Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Indolizidine Alkaloids: Prospective Lead Molecules in Medicinal Chemistry

Author(s): Vikas Sharma*, Raj Kamal, Dinesh Kumar and Vipan Kumar

Volume 7, Issue 1, 2021

Published on: 17 June, 2019

Page: [45 - 56] Pages: 12

DOI: 10.2174/2215083805666190617145228

Price: $65

Abstract

Natural products are well known for their therapeutic properties. The primary reason for their therapeutic effectiveness is the presence of secondary plant metabolites like alkaloids, glycosides, flavonoids etc. All these metabolites are generally classified as per their chemical structures. Similarly, diversified alkaloids are classified as per the chemical moieties like indole, quinoline, Isoquinoline, indolizine etc. Alkaloids having indolizidine moiety are well known for their biological actions. In this review, indolizidine alkaloids like antofine, castanospermine, swainsonine, tylophorine, gephyrotoxins, lentiginosine, pergularinine etc. and their derivatives have been discussed. Furthermore, important points related to the structure-activity relationship of selected alkaloids are also summarized. All these studies indicate the lead potential of indolizidine alkaloids that in turn could be effective for future drug discovery.

Keywords: Alkaloid, Antofine, Castanospermine, Indolizidine, Swainsonine, structure activity relationship.

Graphical Abstract

[1]
Williams DA, Thomas LL. Foye’s Principles of Medicinal Chemistry 2002.
[2]
Epifano F, Genovese S, Menghini L, Curini M. Chemistry and pharmacology of oxyprenylated secondary plant metabolites. Phytochemistry 2007; 68(7): 939-53.
[http://dx.doi.org/10.1016/j.phytochem.2007.01.019] [PMID: 17343885]
[3]
Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 2002; 13(10): 572-84.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[4]
Adewusi EA, Afolayan AJ. A review of natural products with hepatoprotective activity. J Med Plants Res 2010; 4: 1318-34.
[5]
Montanari A, Chen J, Widmer W. Citrus flavonoids: A review of past biological activity against diseaseFlavonoids in the living system 1998; 103-6.
[http://dx.doi.org/10.1007/978-1-4615-5335-9_8]
[6]
Hassanpour S. MaheriSis N, Eshratkhah B Plants and secondary metabolites (Tannins): A Review Int Forest soil and Erosion 2011; 1: 47-53.
[7]
Verma N, Shukla S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Aromat Plants 2015; 2: 105-13.
[http://dx.doi.org/10.1016/j.jarmap.2015.09.002]
[8]
Gul W, Hamann MT. Indole alkaloid marine natural products: an established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sci 2005; 78(5): 442-53.
[http://dx.doi.org/10.1016/j.lfs.2005.09.007] [PMID: 16236327]
[9]
Michael JP. Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 1999; 16(6): 697-709.
[http://dx.doi.org/10.1039/a809408j] [PMID: 10641323]
[10]
O’Hagan D. Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids. Nat Prod Rep 2000; 17(5): 435-46.
[http://dx.doi.org/10.1039/a707613d] [PMID: 11072891]
[11]
Michael JP. Indolizidine and quinolizidine alkaloids. Nat Prod Rep 2008; 25(1): 139-65.
[http://dx.doi.org/10.1039/B612166G] [PMID: 18250900]
[12]
Sharma V, Kumar V. Indolizine: A biologically active moiety. Med Chem Res 2014; 23: 3593-606.
[http://dx.doi.org/10.1007/s00044-014-0940-1]
[13]
Sharma V, Kumar P, Pathak D. Biological importance of the indole nucleus in recent years: A comprehensive review. J Heterocycl Chem 2010; 47: 491-502.
[14]
Shin J, Seo Y, Cho KW, Rho JR, Sim CJ. Stellettamide B, a new indolizidine alkaloid from a sponge of the genus Stelletta. J Nat Prod 1997; 60(6): 611-3.
[http://dx.doi.org/10.1021/np970041h] [PMID: 9296951]
[15]
Gellert E. The indolizidine alkaloids. J Nat Prod 1982; 45: 50-73.
[http://dx.doi.org/10.1021/np50019a005]
[16]
You X, Pan M, Gao W, et al. Effects of a novel tylophorine analog on collagen-induced arthritis through inhibition of the innate immune response. Arthritis Rheum 2006; 54(3): 877-86.
[http://dx.doi.org/10.1002/art.21640] [PMID: 16508970]
[17]
Yang CW, Chen WL, Wu PL, Tseng HY, Lee SJ. Anti-inflammatory mechanisms of phenanthroindolizidine alkaloids. Mol Pharmacol 2006; 69(3): 749-58.
[PMID: 16332992]
[18]
Yang CW, Chuang TH, Wu PL, Huang WH, Lee SJ. Anti-inflammatory effects of 7-methoxycryptopleurine and structure-activity relations of phenanthroindolizidines and phenanthroquinolizidines. Biochem Biophys Res Commun 2007; 354(4): 942-8.
[http://dx.doi.org/10.1016/j.bbrc.2007.01.065] [PMID: 17274949]
[19]
Min HY, Song SH, Lee B, Kim S, Lee SK. Inhibition of lipopolysaccharide-induced nitric oxide production by antofine and its analogues in RAW 264.7 macrophage cells. Chem Biodivers 2010; 7(2): 409-14.
[http://dx.doi.org/10.1002/cbdv.200900040] [PMID: 20151387]
[20]
Su CR, Damu AG, Chiang PC, et al. Total synthesis of phenanthroindolizidine alkaloids (+/-)-antofine, (+/-)-deoxypergularinine, and their dehydro congeners and evaluation of their cytotoxic activity. Bioorg Med Chem 2008; 16(11): 6233-41.
[http://dx.doi.org/10.1016/j.bmc.2008.04.032] [PMID: 18456501]
[21]
Lee SK, Nam KA, Heo YH. Cytotoxic activity and G2/M cell cycle arrest mediated by antofine, a phenanthroindolizidine alkaloid isolated from Cynanchum paniculatum. Planta Med 2003; 69(1): 21-5.
[http://dx.doi.org/10.1055/s-2003-37021] [PMID: 12567274]
[22]
Xi Z, Zhang R, Yu Z, Ouyang D, Huang R. Selective interaction between tylophorine B and bulged DNA. Bioorg Med Chem Lett 2005; 15(10): 2673-7.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.022] [PMID: 15863340]
[23]
Xi Z, Zhang R, Yu Z, Ouyang D. The interaction between tylophorine B and TMV RNA. Bioorg Med Chem Lett 2006; 16(16): 4300-4.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.059] [PMID: 16759858]
[24]
Fu Y, Lee SK, Min HY, et al. Synthesis and structure-activity studies of antofine analogues as potential anticancer agents. Bioorg Med Chem Lett 2007; 17(1): 97-100.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.080] [PMID: 17049857]
[25]
Yang X, Shi Q, Yang S-C, et al. Antitumor agents 288: design, synthesis, SAR, and biological studies of novel heteroatom-incorporated antofine and cryptopleurine analogues as potent and selective antitumor agents. J Med Chem 2011; 54(14): 5097-107.
[http://dx.doi.org/10.1021/jm200330s] [PMID: 21668000]
[26]
Yang X, Shi Q, Bastow KF, Lee KH. Antitumor agents. 274. A new synthetic strategy for E-ring SAR study of antofine and cryptopleurine analogues. Org Lett 2010; 12(7): 1416-9.
[http://dx.doi.org/10.1021/ol902819j] [PMID: 20196574]
[27]
Yang X, Shi Q, Lai CY, et al. Antitumor agents 295. E-ring hydroxylated antofine and cryptopleurine analogues as antiproliferative agents: Design, synthesis, and mechanistic studies. J Med Chem 2012; 55(15): 6751-61.
[http://dx.doi.org/10.1021/jm3001218] [PMID: 22823514]
[28]
Yang X, Shi Q, Yang SC, et al. Antitumor agents 288: design, synthesis, SAR, and biological studies of novel heteroatom-incorporated antofine and cryptopleurine analogues as potent and selective antitumor agents. J Med Chem 2011; 54(14): 5097-107.
[http://dx.doi.org/10.1021/jm200330s] [PMID: 21668000]
[29]
Yang X, Shi Q, Bastow KF, Lee KH. Antitumor agents. 274. A new synthetic strategy for E-ring SAR study of antofine and cryptopleurine analogues. Org Lett 2010; 12(7): 1416-9.
[http://dx.doi.org/10.1021/ol902819j] [PMID: 20196574]
[30]
Rietveld K, Linschooten K, Pleij CW, Bosch L. The three-dimensional folding of the tRNA-like structure of tobacco mosaic virus RNA. A new building principle applied twice. EMBO J 1984; 3(11): 2613-9.
[http://dx.doi.org/10.1002/j.1460-2075.1984.tb02182.x] [PMID: 16453568]
[31]
Xi Z, Zhang R, Yu Z, Ouyang D. The interaction between tylophorine B and TMV RNA. Bioorg Med Chem Lett 2006; 16(16): 4300-4.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.059] [PMID: 16759858]
[32]
Wang KL, Lu MY, Wang QM, Huang RQ. Iron(III) chloride-based mild synthesis of phenanthrene and its application to total synthesis of phenanthroindolizidine alkaloids. Tetrahedron 2008; 64: 7504-10.
[http://dx.doi.org/10.1016/j.tet.2008.06.003]
[33]
Jin Z, Wang Q, Huang R. Intramolecular biaryl oxidative coupling of stilbenes by vanadium oxytrichloride (VOCl3): Facile synthesis of substituted phenanthrene derivatives. Synth Commun 2004; 34: 119-28.
[http://dx.doi.org/10.1081/SCC-120027245]
[34]
Gao S, Zhang R, Yu Z, Xi Z. Antofine analogues can inhibit tobacco mosaic virus assembly through small-molecule-RNA interactions. ChemBioChem 2012; 13(11): 1622-7.
[http://dx.doi.org/10.1002/cbic.201200313] [PMID: 22753104]
[35]
Wu M, Han G, Wang Z, Liu Y, Wang Q. Synthesis and antiviral activities of antofine analogues with different C-6 substituent groups. J Agric Food Chem 2013; 61(5): 1030-5.
[http://dx.doi.org/10.1021/jf304905k] [PMID: 23320928]
[36]
Hohenschutz LD, Bell EA, Jewess PJ, et al. Castanospermine, A 1,6,7,8-tetrahydroxyoctahydroindolizine alkaloid from seeds of Castanospermum austarale. Phytochemistry 1981; 20: 811-4.
[http://dx.doi.org/10.1016/0031-9422(81)85181-3]
[37]
Pili R, Chang J, Partis RA, Mueller RA, Chrest FJ, Passaniti A. The α-glucosidase I inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth. Cancer Res 1995; 55(13): 2920-6.
[PMID: 7540952]
[38]
Sunkara PS, Bowlin TL, Liu PS, Sjoerdsma A. Antiretroviral activity of castanospermine and deoxynojirimycin, specific inhibitors of glycoprotein processing. Biochem Biophys Res Commun 1987; 148(1): 206-10.
[http://dx.doi.org/10.1016/0006-291X(87)91096-5] [PMID: 2960321]
[39]
Ye XS, Sun F, Liu M, et al. Synthetic iminosugar derivatives as new potential immunosuppressive agents. J Med Chem 2005; 48(11): 3688-91.
[http://dx.doi.org/10.1021/jm050169t] [PMID: 15916418]
[40]
Wojtowicz K, Januchowski R, Sosińska P, Nowicki M, Zabel M. Effect of brefeldin A and castanospermine on resistant cell lines as supplements in anticancer therapy. Oncol Rep 2016; 35(5): 2896-906.
[http://dx.doi.org/10.3892/or.2016.4656] [PMID: 26985570]
[41]
Kato A, Hirokami Y, Kinami K, et al. Isolation and SAR studies of bicyclic iminosugars from Castanospermum australe as glycosidase inhibitors. Phytochemistry 2015; 111: 124-31.
[http://dx.doi.org/10.1016/j.phytochem.2014.12.011] [PMID: 25583438]
[42]
Whitby K, Pierson TC, Geiss B, et al. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. J Virol 2005; 79(14): 8698-706.
[http://dx.doi.org/10.1128/JVI.79.14.8698-8706.2005] [PMID: 15994763]
[43]
Monath TP. Dengue: The risk to developed and developing countries. Proc Natl Acad Sci USA 1994; 91(7): 2395-400.
[http://dx.doi.org/10.1073/pnas.91.7.2395] [PMID: 8146129]
[44]
Whitby K, Pierson TC, Geiss B, et al. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. J Virol 2005; 79(14): 8698-706.
[http://dx.doi.org/10.1128/JVI.79.14.8698-8706.2005] [PMID: 15994763]
[45]
Whitby K, Taylor D, Patel D, Ahmed P, Tyms AS. Action of celgosivir (6 O-butanoyl castanospermine) against the pestivirus BVDV: implications for the treatment of hepatitis C. Antivir Chem Chemother 2004; 15(3): 141-51.
[http://dx.doi.org/10.1177/095632020401500304] [PMID: 15266896]
[46]
Hibberd AD, Clark DA, Trevillian PR, Mcelduff P. Interaction between castanospermine an immunosuppressant and cyclosporin A in rat cardiac transplantation. World J Transplant 2016; 6(1): 206-14.
[http://dx.doi.org/10.5500/wjt.v6.i1.206] [PMID: 27011919]
[47]
Hong YP, Chen C, Guo WY, et al. Effects of castanospermine on inflammatory response in a rat model of experimental severe acute pancreatitis. Arch Med Res 2016; 47(6): 436-45.
[http://dx.doi.org/10.1016/j.arcmed.2016.11.007] [PMID: 27986123]
[48]
Donzelli DBG, Creamer R, Baucom DL, et al. Swainsonine biosynthesis genes in diverse symbiotic and pathogenic fungi. G3: Genes, Genomes. Genetics 2017; 7: 1791-7.
[49]
Ma J, Wang L, Li J, et al. Swainsonine inhibits invasion and the EMT process in esophageal carcinoma cells by targeting twist1. Oncol Res 2018; 26(8): 1207-13.
[http://dx.doi.org/10.3727/096504017X15046134836575] [PMID: 28899457]
[50]
Micheloud JF, Marin R, Colque-Caro LA, Martínez OG, Gardner D, Gimeno EJ. Swainsonine-induced lysosomal storage disease in goats caused by the ingestion of Sida rodrigoi Monteiro in North-western Argentina. Toxicon 2017; 128: 1-4.
[http://dx.doi.org/10.1016/j.toxicon.2016.12.011] [PMID: 28093222]
[51]
Ren Z, Song R, Wang S, et al. The Biosynthesis Pathway of Swainsonine, a New Anticancer Drug from Three Endophytic Fungi. J Microbiol Biotechnol 2017; 27(11): 1897-906.
[http://dx.doi.org/10.4014/jmb.1709.09003] [PMID: 29092390]
[52]
Wang Y, Gao X, Peng M, et al. The Mechanism of swainsonine causing early pregnancy abnormal decidualization and inducing abortion by changing glycosylation modification. Adv Reprod Sci 2018; 6: 70-101.
[http://dx.doi.org/10.4236/arsci.2018.63007]
[53]
Li Z, Xu X, Huang Y, et al. Swainsonine activates mitochondria-mediated apoptotic pathway in human lung cancer A549 cells and retards the growth of lung cancer xenografts. Int J Biol Sci 2012; 8(3): 394-405.
[http://dx.doi.org/10.7150/ijbs.3882] [PMID: 22393311]
[54]
Tulsiani DR, Harris TM, Touster O. Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II. J Biol Chem 1982; 257(14): 7936-9.
[PMID: 6806288]
[55]
Pearson WH, Guo L. Synthesis and mannosidase inhibitory activity of 3-benzyloxymethyl analogs of swainsonine. Tetrahedron Lett 2001; 42: 8267-71.
[http://dx.doi.org/10.1016/S0040-4039(01)01777-4]
[56]
Rooprai HK, Kandanearatchi A, Maidment SL, et al. Evaluation of the effects of swainsonine, captopril, tangeretin and nobiletin on the biological behaviour of brain tumour cells in vitro. Neuropathol Appl Neurobiol 2001; 27(1): 29-39.
[http://dx.doi.org/10.1046/j.0305-1846.2000.00298.x] [PMID: 11299000]
[57]
Sun JY, Zhu MZ, Wang SW, Miao S, Xie YH, Wang JB. Inhibition of the growth of human gastric carcinoma in vivo and in vitro by swainsonine. Phytomedicine 2007; 14(5): 353-9.
[http://dx.doi.org/10.1016/j.phymed.2006.08.003] [PMID: 17097281]
[58]
Gao W, Lam W, Zhong S, Kaczmarek C, Baker DC, Cheng YC. Novel mode of action of tylophorine analogs as antitumor compounds. Cancer Res 2004; 64(2): 678-88.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-1904] [PMID: 14744785]
[59]
You X, Pan M, Gao W, et al. Effects of a novel tylophorine analog on collagen-induced arthritis through inhibition of the innate immune response. Arthritis Rheum 2006; 54(3): 877-86.
[http://dx.doi.org/10.1002/art.21640] [PMID: 16508970]
[60]
Tripathi AK, Singh D, Jain DC. Persistency of tylophorine as an insect antifeedant against Spilosoma obliqua Walker. Phytother Res 1990; 4: 144-7.
[http://dx.doi.org/10.1002/ptr.2650040404]
[61]
Daly JW, Witkop B, Tokuyama T, Nishikawa T, Karle IL. Gephyrotoxins, histrionicotoxins and pumiliotoxins from the neotropical frog Dendrobates histrionicus. Helv Chim Acta 1977; 60(3): 1128-40.
[http://dx.doi.org/10.1002/hlca.19770600336] [PMID: 863724]
[62]
Aronstam RS, Daly JW, Spande TF, Narayanan TK, Albuquerque EX. Interaction of gephyrotoxin and indolizidine alkaloids with the nicotinic acetylcholine receptor-ion channel complex of Torpedo electroplax. Neurochem Res 1986; 11(8): 1227-40.
[http://dx.doi.org/10.1007/BF00965950] [PMID: 2431336]
[63]
Aronstam RS, Ryan US, Catravas JD. Muscarinic binding sites on bovine pulmonary arterial endothelial cells in culture. Pharmacology 1992; 44(6): 324-33.
[http://dx.doi.org/10.1159/000138937] [PMID: 1508962]
[64]
Souccar C, Varanda WA, Aronstam RS, Daly JW, Albuquerque EX. Interactions of gephyrotoxin with the acetylcholine receptor-ionic channel complex. II. Enhancement of desensitization. Mol Pharmacol 1984; 25(3): 395-400.
[PMID: 6328265]
[65]
Souccar C, Varanda WA, Daly JW, Albuquerque EX, Albuquerque EX. Interactions of gephyrotoxin with the acetylcholine receptor-ionic channel complex. I. Blockade of the ionic channel. Mol Pharmacol 1984; 25(3): 384-94.
[PMID: 6328264]
[66]
Cardona F, Goti A, Picasso S, Vogel P, Brandi A. Polyhydroxypyrrolidine glycosidase inhibitors related to (+)-lentiginosine. J Carbohydr Chem 2000; 19: 585-601.
[http://dx.doi.org/10.1080/07328300008544101]
[67]
Macchi B, Minutolo A, Grelli S, et al. The novel proapoptotic activity of nonnatural enantiomer of Lentiginosine. Glycobiology 2010; 20(5): 500-6.
[http://dx.doi.org/10.1093/glycob/cwp202] [PMID: 20053629]
[68]
Dal Piaz F, Vassallo A, Chini MG, et al. Natural iminosugar (+)-lentiginosine inhibits ATPase and chaperone activity of hsp90. PLoS One 2012; 7(8)e43316
[http://dx.doi.org/10.1371/journal.pone.0043316] [PMID: 22916240]
[69]
Donaldson GR, Atkinson MR, Murray AW. Inhibition of protein synthesis in Ehrlich ascites-tumour cells by the phenanthrene alkaloids tylophorine, tylocrebrine and cryptopleurine. Biochem Biophys Res Commun 1968; 31(1): 104-9.
[http://dx.doi.org/10.1016/0006-291X(68)90037-5] [PMID: 4869942]
[70]
Narasimha Rao K, Bhattacharya RK, Venkatachalam SR. Thymidylate synthase activity in leukocytes from patients with chronic myelocytic leukemia and acute lymphocytic leukemia and its inhibition by phenanthroindolizidine alkaloids pergularinine and tylophorinidine. Cancer Lett 1998; 128(2): 183-8.
[http://dx.doi.org/10.1016/S0304-3835(98)00061-5] [PMID: 9683281]
[71]
Rao KN, Venkatachalam SR. Inhibition of dihydrofolate reductase and cell growth activity by the phenanthroindolizidine alkaloids pergularinine and tylophorinidine: the in vitro cytotoxicity of these plant alkaloids and their potential as antimicrobial and anticancer agents. Toxicol In Vitro 2000; 14(1): 53-9.
[http://dx.doi.org/10.1016/S0887-2333(99)00092-2] [PMID: 10699361]
[72]
Edwards MW, Daly JW, Myers CW. Alkaloids from a panamanian poison frog, Dendrobates speciosus: identification of pumiliotoxin-A and allopumiliotoxin class alkaloids, 3,5-disubstituted indolizidines, 5-substituted 8-methylindolizidines, and a 2-methyl-6-nonyl-4-hydroxypiperidine. J Nat Prod 1988; 51(6): 1188-97.
[http://dx.doi.org/10.1021/np50060a023] [PMID: 3236011]
[73]
Aust SD. Effect of slaframine on exocrine gland function. Biochem Pharmacol 1970; 19(2): 427-33.
[http://dx.doi.org/10.1016/0006-2952(70)90198-X] [PMID: 5507659]
[74]
Borges AS, Oliveira Filho JP, Simon JJ, Palumbo MIP, Imerman PM. Slaframine toxicosis in Brazilian horses causing excessive salivation. Equine Vet Educ 2012; 24: 279-83.
[http://dx.doi.org/10.1111/j.2042-3292.2011.00275.x]
[75]
Walker JA, Krehbiel CR, Harmon DL, St Jean G, Croom WJ Jr, Hagler WM Jr. Effects of slaframine and 4-diphenylacetoxy-N-methylpiperidine methiodide (4DAMP) on pancreatic exocrine secretion in the bovine. Can J Physiol Pharmacol 1994; 72(1): 39-44.
[http://dx.doi.org/10.1139/y94-007] [PMID: 8012896]
[76]
Aust SD, Broquist HP, Rinehart KL Jr. Slaframine: a parasympathomimetric from Rhizoctonia leguminicola. Biotechnol Bioeng 1968; 10: 403-12.
[http://dx.doi.org/10.1002/bit.260100402]
[77]
Gellert E, Govindachari TR, Lakshmikantham MV, Ragade IS, Rudzats R, Viswanathan N. The alkaloids of Tylophora crebriflora: structure and synthesis of tylocrebrine, a new phenanthroindolizidine alkaloid. J Chem Soc 1962; 189: 1008-14.
[http://dx.doi.org/10.1039/jr9620001008]
[78]
Gellert E, Rudzats R. The antileukemia activity of tylocrebrine. J Med Chem 1964; 7: 361-2.
[http://dx.doi.org/10.1021/jm00333a029] [PMID: 14204981]
[79]
Jiangseubchatveera N, Bouillon ME, Liawruangrath B, Liawruangrath S, Nash RJ, Pyne SG. Concise synthesis of (-)-steviamine and analogues and their glycosidase inhibitory activities. Org Biomol Chem 2013; 11(23): 3826-33.
[http://dx.doi.org/10.1039/c3ob40374b] [PMID: 23640519]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy