Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Natural Products as Potential Anti-Alzheimer Agents

Author(s): Siva S. Panda* and Nancy Jhanji

Volume 27, Issue 35, 2020

Page: [5887 - 5917] Pages: 31

DOI: 10.2174/0929867326666190618113613

Price: $65

Abstract

Medicinal plants have curative properties due to the presence of various complex chemical substances of different composition, which are found as secondary metabolites in one or more parts of the plant. The diverse secondary metabolites play an important role in the prevention and cure of various diseases including neurodegenerative diseases like Alzheimer’s disease. Naturally occurring compounds such as flavonoids, polyphenols, alkaloids, and glycosides found in various parts of the plant and/or marine sources may potentially protect neurodegeneration as well as improve memory and cognitive function. Many natural compounds show anti-Alzheimer activity through specific pharmacological mechanisms like targeting β-amyloid, Beta-secretase 1 and Acetylcholinesterase. In this review, we have compiled more than 130 natural products with a broad diversity in the class of compounds, which were isolated from different sources showing anti- Alzheimer properties.

Keywords: Alzheimer's disease, natural product, alternative treatment, plants, medicinal plants, ayurvedic medicine, Aβ aggregation.

[1]
Cragg, G.M.; Newman, D.J. Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta, 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008 ] [PMID: 23428572]
[2]
Harvey, A.L. Natural products in drug discovery. Drug Discov. Today, 2008, 13(19-20), 894-901.
[http://dx.doi.org/10.1016/j.drudis.2008.07.004 ] [PMID: 18691670]
[3]
Walt, G. WHO’s World Health Report 2003-shaping the future depends on strengthening health systems. BMJ, 2004, 328(7430), 6.
[http://dx.doi.org/10.1136/bmj.328.7430.6 ] [PMID: 14703524]
[4]
Korczyn, A.D.; Vakhapova, V. The prevention of the dementia epidemic. J. Neurol. Sci., 2007, 257(1-2), 2-4.
[http://dx.doi.org/10.1016/j.jns.2007.01.081 ] [PMID: 17490685]
[5]
Brookmeyer, R.; Johnson, E.; Ziegler-Graham, K.; Arrighi, H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement., 2007, 3(3), 186-191.
[http://dx.doi.org/10.1016/j.jalz.2007.04.381 ] [PMID: 19595937]
[6]
Essa, M.M.; Vijayan, R.K.; Castellano-Gonzalez, G.; Memon, M.A.; Braidy, N.; Guillemin, G.J. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem. Res., 2012, 37(9), 1829-1842.
[http://dx.doi.org/10.1007/s11064-012-0799-9 ] [PMID: 22614926]
[7]
Iqbal, K.; Grundke-Iqbal, I. Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement., 2010, 6(5), 420-424.
[http://dx.doi.org/10.1016/j.jalz.2010.04.006 ] [PMID: 20813343]
[8]
Macdonald, I.R.; Rockwood, K.; Martin, E.; Darvesh, S. Cholinesterase inhibition in Alzheimer’s disease: is specificity the answer? J. Alzheimers Dis., 2014, 42(2), 379-384.
[http://dx.doi.org/10.3233/JAD-140219 ] [PMID: 24898642]
[9]
Webber, K.M.; Raina, A.K.; Marlatt, M.W.; Zhu, X.; Prat, M.I.; Morelli, L.; Casadesus, G.; Perry, G.; Smith, M.A. The cell cycle in Alzheimer disease: a unique target for neuropharmacology. Mech. Ageing Dev., 2005, 126(10), 1019-1025.
[http://dx.doi.org/10.1016/j.mad.2005.03.024 ] [PMID: 15936057]
[10]
Khairallah, M.I.; Kassem, L.A. Alzheimer’s disease: current status of etiopathogenesis and therapeutic strategies. Pak. J. Biol. Sci., 2011, 14(4), 257-272.
[http://dx.doi.org/10.3923/pjbs.2011.257.272 ] [PMID: 21870628]
[11]
De-Paula, V.J.; Radanovic, M.; Diniz, B.S.; Forlenza, O.V. Alzheimer’s disease. Subcell. Biochem., 2012, 65, 329-352.
[http://dx.doi.org/10.1007/978-94-007-5416-4_14 ] [PMID: 23225010]
[12]
Fang, L.; Gou, S.; Fang, X.; Cheng, L.; Fleck, C. Current progresses of novel natural products and their derivatives/analogs as anti-Alzheimer candidates: an update. Mini Rev. Med. Chem., 2013, 13(6), 870-887.
[http://dx.doi.org/10.2174/1389557511313060009 ] [PMID: 23305400]
[13]
Masondo, N.A.; Stafford, G.I.; Aremu, A.O.; Makunga, N.P. Acetylcholinesterase inhibitors from southern African plants: an overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer’s disease treat-ment. S. Afr. J. Bot., 2019, 120, 39-64.
[http://dx.doi.org/10.1016/j.sajb.2018.09.011]
[14]
Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine, 2007, 14(4), 289-300.
[http://dx.doi.org/10.1016/j.phymed.2007.02.002] [PMID: 17346955 ]
[15]
Velander, P.; Wu, L.; Henderson, F.; Zhang, S.; Bevan, D.R.; Xu, B. Natural product-based amyloid inhibitors. Biochem. Pharmacol., 2017, 139, 40-55.
[http://dx.doi.org/10.1016/j.bcp.2017.04.004 ] [PMID: 28390938]
[16]
Awasthi, M.; Singh, S.; Pandey, V.P.; Dwivedi, U.N. Alzheimer’s disease: an overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. J. Neurol. Sci., 2016, 361, 256-271.
[http://dx.doi.org/10.1016/j.jns.2016.01.008 ] [PMID: 26810552]
[17]
Adams, M.; Gmünder, F.; Hamburger, M. Plants traditionally used in age related brain disorders--a survey of ethnobotanical literature. J. Ethnopharmacol., 2007, 113(3), 363-381.
[http://dx.doi.org/10.1016/j.jep.2007.07.016 ] [PMID: 17720341]
[18]
Natarajan, S.; Shunmugiah, K.P.; Kasi, P.D. Plants traditionally used in age-related brain disorders (dementia): an ethanopharmacological survey. Pharm. Biol., 2013, 51(4), 492-523.
[http://dx.doi.org/10.3109/13880209.2012.738423 ] [PMID: 23336528]
[19]
Dey, A.; Bhattacharya, R.; Mukherjee, A.; Pandey, D.K. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol. Adv., 2017, 35(2), 178-216.
[http://dx.doi.org/10.1016/j.biotechadv.2016.12.005 ] [PMID: 28043897]
[20]
Bui, T.T.; Nguyen, T.H. Natural product for the treatment of Alzheimer’s disease. J. Basic Clin. Physiol. Pharmacol., 2017, 28(5), 413-423.
[http://dx.doi.org/10.1515/jbcpp-2016-0147 ] [PMID: 28708573]
[21]
Gorji, N.; Moeini, R.; Memariani, Z. Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer’s disease: a neuropharmacological review of their bioactive constituents. Pharmacol. Res., 2018, 129, 115-127.
[http://dx.doi.org/10.1016/j.phrs.2017.12.003 ] [PMID: 29208493]
[22]
Patterson, C.; Feightner, J.W.; Garcia, A.; Hsiung, G-Y.R.; MacKnight, C.; Sadovnick, A.D. Diagnosis and treatment of dementia: 1. Risk assessment and primary prevention of Alzheimer disease. CMAJ, 2008, 178(5), 548-556.
[http://dx.doi.org/10.1503/cmaj.070796 ] [PMID: 18299540]
[23]
Haass, C.; Hung, A.Y.; Selkoe, D.J. Processing of beta-amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion. J. Neurosci., 1991, 11(12), 3783-3793.
[http://dx.doi.org/10.1523/JNEUROSCI.11-12-03783.1991 ] [PMID: 1744690]
[24]
Masters, C.L.; Simms, G.; Weinman, N.A.; Multhaup, G.; McDonald, B.L.; Beyreuther, K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA, 1985, 82(12), 4245-4249.
[http://dx.doi.org/10.1073/pnas.82.12.4245 ] [PMID: 3159021]
[25]
Sandberg, A.; Luheshi, L.M.; Söllvander, S.; Pereira de Barros, T.; Macao, B.; Knowles, T.P.; Biverstål, H.; Lendel, C.; Ekholm-Petterson, F.; Dubnovitsky, A.; Lannfelt, L.; Dobson, C.M.; Härd, T. Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering. Proc. Natl. Acad. Sci. USA, 2010, 107(35), 15595-15600.
[http://dx.doi.org/10.1073/pnas.1001740107 ] [PMID: 20713699]
[26]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994 ] [PMID: 12130773]
[27]
Pallàs, M.; Camins, A. Molecular and biochemical features in Alzheimer’s disease. Curr. Pharm. Des., 2006, 12(33), 4389-4408.
[http://dx.doi.org/10.2174/138161206778792967 ] [PMID: 17105434]
[28]
Chiang, K.; Koo, E.H. Emerging therapeutics for Alzheimer’s disease. Annu. Rev. Pharmacol. Toxicol., 2014, 54, 381-405.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-135932 ] [PMID: 24392696]
[29]
Bu, X-L.; Rao, P.P.N.; Wang, Y-J. Anti-amyloid aggregation activity of natural compounds: implications for Alzheimer’s drug discovery. Mol. Neurobiol., 2016, 53(6), 3565-3575.
[http://dx.doi.org/10.1007/s12035-015-9301-4 ] [PMID: 26099310]
[30]
Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001 ] [PMID: 11606625]
[31]
Huang, T-C.; Lu, K-T.; Wo, Y-Y.P.; Wu, Y-J.; Yang, Y-L. Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One, 2011, 6(12)e29102
[http://dx.doi.org/10.1371/journal.pone.0029102 ] [PMID: 22220203]
[32]
Rezai-Zadeh, K.; Shytle, D.; Sun, N.; Mori, T.; Hou, H.; Jeanniton, D.; Ehrhart, J.; Townsend, K.; Zeng, J.; Morgan, D.; Hardy, J.; Town, T.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci., 2005, 25(38), 8807-8814.
[http://dx.doi.org/10.1523/JNEUROSCI.1521-05.2005 ] [PMID: 16177050]
[33]
Kim, H.; Park, B-S.; Lee, K-G.; Choi, C.Y.; Jang, S.S.; Kim, Y-H.; Lee, S-E. Effects of naturally occurring compounds on fibril formation and oxidative stress of β-amyloid. J. Agric. Food Chem., 2005, 53(22), 8537-8541.
[http://dx.doi.org/10.1021/jf051985c ] [PMID: 16248550]
[34]
Diomede, L.; Rigacci, S.; Romeo, M.; Stefani, M.; Salmona, M. Oleuropein aglycone protects transgenic C. elegans strains expressing Aβ42 by reducing plaque load and motor deficit. PLoS One, 2013, 8(3)e58893
[http://dx.doi.org/10.1371/journal.pone.0058893 ] [PMID: 23520540]
[35]
Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s β-amyloid fibrils in vitro. Biochim. Biophys. Acta, 2004, 1690(3), 193-202.
[http://dx.doi.org/10.1016/j.bbadis.2004.06.008 ] [PMID: 15511626]
[36]
Espargaró, A.; Ginex, T.; Vadell, M.D.; Busquets, M.A.; Estelrich, J.; Muñoz-Torrero, D.; Luque, F.J.; Sabate, R. Combined in vitro cell-based/in silico screening of naturally occurring flavonoids and phenolic compounds as potential anti-Alzheimer drugs. J. Nat. Prod., 2017, 80(2), 278-289.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00643 ] [PMID: 28128562]
[37]
Liu, Y.; Pukala, T.L.; Musgrave, I.F.; Williams, D.M.; Dehle, F.C.; Carver, J.A. Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation. Bioorg. Med. Chem. Lett., 2013, 23(23), 6336-6340.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.071 ] [PMID: 24157371]
[38]
Jayamani, J.; Shanmugam, G. Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation. Eur. J. Med. Chem., 2014, 85, 352-358.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.111 ] [PMID: 25105923]
[39]
Caruana, M.; Högen, T.; Levin, J.; Hillmer, A.; Giese, A.; Vassallo, N. Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds. FEBS Lett., 2011, 585(8), 1113-1120.
[http://dx.doi.org/10.1016/j.febslet.2011.03.046 ] [PMID: 21443877]
[40]
Velander, P.; Wu, L.; Ray, W.K.; Helm, R.F.; Xu, B. Keith; Helm, Richard F.; Xu, B. Amylin amyloid inhibition by flavonoid baicalein: key roles of its vicinal dihydroxyl groups of the catechol moiety. Biochemistry, 2016, 55(31), 4255-4258.
[http://dx.doi.org/10.1021/acs.biochem.6b00578 ] [PMID: 27431615]
[41]
Sciacca, M.F.M.; Romanucci, V.; Zarrelli, A.; Monaco, I.; Lolicato, F.; Spinella, N.; Galati, C.; Grasso, G.; D’Urso, L.; Romeo, M.; Diomede, L.; Salmona, M.; Bongiorno, C.; Di Fabio, G.; La Rosa, C.; Milardi, D. Inhibition of Aβ amyloid growth and toxicity by silybins: the crucial role of stereochemistry. ACS Chem. Neurosci., 2017, 8(8), 1767-1778.
[http://dx.doi.org/10.1021/acschemneuro.7b00110] [PMID: 28562008]
[42]
Dhouafli, Z.; Jannet, H.B.; Mahjoub, B.; Leri, M.; Guillard, J.; Tounsi, M.S.; Stefani, M.; Hayouni, E.A. 1,2,4-trihydroxynaphthalene-2-O-β-D-glucopyranoside: A new powerful antioxidant and inhibitor of Aβ42 aggregation isolated from the leaves of Lawsonia inermis. Nat. Prod. Res., 2019, 33(10), 1406-1414.
[PMID: 29287545 ] [http://dx.doi.org/10.1080/14786419.2017.1419229]
[43]
Wang, Y-X.; Ren, Q.; Yan, Z-Y.; Wang, W.; Zhao, L.; Bai, M.; Wang, X-B.; Huang, X-X.; Song, S-J. Flavonoids and their derivatives with β-amyloid aggregation inhibitory activity from the leaves and twigs of Pithecellobium clypearia Benth. Bioorg. Med. Chem. Lett., 2017, 27(21), 4823-4827.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.051 ] [PMID: 28988761]
[44]
Amoah, S.K.S.; Dalla Vecchia, M.T.; Pedrini, B.; Carnhelutti, G.L.; Gonçalves, A.E.; Dos Santos, D.A.; Biavatti, M.W.; de Souza, M.M. Inhibitory effect of sesquiterpene lactones and the sesquiterpene alcohol aromadendrane-4β,10α-diol on memory impairment in a mouse model of Alzheimer. Eur. J. Pharmacol., 2015, 769, 195-202.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.018 ] [PMID: 26593432]
[45]
Kang, Y.J.; Seo, D-G.; Park, S-Y. Phenylpropanoids from cinnamon bark reduced β-amyloid production by the inhibition of β-secretase in Chinese hamster ovarian cells stably expressing amyloid precursor protein. Nutr. Res., 2016, 36(11), 1277-1284.
[http://dx.doi.org/10.1016/j.nutres.2016.10.002 ] [PMID: 27865616]
[46]
Fujihara, K.; Koike, S.; Ogasawara, Y.; Takahashi, K.; Koyama, K.; Kinoshita, K. Inhibition of amyloid β aggregation and protective effect on SH-SY5Y cells by triterpenoid saponins from the cactus Polaskia chichipe. Bioorg. Med. Chem., 2017, 25(13), 3377-3383.
[http://dx.doi.org/10.1016/j.bmc.2017.04.023 ] [PMID: 28478866]
[47]
Chun, Y.S.; Zhang, L.; Li, H.; Park, Y.; Chung, S.; Yang, H.O. 7-Deoxy-trans-dihydronarciclasine reduces β-Amyloid and ameliorates memory impairment in a transgenic model of Alzheimer’s disease. Mol. Neurobiol., 2018, 55, 8953-8964.
[http://dx.doi.org/10.1007/s12035-018-1023-y]
[48]
Chowdhury, M.A.; Ko, H.J.; Lee, H.; Aminul Haque, M.; Park, I.S.; Lee, D.S.; Woo, E.R. Oleanane triterpenoids from Akebiae caulis exhibit inhibitory effects on Aβ42 induced fibrillogenesis. Arch. Pharm. Res., 2017, 40(3), 318-327.
[http://dx.doi.org/10.1007/s12272-016-0885-7 ] [PMID: 28054176]
[49]
Huang, X.; Tang, G.; Liao, Y.; Zhuang, X.; Dong, X.; Liu, H.; Huang, X-J.; Ye, W-C.; Wang, Y.; Shi, L. 7-(4-hydroxyphenyl)-1-phenyl-4E-hepten-3-one, a diarylheptanoid from Alpinia officinar-um, protects neurons against amyloid-β induced toxicity. Biol. Pharm. Bull., 2016, 39(12), 1961-1967.
[http://dx.doi.org/10.1248/bpb.b16-00411 ] [PMID: 27615431]
[50]
Wu, T.; Jiang, C.; Wang, L.; Morris-Natschke, S.L.; Miao, H.; Gu, L.; Xu, J.; Lee, K-H.; Gu, Q. 3,5-Diarylpyrazole derivatives obtained by ammonolysis of the total flavonoids from Chrysanthemum indicum extract show potential for the treatment of Alzheimer’s disease. J. Nat. Prod., 2015, 78(7), 1593-1599.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00156 ] [PMID: 26099993]
[51]
Yang, Z-Y.; Kuboyama, T.; Kazuma, K.; Konno, K.; Tohda, C. Active constituents from Drynaria fortunei rhizomes on the attenuation of Aβ(25-35)-. Induced Axonal Atrophy. J. Nat. Prod., 2015, 78(9), 2297-2300.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00290 ] [PMID: 26299900]
[52]
Ge, Y-W.; Tohda, C.; Zhu, S.; He, Y-M.; Yoshimatsu, K.; Komatsu, K. Effects of oleanane-type triterpene saponins from the leaves of Eleutherococcus senticosus in an axonal outgrowth assay. J. Nat. Prod., 2016, 79(7), 1834-1841.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00329 ] [PMID: 27400231]
[53]
Tang, Y.; Xiong, J.; Zhang, J-J.; Wang, W.; Zhang, H-Y.; Hu, J-F. Three lycopodane-derived 8,5-lactones with polycyclic skeletons from Lycopodium annotinum. Org. Lett., 2016, 18, 4376-4379.
[http://dx.doi.org/10.1021/acs.orglett.6b02132]
[54]
Zhao, H.; Chen, G-D.; Zou, J.; He, R-R.; Qin, S-Y.; Hu, D.; Li, G-Q.; Guo, L-D.; Yao, X-S.; Gao, H.; Dimericbiscog-nienyne, A.; Dimericbiscognienyne, A. A meroterpenoid dimer from Biscog niauxia sp. with new skeleton and its activity. Org. Lett., 2017, 19(1), 38-41.
[http://dx.doi.org/10.1021/acs.orglett.6b03264 ] [PMID: 27933865]
[55]
Kai, T.; Zhang, L.; Wang, X.; Jing, A.; Zhao, B.; Yu, X.; Zheng, J.; Zhou, F. Tabersonine inhibits amyloid fibril formation and cytotoxicity of Aβ(1-42). ACS Chem. Neurosci., 2015, 6(6), 879-888.
[http://dx.doi.org/10.1021/acschemneuro.5b00015 ] [PMID: 25874995]
[56]
Wang, J.; Zheng, J.; Huang, C.; Zhao, J.; Lin, J.; Zhou, X.; Naman, C.B.; Wang, N.; Gerwick, W.H.; Wang, Q.; Yan, X.; Cui, W.; He, S. Eckmaxol, a phlorotannin extracted from Ecklonia maxima, produces anti-β-amyloid oligomer neuroprotective effects possibly via directly acting on glycogen synthase kinase 3β. ACS Chem. Neurosci., 2018, 9(6), 1349-1356.
[http://dx.doi.org/10.1021/acschemneuro.7b00527 ] [PMID: 29608860]
[57]
Findeis, M.A.; Schroeder, F.; McKee, T.D.; Yager, D.; Fraering, P.C.; Creaser, S.P.; Austin, W.F.; Clardy, J.; Wang, R.; Selkoe, D.; Eckman, C.B. Discovery of a novel pharmacological and structural class of gamma secretase modulators derived from the extract of Actaea racemosa. ACS Chem. Neurosci., 2012, 3(11), 941-951.
[http://dx.doi.org/10.1021/cn3000857 ] [PMID: 23205187]
[58]
Zhao, Q.; Chen, G-D.; Feng, X-L.; Yu, Y.; He, R-R.; Li, X-X.; Huang, Y.; Zhou, W-X.; Guo, L-D.; Zheng, Y-Z.; Yao, X-S.; Gao, H. Nodulisporiviridins A.-H, Bioactive viridins from Nodulisporium sp. J. Nat. Prod., 2015, 78(6), 1221-1230.
[http://dx.doi.org/10.1021/np500912t ] [PMID: 25978520]
[59]
Papastamoulis, Y.; Richard, T.; Nassra, M.; Badoc, A.; Krisa, S.; Harakat, D.; Monti, J-P.; Mérillon, J-M.; Waffo-Teguo, P. Viniphenol A, a complex resveratrol hexamer from Vitis vinifera stalks: structural elucidation and protective effects against amyloid-β-induced toxicity in PC12 cells. J. Nat. Prod., 2014, 77(2), 213-217.
[http://dx.doi.org/10.1021/np4005294 ] [PMID: 24521157]
[60]
Guo, R.; Zhou, L.; Zhao, P.; Wang, X-B.; Huang, X-X.; Song, S-J. Two new sesquineolignans from the seeds of Crataegus pinnatifida and their β-amyloid aggregation inhibitory activitiy. Nat. Prod. Res., 2019, 33(17), 2446-2452.
[http://dx.doi.org/10.1080/14786419.2018.1448814] [PMID: 29521116]
[61]
Wolfe, M.S. APP, Notch, and presenilin: molecular pieces in the puzzle of Alzheimer’s disease. Int. Immunopharmacol., 2002, 2(13-14), 1919-1929.
[http://dx.doi.org/10.1016/S1567-5769(02)00179-0 ] [PMID: 12489805]
[62]
Luo, Y.; Bolon, B.; Kahn, S.; Bennett, B.D.; Babu-Khan, S.; Denis, P.; Fan, W.; Kha, H.; Zhang, J.; Gong, Y.; Martin, L.; Louis, J.C.; Yan, Q.; Richards, W.G.; Citron, M.; Vassar, R. Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat. Neurosci., 2001, 4(3), 231-232.
[http://dx.doi.org/10.1038/85059 ] [PMID: 11224535]
[63]
Chlebek, J.; De Simone, A.; Hošťálková, A.; Opletal, L.; Pérez, C.; Pérez, D.I.; Havlíková, L.; Cahlíková, L.; Andrisano, V. Application of BACE1 immobilized enzyme reactor for the characterization of multifunctional alkaloids from Corydalis cava (Fumariaceae) as Alzheimer’s disease targets. Fitoterapia, 2016, 109, 241-247.
[http://dx.doi.org/10.1016/j.fitote.2016.01.008 ] [PMID: 26779945]
[64]
Dai, J.; Parrish, S.M.; Yoshida, W.Y.; Yip, M.L.R.; Turkson, J.; Kelly, M.; Williams, P. Bromotyrosine-derived metabolites from an Indonesian marine sponge in the family Aplysinellidae (Order Verongiida). Bioorg. Med. Chem. Lett., 2016, 26(2), 499-504.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.086 ] [PMID: 26711149]
[65]
Nguyen, V.T.; Zhao, B.T.; Seong, S.H.; Kim, J.A.; Woo, M.H.; Choi, J.S.; Min, B.S. Inhibitory effects of serratene-type triterpenoids from Lycopodium complanatum on cholinesterases and β-secretase 1. Chem. Biol. Interact., 2017, 274, 150-157.
[http://dx.doi.org/10.1016/j.cbi.2017.07.006 ] [PMID: 28698023]
[66]
Choi, R.J.; Roy, A.; Jung, H.J.; Ali, M.Y.; Min, B.S.; Park, C.H.; Yokozawa, T.; Fan, T.P.; Choi, J.S.; Jung, H.A. BACE1 molecular docking and anti-Alzheimer’s disease activities of ginsenosides. J. Ethnopharmacol., 2016, 190, 219-230.
[http://dx.doi.org/10.1016/j.jep.2016.06.013 ] [PMID: 27275774]
[67]
Liu, J.; Chen, W.; Xu, Y.; Ren, S.; Zhang, W.; Li, Y. Design, synthesis and biological evaluation of tasiamide B derivatives as BACE1 inhibitors. Bioorg. Med. Chem., 2015, 23(9), 1963-1974.
[http://dx.doi.org/10.1016/j.bmc.2015.03.034 ] [PMID: 25842365]
[68]
Seong, S.H.; Ali, M.Y.; Kim, H.R.; Jung, H.A.; Choi, J.S. BACE1 inhibitory activity and molecular docking analysis of meroterpenoids from Sargassum serratifolium. Bioorg. Med. Chem., 2017, 25(15), 3964-3970.
[http://dx.doi.org/10.1016/j.bmc.2017.05.033 ] [PMID: 28576634]
[69]
Wagle, A.; Seong, S.H.; Zhao, B.T.; Woo, M.H.; Jung, H.A.; Choi, J.S. Comparative study of selective in vitro and in silico BACE1 inhibitory potential of glycyrrhizin together with its metabolites, 18α- and 18β-glycyrrhetinic acid, isolated from Hizikia fusiformis. Arch. Pharm. Res., 2018, 41(4), 409-418.
[http://dx.doi.org/10.1007/s12272-018-1018-2 ] [PMID: 29532412]
[70]
Qi, C.; Bao, J.; Wang, J.; Zhu, H.; Xue, Y.; Wang, X.; Li, H.; Sun, W.; Gao, W.; Lai, Y.; Chen, J-G.; Zhang, Y. Asperterpenes A and B, two unprecedented meroterpenoids from Aspergillus terreus with BACE1 inhibitory activities. Chem. Sci. (Camb.), 2016, 7(10), 6563-6572.
[http://dx.doi.org/10.1039/C6SC02464E ] [PMID: 28042460]
[71]
Youn, K.; Jeong, W-S.; Jun, M. β-Secretase (BACE1) inhibitory property of loganin isolated from Corni fructus. Nat. Prod. Res., 2013, 27(16), 1471-1474.
[http://dx.doi.org/10.1080/14786419.2012.718774 ] [PMID: 22931211]
[72]
Inestrosa, N.C.; Alvarez, A.; Pérez, C.A.; Moreno, R.D.; Vicente, M.; Linker, C.; Casanueva, O.I.; Soto, C.; Garrido, J. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron, 1996, 16(4), 881-891.
[http://dx.doi.org/10.1016/S0896-6273(00)80108-7 ] [PMID: 8608006]
[73]
Inestrosa, N.C.; Dinamarca, M.C.; Alvarez, A. Amyloid-cholinesterase interactions. Implications for Alzheimer’s disease. FEBS J., 2008, 275(4), 625-632.
[http://dx.doi.org/10.1111/j.1742-4658.2007.06238.x ] [PMID: 18205831]
[74]
Geromichalos, G.D.; Lamari, F.N.; Papandreou, M.A.; Trafalis, D.T.; Margarity, M.; Papageorgiou, A.; Sinakos, Z. Saffron as a source of novel acetylcholinesterase inhibitors: molecular docking and in vitro enzymatic studies. J. Agric. Food Chem., 2012, 60(24), 6131-6138.
[http://dx.doi.org/10.1021/jf300589c ] [PMID: 22655699]
[75]
Gauthier, S. Advances in the pharmacotherapy of Alzheimer’s disease. CMAJ, 2002, 166(5), 616-623.
[PMID: 11898943]
[76]
Mason, J.W.; Schmid, C.L.; Bohn, L.M.; Roush, W.R. Stolonidiol: synthesis, target identification, and mechanism for choline acetyltransferase activation. J. Am. Chem. Soc., 2017, 139(16), 5865-5869.
[http://dx.doi.org/10.1021/jacs.7b01083 ] [PMID: 28414442]
[77]
Yabe, T.; Yamada, H.; Shimomura, M.; Miyaoka, H.; Yamada, Y. Induction of choline acetyltransferase activity in cholinergic neurons by stolonidiol: structure-activity relationship. J. Nat. Prod., 2000, 63(4), 433-435.
[http://dx.doi.org/10.1021/np990263a ] [PMID: 10785408]
[78]
Christodoulou, E.; Kadoglou, N.P.E.; Kostomitsopoulos, N.; Valsami, G. Saffron: a natural product with potential pharmaceutical applications. J. Pharm. Pharmacol., 2015, 67(12), 1634-1649.
[http://dx.doi.org/10.1111/jphp.12456 ] [PMID: 26272123]
[79]
Finley, J.W.; Gao, S. A perspective on Crocus sativus L. (Saffron) constituent crocin: a potent water-soluble antioxidant and potential therapy for Alzheimer’s disease. J. Agric. Food Chem., 2017, 65(5), 1005-1020.
[http://dx.doi.org/10.1021/acs.jafc.6b04398 ] [PMID: 28098452]
[80]
Rosenberry, T.L.; Martin, P.K.; Nix, A.J.; Wildman, S.A.; Cheung, J.; Snyder, S.A.; Tan, R.X. Hopeahainol A binds reversibly at the acetylcholinesterase (AChE) peripheral site and inhibits enzyme activity with a novel higher order concentration dependence. Chem. Biol. Interact., 2016, 259(Pt B), 78-84..
[http://dx.doi.org/10.1016/j.cbi.2016.05.032] [PMID: 28505534]
[81]
Botić, T.; Defant, A.; Zanini, P.; Žužek, M.C.; Frangež, R.; Janussen, D.; Kersken, D.; Knez, Ž.; Mancini, I.; Sepčić, K. Discorhabdin alkaloids from Antarctic Latrunculia spp. sponges as a new class of cholinesterase inhibitors. Eur. J. Med. Chem., 2017, 136, 294-304.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.019 ] [PMID: 28505534]
[82]
Seeka, C.; Sutthivaiyakit, P.; Youkwan, J.; Hertkorn, N.; Harir, M.; Schmitt-Kopplin, P.; Sutthivaiyakit, S. Prenylfuranocoumarin-HMGA-flavonol glucoside conjugates and other constituents of the fruit peels of Citrus hystrix and their anticholinesterase activity. Phytochemistry, 2016, 127, 38-49.
[http://dx.doi.org/10.1016/j.phytochem.2016.03.009 ] [PMID: 26995149]
[83]
Ahmad, H.; Ahmad, S.; Ali, M.; Latif, A.; Shah, S.A.A.; Naz, H.; Rahman, N.U.; Shaheen, F.; Wadood, A.; Khan, H.U.; Ahmad, M. Norditerpenoid alkaloids of Delphinium denudatum as cholinesterase inhibitors. Bioorg. Chem., 2018, 78, 427-435.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.008 ] [PMID: 29698893]
[84]
Wiemann, J.; Karasch, J.; Loesche, A.; Heller, L.; Brandt, W.; Csuk, R. Piperlongumine B and analogs are promising and selective inhibitors for acetylcholinesterase. Eur. J. Med. Chem., 2017, 139, 222-231.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.081 ] [PMID: 28802122]
[85]
Karim, N.; Khan, I.; Abdelhalim, A.; Abdel-Halim, H.; Hanrahan, J.R. Molecular docking and antiamnesic effects of nepitrin isolated from Rosmarinus officinalis on scopolamine-induced memory impairment in mice. Biomed. Pharmacother., 2017, 96, 700-709.
[http://dx.doi.org/10.1016/j.biopha.2017.09.121 ] [PMID: 29040957]
[86]
Wan Othman, W.N.N.; Liew, S.Y.; Khaw, K.Y.; Murugaiyah, V.; Litaudon, M.; Awang, K. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae). Bioorg. Med. Chem., 2016, 24(18), 4464-4469.
[http://dx.doi.org/10.1016/j.bmc.2016.07.043 ] [PMID: 27492195]
[87]
Sammi, S.R.; Trivedi, S.; Rath, S.K.; Nagar, A.; Tandon, S.; Kalra, A.; Pandey, R. 1-Methyl-4-propan-2-ylbenzene from Thymus vulgaris attenuates cholinergic dysfunction. Mol. Neurobiol., 2017, 54(7), 5468-5481.
[http://dx.doi.org/10.1007/s12035-016-0083-0 ] [PMID: 27599497]
[88]
Eom, M.R.; Weon, J.B.; Jung, Y.S.; Ryu, G.H.; Yang, W.S.; Ma, C.J. Neuroprotective compounds from Reynoutria sachalinensis. Arch. Pharm. Res., 2017, 40(6), 704-712.
[http://dx.doi.org/10.1007/s12272-017-0918-x ] [PMID: 28501973]
[89]
Bhakta, H.K.; Park, C.H.; Yokozawa, T.; Tanaka, T.; Jung, H.A.; Choi, J.S. Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits. Arch. Pharm. Res., 2017, 40(7), 836-853.
[http://dx.doi.org/10.1007/s12272-017-0924-z ] [PMID: 28589255]
[90]
Yilmaz, A.; Boga, M.; Topcu, G. Novel terpenoids with potential anti-alzheimer activity from Nepeta obtusicrena. Rec. Nat. Prod., 2016, 10, 530-541.
[91]
Posri, P.; Suthiwong, J.; Takomthong, P.; Wongsa, C.; Chuen-ban, C.; Boonyarat, C.; Yenjai, C. A new flavonoid from the leaves of Atalantia monophylla (L.) DC. Nat. Prod. Res., 2018, 1115-1121.
[http://dx.doi.org/10.1080/14786419.2018.1457667]
[92]
Xiang, C-P.; Han, J-X.; Li, X-C.; Li, Y-H.; Zhang, Y.; Chen, L.; Qu, Y.; Hao, C-Y.; Li, H-Z.; Yang, C-R.; Zhao, S-J.; Xu, M. Chemical composition and acetylcholinesterase inhibitory activity of essential oils from Piper species. J. Agric. Food Chem., 2017, 65(18), 3702-3710.
[http://dx.doi.org/10.1021/acs.jafc.7b01350 ] [PMID: 28436658]
[93]
Peng, X-R.; Wang, X.; Dong, J-R.; Qin, X-J.; Li, Z-R.; Yang, H.; Zhou, L.; Qiu, M-H. Rare hybrid dimers with anti-acetylcholinesterase activities from a safflower (Carthamus tinctorius L.) seed oil cake. J. Agric. Food Chem., 2017, 65(43), 9453-9459.
[http://dx.doi.org/10.1021/acs.jafc.7b03431 ] [PMID: 28992692]
[94]
Dong, L-B.; Wu, X-D.; Shi, X.; Zhang, Z-J.; Yang, J.; Zhao, Q-S. Phleghenrines A.-D and Neophleghenrine A, bioactive and structurally rigid Lycopodium alkaloids from Phlegmariurus henryi. Org. Lett., 2016, 18(18), 4498-4501.
[http://dx.doi.org/10.1021/acs.orglett.6b02065 ] [PMID: 27583693]
[95]
Fathy, H.M.; Aboushoer, M.I. A new indenone from Echiochilon fruticosum, a potential beta-secretase 1 (BACE1) and acetylcholinesterase (AChE). Inhibitor. Pharma Chem., 2017, 9, 100-103.
[96]
Santos, G.F.d.; Pereira, R.G.; Boaventura, M.A.D.; Macias, F.A.; Lima, G.S.; Coelho, A.C.S.; Molinillo, J.M.G.; Cala, A.; Takahashi, J.A. Structure-activity relationship study of diterpenes for treatment of alzheimer’s disease. Quim. Nova, 2017, 40, 1045-1050.
[http://dx.doi.org/10.21577/0100-4042.20170112]
[97]
Chlebek, J.; Novák, Z.; Kassemová, D.; Šafratová, M.; Kostelník, J.; Malý, L.; Ločárek, M.; Opletal, L.; Hošt’álková, A.; Hrabinová, M.; Kuneš, J.; Novotná, P.; Urbanová, M.; Nováková, L.; Macáková, K.; Hulcová, D.; Solich, P.; Pérez Martín, C.; Jun, D.; Cahlíková, L. Isoquinoline alkaloids from Fumaria officinalis L. and their biological activities related to alzheimer’s disease. Chem. Biodivers., 2016, 13(1), 91-99.
[http://dx.doi.org/10.1002/cbdv.201500033 ] [PMID: 26765356]
[98]
Ahmad, H.; Ahmad, S.; Khan, E.; Shahzad, A.; Ali, M.; Tahir, M.N.; Shaheen, F.; Ahmad, M. Isolation, crystal structure determination and cholinesterase inhibitory potential of isotalatizidine hydrate from Delphinium denudatum. Pharm. Biol., 2017, 55(1), 680-686.
[http://dx.doi.org/10.1080/13880209.2016.1240207 ] [PMID: 28033733]
[99]
Kim, Y. J.; Lim, H.-S.; Kim, Y.; Lee, J.; Kim, B.-Y.; Jeong, S.-J. Phytochemical quantification and the in vitro acetylcholinesterase inhibitory activity of Phellodendron chinense and It’s components. Molecules, 2017, 22, 925/1- 925/13.
[http://dx.doi.org/10.3390/molecules22060925] [PMID: 28574473]
[100]
Lee, Y. K.; Bang, H. J.; Oh, J. B.; Whang, W. K. Bioassay-guided isolated compounds from Morinda officinalis inhibit Alzheimer's disease pathologies. Molecules., 2017, 22, 1638/1-1638/12.,
[101]
Liu, X.; Yang, X-W.; Chen, C-Q.; Wu, C-Y.; Zhang, J-J.; Ma, J-Z.; Wang, H.; Yang, L-X.; Xu, G. Bioactive polyprenylated acylphloroglucinol derivatives from Hypericum cohaerens. J. Nat. Prod., 2013, 76(9), 1612-1618.
[http://dx.doi.org/10.1021/np400287r ] [PMID: 23957453]
[102]
Lam, L. M. T.; Nguyen, M. T. T.; Nguyen, H. X.; Dang, P. H.; Nguyen, N. T.; Tran, H. M.; Nguyen, H. T.; Nguyen, N. M.; Min, B. S.; Kim, J. A. Anti-cholinesterases and memory improving effects of Vietnamese Xylia xylocarpa Chem. Cent. J., 2016, 10, 48/1-48/10.,
[http://dx.doi.org/10.1186/s13065-016-0197-5]
[103]
Nugroho, A.; Park, J-H.; Choi, J.S.; Park, K-S.; Hong, J-P.; Park, H-J. Structure determination and quantification of a new flavone glycoside with anti-acetylcholinesterase activity from the herbs of Elsholtzia ciliata. Nat. Prod. Res., 2019, 33(6), 814-821.
[PMID: 29224362]
[104]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5 ] [PMID: 25792098]
[105]
Shadfar, S.; Hwang, C.J.; Lim, M-S.; Choi, D-Y.; Hong, J.T. Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch. Pharm. Res., 2015, 38(12), 2106-2119.
[http://dx.doi.org/10.1007/s12272-015-0648-x ] [PMID: 26289122]
[106]
Spagnuolo, C.; Moccia, S.; Russo, G.L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur. J. Med. Chem., 2018, 153, 105-115.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.001] [PMID: 28923363]
[107]
Dzoyem, J.P.; Nkuete, A.H.L.; Ngameni, B.; Eloff, J.N. Anti-inflammatory and anticholinesterase activity of six flavonoids isolated from Polygonum and Dorstenia species. Arch. Pharm. Res., 2017, 40(10), 1129-1134.
[http://dx.doi.org/10.1007/s12272-015-0612-9 ] [PMID: 26048035]
[108]
Ma, J.; Ren, Q.; Dong, B.; Shi, Z.; Zhang, J.; Jin, D-Q.; Xu, J.; Ohizumi, Y.; Lee, D.; Guo, Y. NO inhibitory constituents as potential anti-neuroinflammatory agents for AD from Blumea balsamifera. Bioorg. Chem., 2018, 76, 449-457.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.008 ] [PMID: 29275263]
[109]
Liu, F.; Yang, X.; Ma, J.; Yang, Y.; Xie, C.; Tuerhong, M.; Jin, D-Q.; Xu, J.; Lee, D.; Ohizumi, Y.; Guo, Y. Nitric oxide inhibitory daphnane diterpenoids as potential anti-neuroinflammatory agents for AD from the twigs of Trigonostemon thyrsoideus. Bioorg. Chem., 2017, 75, 149-156.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.007 ] [PMID: 28950242]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy