate on cellular wound healing processes modeled in vitro. J Biomed Mater Res 1996; 32(4): 561-8.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199612)32:4<561:AID-JBM9>3.0.CO;2-P] [PMID: 8953146]
[151]
Zhou Q, Kang H, Bielec M, et al. Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing. Carbohydr Polym 2018; 197: 292-304.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.078] [PMID: 30007617]
[152]
Yu W, Jiang Y, Sun T, et al. Design of a novel wound dressing consisting of alginate hydrogel and simvastatin-incorporated mesoporous hydroxyapatite microspheres for cutaneous wound healing. Rsc Adv 2016; 6: 104375-87.
[http://dx.doi.org/10.1039/C6RA20892D]
[153]
Dhall S, Silva JP, Liu Y, et al. Release of insulin from PLGA-alginate dressing stimulates regenerative healing of burn wounds in rats. Clin Sci (Lond) 2015; 129(12): 1115-29.
[http://dx.doi.org/10.1042/CS20150393] [PMID: 26310669]
[154]
Babavalian H, Tebyanian H, Latifi AM, Shokrgozar MA, Bonakdar S, Shakeri F. The effect of synthetic alginate sulfate hydrogels with recombinant PDGF-BB on Wound healing. Bratisl Lek Listy 2018; 119(6): 391-6.
[http://dx.doi.org/10.4149/BLL_2018_072] [PMID: 29947241]
[155]
Li M, Li H, Li X, et al. A bioinspired alginate-gum arabic hydrogel with micro-/nanoscale structures for controlled drug release in chronic wound healing. ACS Appl Mater Interfaces 2017; 9(27): 22160-75.
[http://dx.doi.org/10.1021/acsami.7b04428] [PMID: 28640580]
[156]
Wijesekara I, Pangestuti R, Kim S. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 2011; 84: 14-21.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.062]
[157]
Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 2011; 9(2): 196-223.
[http://dx.doi.org/10.3390/md9020196] [PMID: 21566795]
[158]
Ma L, Cheng C, Nie C, et al. Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. J Mater Chem B Mater Biol Med 2016; 4: 3203-15.
[http://dx.doi.org/10.1039/C6TB00636A]
[159]
Huang R, Du Y, Yang J. Preparation and in vitro anticoagulant activities of alginate sulfate and its quaterized derivatives. Carbohydr Polym 2003; 52: 19-24.
[http://dx.doi.org/10.1016/S0144-8617(02)00258-8]
[160]
Li Q, Zeng Y, Wang L, Guan H, Li C, Zhang L. The heparin-like activities of negatively charged derivatives of low-molecular-weight polymannuronate and polyguluronate. Carbohydr Polym 2017; 155: 313-20.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.084] [PMID: 27702517]
[161]
Guan H. Study on the new drug Polysaccharide sulfate sodium. J Med Res 1999; 28: 8.
[162]
Li C, Sun Y, Guan H. Progress of marine drug propylene glycol alginate sodium sulfate (PSS) and inspiration. Chin Bull Life Sci 2012; 9: 1019-25.
[163]
Xin M, Ren L, Sun Y, et al. Anticoagulant and antithrombotic activities of low-molecular-weight propylene glycol alginate sodium sulfate (PSS). Eur J Med Chem 2016; 114: 33-40.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.063] [PMID: 26974373]
[164]
Shanmugam M, Mody KH. Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Curr Sci India 2000; 79: 1672-83.
[165]
Miao HQ, Ishai-Michaeli R, Peretz T, Vlodavsky I. Laminarin sulfate mimics the effects of heparin on smooth muscle cell proliferation and basic fibroblast growth factor-receptor binding and mitogenic activity. J Cell Physiol 1995; 164(3): 482-90.
[http://dx.doi.org/10.1002/jcp.1041640306] [PMID: 7650058]
[166]
Tran KTM, Vo TV, Duan W, Tran PH, Tran TT. Perspectives of engineered marine derived polymers for biomedical nanoparticles. Curr Pharm Des 2016; 22(19): 2844-56.
[http://dx.doi.org/10.2174/1381612822666160217124735] [PMID: 26898745]
[167]
Ruocco N, Costantini S, Guariniello S, Costantini M. Polysaccharides from the marine environmentwith pharmacological, cosmeceutical and nutraceutical potential. Molecules 2016; 21(5): 551-67.
[http://dx.doi.org/10.3390/molecules21050551] [PMID: 27128892]
[168]
Grauffel V, Kloareg B, Mabeau S, Durand P, Jozefonvicz J. New natural polysaccharides with potent antithrombic activity: fucans from brown algae. Biomaterials 1989; 10(6): 363-8.
[http://dx.doi.org/10.1016/0142-9612(89)90127-0] [PMID: 2804225]
[169]
Pereira MS, Mulloy B, Mourão PAS. Structure and anticoagulant activity of sulfated fucans. Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J Biol Chem 1999; 274(12): 7656-67.
[http://dx.doi.org/10.1074/jbc.274.12.7656] [PMID: 10075653]
[170]
Kuznetsova TA, Besednova NN, Mamaev AN, Momot AP, Shevchenko NM, Zvyagintseva TN. Anticoagulant activity of fucoidan from brown algae Fucus evanescens of the Okhotsk Sea. Bull Exp Biol Med 2003; 136(5): 471-3.
[http://dx.doi.org/10.1023/B:BEBM.0000017096.72246.1f] [PMID: 14968163]
[171]
Haroun-Bouhedja F, Ellouali M, Sinquin C, Boisson-Vidal C. Relationship between sulfate groups and biological activities of fucans. Thromb Res 2000; 100(5): 453-9.
[http://dx.doi.org/10.1016/S0049-3848(00)00338-8] [PMID: 11150589]
[172]
Pomin VH, Pereira MS, Valente AP, Tollefsen DM, Pavão MS, Mourão PA. Selective cleavage and anticoagulant activity of a sulfated fucan: stereospecific removal of a 2-sulfate ester from the polysaccharide by mild acid hydrolysis, preparation of oligosaccharides, and heparin cofactor II-dependent anticoagulant activity. Glycobiology 2005; 15(4): 369-81.
[http://dx.doi.org/10.1093/glycob/cwi021] [PMID: 15590773]
[173]
Chevolot L, Mulloy B, Ratiskol J, Foucault A, Colliec-Jouault S. A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydr Res 2001; 330(4): 529-35.
[http://dx.doi.org/10.1016/S0008-6215(00)00314-1] [PMID: 11269406]
[174]
Nishino T, Yokoyama G, Dobashi K, Fujihara M, Nagumo T. Isolation, purification, and characterization of fucose-containing sulfated polysaccharides from the brown seaweed Ecklonia kurome and their blood-anticoagulant activities. Carbohydr Res 1989; 186(1): 119-29.
[http://dx.doi.org/10.1016/0008-6215(89)84010-8] [PMID: 2720702]
[175]
Dobashi K, Nishino T, Fujihara M, Nagumo T. Isolation and preliminary characterization of fucose-containing sulfated polysaccharides with blood-anticoagulant activity from the brown seaweed Hizikia fusiforme. Carbohydr Res 1989; 194: 315-20.
[http://dx.doi.org/10.1016/0008-6215(89)85032-3] [PMID: 2620305]
[176]
Xin X, Geng M, Guan H, Li Z. Study on the mechanism of inhibitory action of 911 on replication of HIV-1 in vitro. Chin J Mar Drugs 2000; 4: 15-8.
[177]
Geng M, Ding H, Xin X, Liang P. Studies of the anti-aids effects of marine polysaccharide drug 911 and its related mechanisms of Action. Chin J Mar Drugs 2000; 6: 4-8.
[178]
Meiyu G, Fuchuan L, Xianliang X, Jing L, Zuowei Y, Huashi G. The potential molecular targets of marine sulfated polymannuroguluronate interfering with HIV-1 entry. Interaction between SPMG and HIV-1 rgp120 and CD4 molecule. Antiviral Res 2003; 59(2): 127-35.
[http://dx.doi.org/10.1016/S0166-3542(03)00068-8] [PMID: 12895696]
[179]
Miao B, Geng M, Li J, et al. Sulfated polymannuroguluronate, a novel anti-acquired immune deficiency syndrome (AIDS) drug candidate, targeting CD4 in lymphocytes. Biochem Pharmacol 2004; 68(4): 641-9.
[http://dx.doi.org/10.1016/j.bcp.2004.04.009] [PMID: 15276071]
[180]
Liu H, Geng M, Xin X, et al. Multiple and multivalent interactions of novel anti-AIDS drug candidates, sulfated polymannuronate (SPMG)-derived oligosaccharides, with gp120 and their anti-HIV activities. Glycobiology 2005; 15(5): 501-10.
[http://dx.doi.org/10.1093/glycob/cwi031] [PMID: 15616125]
[181]
Jiang B, Xu X, Li L, Yuan W. Study on “911” anti-HBV effect in Hep G2 2215 cells culturs. Mod Prev Med 2003; 30: 517-8.
[182]
Damonte EB, Matulewicz MC, Cerezo AS. Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem 2004; 11(18): 2399-419.
[http://dx.doi.org/10.2174/0929867043364504] [PMID: 15379705]
[183]
Mandal P, Mateu CG, Chattopadhyay K, Pujol CA, Damonte EB, Ray B. Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antivir Chem Chemother 2007; 18(3): 153-62.
[http://dx.doi.org/10.1177/095632020701800305] [PMID: 17626599]
[184]
Hemmingson JA, Falshaw R, Furneaux RH, Thompson K. Structure and antiviral activity of the galactofucan sulfates extracted from Undaria Pinnatifida (Phaeophyta). J Appl Phycol 2006; 18: 185-93.
[http://dx.doi.org/10.1007/s10811-006-9096-9]
[185]
Adhikari U, Mateu CG, Chattopadhyay K, Pujol CA, Damonte EB, Ray B. Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry 2006; 67(22): 2474-82.
[http://dx.doi.org/10.1016/j.phytochem.2006.05.024] [PMID: 17067880]
[186]
Hayashi K, Nakano T, Hashimoto M, Kanekiyo K, Hayashi T. Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. Int Immunopharmacol 2008; 8(1): 109-16.
[http://dx.doi.org/10.1016/j.intimp.2007.10.017] [PMID: 18068106]
[187]
Elizondo-Gonzalez R, Cruz-Suarez LE, Ricque-Marie D, Mendoza-Gamboa E, Rodriguez-Padilla C, Trejo-Avila LM. In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus. Virol J 2012; 9: 307-15.
[http://dx.doi.org/10.1186/1743-422X-9-307] [PMID: 23234372]
[188]
Dinesh S, Menon T, Hanna LE, Suresh V, Sathuvan M, Manikannan M. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii. Int J Biol Macromol 2016; 82: 83-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.078] [PMID: 26472515]
[189]
Thuy TTT, Ly BM, Van TTT, et al. Anti-HIV activity of fucoidans from three brown seaweed species. Carbohydr Polym 2015; 115: 122-8.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.068] [PMID: 25439876]
[190]
Leite EL, Medeiros MG, Rocha HA, et al. Structure and pharmacological activities of a sulfated xylofucoglucuronan from the alga Spatoglossum schröederi. Plant Sci 1998; 132: 215-28.
[http://dx.doi.org/10.1016/S0168-9452(98)00012-0]
[191]
Wang W, Wu J, Zhang X, et al. Inhibition of Influenza A Virus infection by fucoidan targeting viral neuraminidase and cellular EGFR pathway. Sci Rep 2017; 7: 40760.
[http://dx.doi.org/10.1038/srep40760] [PMID: 28094330]
[192]
Muto S, Niimura K, Oohara M, et al. Polysaccharides from marine algae and antiviral drugs containing the same as active ingredients Eur Patent EP 295956, 2018.
[193]
Hu X, Jiang X, Hwang H, Liu S, Guan H. Antitumour activities of alginate-derived oligosaccharides and their sulphated substitution derivatives. Eur J Phycol 2004; 39: 67-71.
[http://dx.doi.org/10.1080/09670260310001636695]
[194]
Dheer D, Arora D, Jaglan S, Rawal RK, Shankar R. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery. J Drug Target 2017; 25(1): 1-16.
[http://dx.doi.org/10.3109/1061186X.2016.1172589] [PMID: 27030377]
[195]
Xie M, Zhang F, Liu L, et al. Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Appl Surf Sci 2018; 440: 853-60.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.175]
[196]
Bhunchu S, Rojsitthisak P. Biopolymeric alginate-chitosan nanoparticles as drug delivery carriers for cancer therapy. Pharmazie 2014; 69(8): 563-70.
[PMID: 25158565]
[197]
Brulé S, Levy M, Wilhelm C, et al. Doxorubicin release triggered by alginate embedded magnetic nanoheaters: a combined therapy. Adv Mater 2011; 23(6): 787-90.
[http://dx.doi.org/10.1002/adma.201003763] [PMID: 21287643]
[198]
Ciofani G, Riggio C, Raffa V, Menciassi A, Cuschieri A. A bi-modal approach against cancer: magnetic alginate nanoparticles for combined chemotherapy and hyperthermia. Med Hypotheses 2009; 73(1): 80-2.
[http://dx.doi.org/10.1016/j.mehy.2009.01.031] [PMID: 19272717]
[199]
Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005; 5(11): 876-85.
[http://dx.doi.org/10.1038/nrc1736] [PMID: 16239906]
[200]
Aisa Y, Miyakawa Y, Nakazato T, et al. Fucoidan induces apoptosis of human HS-sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways. Am J Hematol 2005; 78(1): 7-14.
[http://dx.doi.org/10.1002/ajh.20182] [PMID: 15609279]
[201]
Choo GS, Lee HN, Shin SA, Kim HJ, Jung JY. Anticancer effect of fucoidan on DU-145 prostate cancer cells through inhibition of PI3K/Akt and MAPK pathway expression. Mar Drugs 2016; 14(7): 126-37.
[http://dx.doi.org/10.3390/md14070126] [PMID: 27399727]
[202]
Boo HJ, Hong JY, Kim SC, et al. The anticancer effect of fucoidan in PC-3 prostate cancer cells. Mar Drugs 2013; 11(8): 2982-99.
[http://dx.doi.org/10.3390/md11082982] [PMID: 23966032]
[203]
Lee HE, Choi ES, Shin JA, et al. Fucoidan induces caspase-dependent apoptosis in MC3 human mucoepidermoid carcinoma cells. Exp Ther Med 2014; 7(1): 228-32.
[http://dx.doi.org/10.3892/etm.2013.1368] [PMID: 24348795]
[204]
Sanjeewa KKA, Lee JS, Kim WS, Jeon YJ. The potential of brown-algae polysaccharides for the development of anticancer agents: An update on anticancer effects reported for fucoidan and laminaran. Carbohydr Polym 2017; 177: 451-9.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.005] [PMID: 28962791]
[205]
Cumashi A, Ushakova NA, Preobrazhenskaya ME, et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007; 17(5): 541-52.
[http://dx.doi.org/10.1093/glycob/cwm014] [PMID: 17296677]
[206]
Alekseyenko TV, Zhanayeva SY, Venediktova AA, et al. Antitumor and antimetastatic activity of fucoidan, a sulfated polysaccharide isolated from the Okhotsk Sea Fucus evanescens brown alga. Bull Exp Biol Med 2007; 143(6): 730-2.
[http://dx.doi.org/10.1007/s10517-007-0226-4] [PMID: 18239813]
[207]
Liu JM, Bignon J, Haroun-Bouhedja F, et al. Inhibitory effect of fucoidan on the adhesion of adenocarcinoma cells to fibronectin. Anticancer Res 2005; 25(3B): 2129-33.
[PMID: 16158954]
[208]
Khotimchenko YS. Antitumor properties of nonstarch polysaccharides: fucoidans and chitosans. Russ J Mar Biol 2010; 36: 321-30.
[http://dx.doi.org/10.1134/S1063074010050019]
[209]
Chen MC, Hsu WL, Hwang PA, Chou TC. Low molecular weight fucoidan inhibits tumor angiogenesis through downregulation of HIF-1/VEGF signaling under hypoxia. Mar Drugs 2015; 13(7): 4436-51.
[http://dx.doi.org/10.3390/md13074436] [PMID: 26193287]
[210]
Chen MC, Hsu WL, Hwang PA, Chen YL, Chou TC. Combined administration of fucoidan ameliorates tumor and chemotherapy-induced skeletal muscle atrophy in bladder cancer-bearing mice. Oncotarget 2016; 7(32): 51608-18.
[http://dx.doi.org/10.18632/oncotarget.9958] [PMID: 27323407]
[211]
Ji CF, Ji YB. Laminarin-induced apoptosis in human colon cancer LoVo cells. Oncol Lett 2014; 7(5): 1728-32.
[http://dx.doi.org/10.3892/ol.2014.1952] [PMID: 24765209]
[212]
Ermakova S, Men’shova R, Vishchuk O, et al. Water-soluble polysaccharides from the brown alga Eisenia bicyclis: Structural characteristics and antitumor activity. Algal Res 2013; 2: 51-8.
[http://dx.doi.org/10.1016/j.algal.2012.10.002]
[213]
Usoltseva (menshova) RV, Anastyuk SD, Shevchenko NM, Zvyagintseva TN, Ermakova SP. The comparison of structure and anticancer activity in vitro of polysaccharides from brown algae Alaria marginata and A. angusta. Carbohydr Polym 2016; 153: 258-65.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.103]
[214]
Malyarenko OS, Usoltseva RV, Shevchenko NM, Isakov VV, Zvyagintseva TN, Ermakova SP. In vitro anticancer activity of the laminarans from Far Eastern brown seaweeds and their sulfated derivatives. J Appl Phycol 2017; 29: 543-53.
[http://dx.doi.org/10.1007/s10811-016-0915-3]
[215]
Usoltseva RV, Shevchenko NM, Malyarenko OS, Ishina IA, Ivannikova SI, Ermakova SP. Structure and anticancer activity of native and modified polysaccharides from brown alga Dictyota dichotoma. Carbohydr Polym 2018; 180: 21-8.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.006] [PMID: 29103498]
[217]
Hampson FC, Farndale A, Strugala V, Sykes J, Jolliffe IG, Dettmar PW. Alginate rafts and their characterisation. Int J Pharm 2005; 294(1-2): 137-47.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.036] [PMID: 15814238]
[218]
Mandel KG, Daggy BP, Brodie DA, Jacoby HI. Review article: alginate-raft formulations in the treatment of heartburn and acid reflux. Aliment Pharmacol Ther 2000; 14(6): 669-90.
[http://dx.doi.org/10.1046/j.1365-2036.2000.00759.x] [PMID: 10848650]
[219]
Corvaglia L, Monari C, Martini S, Aceti A, Faldella G. Pharmacological therapy of gastroesophageal reflux in preterm infants. Gastroenterol Res Pract 2013; 2013714564
[http://dx.doi.org/10.1155/2013/714564] [PMID: 23878533]
[220]
Ausili E, Paolucci V, Triarico S, et al. Treatment of pressure sores in spina bifida patients with calcium alginate and foam dressings. Eur Rev Med Pharmacol Sci 2013; 17(12): 1642-7.
[PMID: 23832732]
[221]
Carella S, Maruccia M, Fino P, Onesti MG. An atypical case of Henoch-Shonlein purpura in a young patient: treatment of the skin lesions with hyaluronic acid-based dressings. In Vivo 2013; 27(1): 147-51.
[PMID: 23239864]
[222]
Xue YT, Ren L, Li S, et al. Study on quality control of sulfated polysaccharide drug, propylene glycol alginate sodium sulfate (PSS). Carbohydr Polym 2016; 144: 330-7.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.001] [PMID: 27083824]
[223]
Li C, Sun Y, Guan H. Progress of marine drug propylene glycol alginate sodium sulfate (PSS) and inspiration. Chin Bull Life Sci 2012; 24: 1019-25.
[224]
Zeng Y, Han Z, Yang M, et al. An overview of marine polysaccharide-derived drugs in China. Chin J Mar Drugs 2013; 32: 67-75.
[225]
Cummings J, Lee G, Mortsdorf T, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement (N Y) 2017; 3(3): 367-84.
[http://dx.doi.org/10.1016/j.trci.2017.05.002] [PMID: 29067343]
[226]
Jiang RW, Du XG, Zhang X, et al. Synthesis and bioassay of β-(1,4)-D-mannans as potential agents against Alzheimer’s disease. Acta Pharmacol Sin 2013; 34(12): 1585-91.
[http://dx.doi.org/10.1038/aps.2013.104] [PMID: 24241344]
[227]
Yu G, Zhao X. Carbohydrate-based Pharmaceutics. Qingdao, China: Ocean University of China 2012.
[229]
Ren R, Azuma Y, Ojima T, et al. Modulation of platelet aggregation-related eicosanoid production by dietary F-fucoidan from brown alga Laminaria japonica in human subjects. Br J Nutr 2013; 110(5): 880-90.
[http://dx.doi.org/10.1017/S000711451200606X] [PMID: 23374164]
[230]
Hernández-Corona DM, Martínez-Abundis E, González-Ortiz M. Effect of fucoidan administration on insulin secretion and insulin resistance in overweight or obese adults. J Med Food 2014; 17(7): 830-2.
[http://dx.doi.org/10.1089/jmf.2013.0053] [PMID: 24611906]
[231]
Negishi H, Mori M, Mori H, Yamori Y. Supplementation of elderly Japanese men and women with fucoidan from seaweed increases immune responses to seasonal influenza vaccination. J Nutr 2013; 143(11): 1794-8.
[http://dx.doi.org/10.3945/jn.113.179036] [PMID: 24005608]
[232]
Tsai HL, Tai CJ, Huang CW, Chang FR, Wang JY. Efficacy of low-molecular-weight fucoidan as a supplemental therapy in metastatic colorectal cancer patients: A double-blind randomized controlled trial. Mar Drugs 2017; 15(4): 122-34.
[http://dx.doi.org/10.3390/md15040122] [PMID: 28430159]
[233]
Yang Y, Zhao X, Li J, et al. A β-glucan from Durvillaea Antarctica has immunomodulatory effects on RAW264.7 macrophages via toll-like receptor 4. Carbohydr Polym 2018; 191: 255-65.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.019] [PMID: 29661317]
[234]
Ummarino D, Miele E, Martinelli M, et al. Effect of magnesium alginate plus simethicone on gastroesophageal reflux in infants. J Pediatr Gastroenterol Nutr 2015; 60(2): 230-5.
[http://dx.doi.org/10.1097/MPG.0000000000000521] [PMID: 25079477]
[236]
Jakaria M, Zaman R, Parvez M, et al. Comparative study among the different formulation of antacid tablets by using acid-base neutralization reaction. Glob J Pharmacol 2015; 9: 278-81.
[237]
De Ruigh A, Roman S, Chen J, Pandolfino JE, Kahrilas PJ. Gaviscon Double Action Liquid (antacid & alginate) is more effective than antacid in controlling post-prandial oesophageal acid exposure in GERD patients: a double-blind crossover study. Aliment Pharmacol Ther 2014; 40(5): 531-7.
[http://dx.doi.org/10.1111/apt.12857] [PMID: 25041141]
[240]
Rashaan ZM, Krijnen P, van den Akker-van Marle ME, et al. Clinical effectiveness, quality of life and cost-effectiveness of Flaminal® versus Flamazine® in the treatment of partial thickness burns: study protocol for a randomized controlled trial. Trials 2016; 17(1): 122-31.
[http://dx.doi.org/10.1186/s13063-016-1240-5] [PMID: 26945575]
[241]
Han G, Ceilley R. Chronic wound healing: A review of current management and treatments. Adv Ther 2017; 34(3): 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[242]
Sintler MP, Mahmood A, Smith SR, Simms MH, Vohra RK. Randomized trial comparing Quixil surgical sealant with Kaltostat hemostatic dressing to control suture line bleeding after carotid endarterectomy with ePTFE patch reconstruction. World J Surg 2005; 29(10): 1259-62.
[http://dx.doi.org/10.1007/s00268-005-7863-4] [PMID: 16136287]
[243]
Park SO, Han J, Minn KW, Jin US. Prevention of capsular contracture with Guardix-SG(®) after silicone implant insertion. Aesthetic Plast Surg 2013; 37(3): 543-8.
[http://dx.doi.org/10.1007/s00266-013-0087-3] [PMID: 23456146]
[244]
Sohn EJ, Ahn HB, Roh MS, Ryu WY, Kwon YH. Efficacy of temperature-sensitive Guardix-SG for adhesiolysis in experimentally induced eyelid adhesion in rabbits. Ophthal Plast Reconstr Surg 2013; 29(6): 458-63.
[http://dx.doi.org/10.1097/IOP.0b013e3182a22bae] [PMID: 24217475]
[245]
Abramowitz L, Weyandt GH, Havlickova B, et al. The diagnosis and management of haemorrhoidal disease from a global perspective. Aliment Pharmacol Ther 2010; 31(Suppl. 1): 1-58.
[http://dx.doi.org/10.1111/j.1365-2036.2010.04278.x] [PMID: 20500735]
[246]
Al Machot E, Hoffmann T, Lorenz K, Khalili I, Noack B, Pitak-arnnop P. Clinical outcomes after treatment of periodontal intrabony defects with nanocrystalline hydroxyapatite (Ostim) or enamel matrix derivatives (Emdogain): a randomized controlled clinical trial. BioMed Res Int 2014; 2014786353
[http://dx.doi.org/10.1155/2014/786353] [PMID: 24689056]
[247]
Yan XZ, Rathe F, Gilissen C, et al. The effect of enamel matrix derivative (Emdogain®) on gene expression profiles of human primary alveolar bone cells. J Tissue Eng Regen Med 2014; 8(6): 463-72.
[http://dx.doi.org/10.1002/term.1545] [PMID: 22689476]
[248]
Khan S, Tøndervik A, Sletta H, et al. Overcoming drug resistance with alginate oligosaccharides able to potentiate the action of selected antibiotics. Antimicrob Agents Chemother 2012; 56(10): 5134-41.
[http://dx.doi.org/10.1128/AAC.00525-12] [PMID: 22825116]
[249]
Pritchard MF, Powell LC, Menzies GE, et al. A new class of safe oligosaccharide polymer therapy to modify the mucus barrier of chronic respiratory disease. Mol Pharm 2016; 13(3): 863-72.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00794] [PMID: 26833139]
[250]
Jiang G, Yuan W, Zhang S. The study of antithrombotic effect and mechanism of propylene glycol mannate sulfate. Chin J Mar Drugs 1994; 1: 6-13.
[251]
Weng J, Lin Y, Zhu X, Wang Z. [Effects of PGMS on the functions of human platelets and endothelial cells]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 1997; 19(6): 414-8.
[PMID: 10453531]
[252]
Xin X, Ding H, Geng M, Liang P, Li Y, Guan H. Studies of the anti-AIDS effects of marine polysaccharide drug 911 and its related mechanisms of action. Chin J Mar Drugs 2000; 6: 4-8.
[253]
Zhao H, Liu H, Chen Y, et al. Oligomannurarate sulfate, a novel heparanase inhibitor simultaneously targeting basic fibroblast growth factor, combats tumor angiogenesis and metastasis. Cancer Res 2006; 66(17): 8779-87.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1382] [PMID: 16951194]
[254]
Zhao X, Yu G, Guan H, Yue N, Zhang Z, Li H. Preparation of low-molecular-weight polyguluronate sulfate and its anticoagulant and anti-inflammatory activities. Carbohydr Polym 2007; 69: 272-9.
[http://dx.doi.org/10.1016/j.carbpol.2006.10.024]
[255]
Zhao X. Studies on preparation, structure and activities of polyguluronate sulfate and its oligosaccharides. Qingdao, China: Ocean University of China 2007.
[256]
Hao C, Hao J, Wang W, et al. Insulin sensitizing effects of oligomannuronate-chromium (III) complexes in C2C12 skeletal muscle cells. PLoS One 2011; 6(9)e24598
[http://dx.doi.org/10.1371/journal.pone.0024598] [PMID: 21935427]
[257]
Hao C. Studies on the preparation and anti-type 2 diabetes mechanisms of marine oligosaccharide derivatives. Qingdao, China: Ocean University of China 2011.
[258]
Li Z, Zhang Q, Niu X, Zhang H, Xu Z. Fucoidan sulfate. Fine Spec Chem 2003; 2: 16-7.
[259]
Clinical Trials (Internet). U.S. National Institutes of Health: Available from. https://clinicaltrials.gov/ct2/show/NCT02875392?term=fucoidan&rank=3
[260]
Clinical Trials (Internet). U.S. National Institutes of Health: Available from. https://clinicaltrials.gov/ct2/show/NCT03130829?term=fucoidan&rank=2

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy