[1]
Montalbetti, C.A.G.N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61(46), 10827-10852. [http://dx.doi.org/10.1016/j.tet.2005.08.031].
[2]
Albericio, F. Developments in peptide and amide synthesis. Curr. Opin. Chem. Biol., 2004, 8(3), 211-221. [http://dx.doi.org/10.1016/j.cbpa.2004.03.002]. [PMID: 15183318].
[3]
Jaradat, D.M.M. Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids, 2018, 50(1), 39-68. [http://dx.doi.org/10.1007/s00726-017-2516-0]. [PMID: 29185032].
[4]
Tang, W.; Becker, M.L. “Click” reactions: A versatile toolbox for the synthesis of peptide-conjugates. Chem. Soc. Rev., 2014, 43(20), 7013-7039. [http://dx.doi.org/10.1039/C4CS00139G]. [PMID: 24993161].
[5]
Ferrand, Y.; Huc, I. Designing helical molecular capsules based on folded aromatic amide oligomers. Acc. Chem. Res., 2018, 51(4), 970-977. [http://dx.doi.org/10.1021/acs.accounts.8b00075]. [PMID: 29589916].
[6]
Bachmann, F.; Ruppenstein, M.; Thiem, L. Synthesis of aminosaccharide-derived polymers with urea, urethane, and amide linkages. J. Polym. Sci. Pol. Chem., 2001, 39(13), 2332-2341. [http://dx.doi.org/10.1002/pola.1210].
[7]
Guo, X.; Facchetti, A.; Marks, T.J. Imide- and amide-functionalized polymer semiconductors. Chem. Rev., 2014, 114(18), 8943-9021. [http://dx.doi.org/10.1021/cr500225d]. [PMID: 25181005].
[8]
Buckwalter, D.J.; Dennis, J.M.; Long, T.E. Amide-containing segmented copolymers. Prog. Polym. Sci., 2015, 45, 1-22. [http://dx.doi.org/10.1016/j.progpolymsci.2014.11.003].
[9]
Macoy, D.M.; Kim, W.Y.; Lee, S.Y.; Kim, M.G. Biotic stress related functions of hydroxycinnamic acid amide in plants. J. Plant Biol., 2015, 58(3), 156-163. [http://dx.doi.org/10.1007/s12374-015-0104-y].
[10]
Schwartz, B.D.; Skinner-Adams, T.S.; Andrews, K.T.; Coster, M.J.; Edstein, M.D.; MacKenzie, D.; Charman, S.A.; Koltun, M.; Blundell, S.; Campbell, A.; Pouwer, R.H.; Quinn, R.J.; Beattie, K.D.; Healy, P.C.; Davis, R.A. Synthesis and antimalarial evaluation of amide and urea derivatives based on the thiaplakortone. A natural product scaffold. Org. Biomol. Chem., 2015, 13(5), 1558-1570. [http://dx.doi.org/10.1039/C4OB01849D]. [PMID: 25490858].
[11]
Siddiqui, B.S.; Gulzar, T.; Begum, S.; Afshan, F.; Sultana, R. A new natural product and insecticidal amides from seeds of Piper nigrum Linn. Nat. Prod. Res., 2008, 22(13), 1107-1111. [http://dx.doi.org/10.1080/14786410500045705]. [PMID: 18855209].
[12]
Chatterjee, S.; Manna, A.; Chakraborty, I.; Bhaumik, T. Chiron approach from D-mannitol to access a diastereomer of the reported structure of an acetogenin, an amide alkaloid and a sex pheromone. Carbohydr. Res., 2019, 473, 5-11. [http://dx.doi.org/10.1016/j.carres.2018.12.008]. [PMID: 30590155].
[13]
Ahmadi, A.; Khalili, M.; Olama, Z.; Karami, S.; Nahri-Niknafs, B. Synthesis and study of analgesic and anti-inflammatory activities of amide derivatives of ibuprofen. Mini Rev. Med. Chem., 2017, 17(9), 799-804. [http://dx.doi.org/10.2174/1389557516666161226155951]. [PMID: 28029080].
[14]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147. [http://dx.doi.org/10.1111/cbdd.12055]. [PMID: 23253135].
[15]
Maienfisch, P.; Edmunds, A.J.F. Thiazole and isothiazole ring-containing compounds in crop protection. Adv. Heterocycl. Chem., 2017, 121, 35-88. [http://dx.doi.org/10.1016/bs.aihch.2016.04.010].
[16]
Gordon, K.C.; McGoverin, C.M.; Strachan, C.J.; Rades, T. The use of quantum chemistry in pharmaceutical research as illustrated by case studies of indometacin and carbamazepine. J. Pharm. Pharmacol., 2007, 59(2), 271-277. [http://dx.doi.org/10.1211/jpp.59.2.0013]. [PMID: 17270080].
[17]
Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J.A.; Charlier, P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev., 2008, 32(2), 234-258. [http://dx.doi.org/10.1111/j.1574-6976.2008.00105.x]. [PMID: 18266856].
[18]
Roughley, S.D.; Jordan, A.M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem., 2011, 54(10), 3451-3479. [http://dx.doi.org/10.1021/jm200187y]. [PMID: 21504168].
[19]
Carey, J.S.; Laffan, D.; Thomson, C.; Williams, M.T. Analysis of the reactions used for the preparation of drug candidate molecules. Org. Biomol. Chem., 2006, 4(12), 2337-2347. [http://dx.doi.org/10.1039/b602413k]. [PMID: 16763676].
[20]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68. [http://dx.doi.org/10.1021/cc9800071]. [PMID: 10746014].
[21]
Constable, D.J.C.; Dunn, P.J.; Hayler, J.D.; Humphrey, G.R. Key green chemistry research areas-a perspective from pharmaceutical manufacturers. Green Chem., 2007, 9(5), 411-420. [http://dx.doi.org/10.1039/B703488C].
[22]
Dunetz, J.R.; Magano, J.; Weisenburger, G.A. Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals. Org. Process Res. Dev., 2016, 20, 140-177. [http://dx.doi.org/10.1021/op500305s].
[23]
Adams, J.P.; Alder, C.M.; Andrews, I.; Bullion, A.M.; Campbell-Crawford, M.; Darcy, M.G.; Hayler, J.D.; Henderson, R.K.; Oare, C.A.; Pendrak, I.; Redman, A.M. Development of GSK’s reagent guides-embedding sustainability into reagent selection. Green Chem., 2013, 15, 1542-1549. [http://dx.doi.org/10.1039/c3gc40225h].
[24]
Bryan, M.C.; Dillon, B.; Hamann, L.G.; Hughes, G.J.; Kopach, M.E.; Peterson, E.A.; Pourashraf, M.; Raheem, I.; Richardson, P.; Richter, D.; Sneddon, H.F. Sustainable practices in medicinal chemistry: Current state and future directions. J. Med. Chem., 2013, 56(15), 6007-6021. [http://dx.doi.org/10.1021/jm400250p]. [PMID: 23586692].
[25]
Bandichhor, R.; Bhattacharya, A.; Diorazio, L.; Dunn, P.; Fraunhoffer, K.; Gallou, F.; Hayler, J.; Hickey, M.; Hinkley, B.; Hughes, D.; Humphreys, L.; Kaptein, B.; Mathew, S.; Oh, L.; Richardson, P.; White, T.; Wuyts, S. Green chemistry articles of interest to the pharmaceutical industry. Org. Process Res. Dev., 2013, 17, 615-626. [http://dx.doi.org/10.1021/op4000434].
[26]
Amarnath, L.; Andrews, I.; Bandichhor, R.; Bhattacharya, A.; Dunn, P.; Hayler, J.; Hinkley, W.; Holub, N.; Hughes, D.; Humphreys, L.; Kaptein, B.; Krishnen, H.; Lorenz, K.; Mathew, S.; Nagaraju, G.; Rammeloo, T.; Richardson, P.; Wang, L.; Wells, A.; White, T. Green chemistry articles of interest to the pharmaceutical industry. Org. Process Res. Dev., 2012, 16, 535-544. [http://dx.doi.org/10.1021/op300068d].
[27]
Andrews, I.; Dunn, P.; Hayler, J.; Hinkley, B.; Hughes, D.; Kaptein, B.; Lorenz, K.; Mathew, S.; Rammeloo, T.; Wang, L.; Wells, A.; White, T.D. Green chemistry articles of interest to the pharmaceutical industry. Org. Process Res. Dev., 2011, 15, 22-30. [http://dx.doi.org/10.1021/op1003105].
[28]
Valeur, E.; Bradley, M. Amide bond formation: Beyond the myth of coupling reagents. Chem. Soc. Rev., 2009, 38(2), 606-631. [http://dx.doi.org/10.1039/B701677H]. [PMID: 19169468].
[29]
Ishihara, K.; Lu, Y. Boronic acid-DMAPO cooperative catalysis for dehydrative condensation between carboxylic acids and amines. Chem. Sci. (Camb.), 2016, 7(2), 1276-1280. [http://dx.doi.org/10.1039/C5SC03761A]. [PMID: 29910884].
[30]
Grzyb, J.B.; Batey, R.A. Carbamoylimidazolium salts as diversification reagents: an application to the synthesis of tertiary amides from carboxylic acids. Tetrahedron Lett., 2003, 44(29), 7485-7488. [http://dx.doi.org/10.1016/j.tetlet.2003.08.026].
[31]
Katritzky, A.R.; Singh, S.K.; Cai, C.; Bobrov, S. Direct synthesis of esters and amides from unprotected hydroxyaromatic and -aliphatic carboxylic acids. J. Org. Chem., 2006, 71(9), 3364-3374. [http://dx.doi.org/10.1021/jo052293q]. [PMID: 16626115].
[32]
Fujihara, T.; Katafuchi, Y.; Iwai, T.; Terao, J.; Tsuji, Y. Palladium-catalyzed intermolecular addition of formamides to alkynes. J. Am. Chem. Soc., 2010, 132(6), 2094-2098. [http://dx.doi.org/10.1021/ja910038p]. [PMID: 20095608].
[33]
Wu, J.J.; Li, Y.W.; Zhou, H.Y.; Wen, A.H.; Lun, C.C.; Yao, S.Y.; Ke, Z.F.; Ye, B.H. Copper-catalyzed carbamoylation of terminal alkynes with formamides via cross-dehydrogenative coupling. ACS Catal., 2016, 6(2), 1263-1267. [http://dx.doi.org/10.1021/acscatal.5b02881].
[34]
Nakao, Y.; Morita, E.; Idei, H.; Hiyama, T. Dehydrogenative [4 + 2] cycloaddition of formamides with alkynes through double C-H activation. J. Am. Chem. Soc., 2011, 133(10), 3264-3267. [http://dx.doi.org/10.1021/ja1102037]. [PMID: 21341789].
[35]
Augustine, J.K.; Kumar, R.; Bombrun, A.; Mandal, A.B. An efficient catalytic method for the Beckmann rearrangement of ketoximes to amides and aldoximes to nitriles mediated by propylphosphonic anhydride (T3P®). Tetrahedron Lett., 2011, 52(10), 1074-1077. [http://dx.doi.org/10.1016/j.tetlet.2010.12.090].
[36]
Li, Q.; Yan, L.Y.; Xia, D.; Shen, Y.C. Research progress of beckmann rearrangement. Youji Huaxue, 2011, 31, 2034-2042.
[37]
Crochet, P.; Cadierno, V. Catalytic synthesis of amides via aldoximes rearrangement. Chem. Commun. (Camb.), 2015, 51(13), 2495-2505. [http://dx.doi.org/10.1039/C4CC08684H]. [PMID: 25503254].
[38]
Stephenson, N.A.; Zhu, J.; Gellman, S.H.; Stahl, S.S. Catalytic transamidation reactions compatible with tertiary amide metathesis under ambient conditions. J. Am. Chem. Soc., 2009, 131(29), 10003-10008. [http://dx.doi.org/10.1021/ja8094262]. [PMID: 19621957].
[39]
Starkov, P.; Sheppard, T.D. Borate esters as convenient reagents for direct amidation of carboxylic acids and transamidation of primary amides. Org. Biomol. Chem., 2011, 9(5), 1320-1323. [http://dx.doi.org/10.1039/c0ob01069c]. [PMID: 21212879].
[40]
Nguyen, T.B.; Sorres, J.; Tran, M.Q.; Ermolenko, L.; Al-Mourabit, A. Boric acid: a highly efficient catalyst for transamidation of carboxamides with amines. Org. Lett., 2012, 14(12), 3202-3205. [http://dx.doi.org/10.1021/ol301308c]. [PMID: 22676810].
[41]
Batra, S.; Dighe, S.U. Visible light-induced iodine-catalyzed transformation of terminal alkynes to primary amides via C☰C bond cleavage under aqueous conditions. Adv. Synth. Catal., 2016, 358, 500-505. [http://dx.doi.org/10.1002/adsc.201500906].
[42]
Sawant, D.N.; Wagh, Y.S.; Bhatte, K.D.; Bhanage, B.M. Carbon monoxide-free one-step synthesis of isoindole-1,3-diones by cycloaminocarbonylation of o-Haloarenes using formamides. Eur. J. Org. Chem., 2011, 6719-6724. [http://dx.doi.org/10.1002/ejoc.201101000].
[43]
Nordeman, P.; Odell, L.R.; Larhed, M. Aminocarbonylations employing Mo(CO)6 and a bridged two-vial system: allowing the use of nitro group substituted aryl iodides and aryl bromides. J. Org. Chem., 2012, 77(24), 11393-11398. [http://dx.doi.org/10.1021/jo302322w]. [PMID: 23205569].
[44]
Iranpoor, N.; Firouzabadi, H.; Motevalli, S.; Talebi, M. Palladium-free aminocarbonylation of aryl, benzyl, and styryl iodides and bromides by amines using Mo(CO)6 and norbornadiene. Tetrahedron, 2013, 69(1), 418-426. [http://dx.doi.org/10.1016/j.tet.2012.10.002].
[45]
Hughes, N.L.; Brown, C.L.; Irwin, A.A.; Cao, Q.; Muldoon, M.J. Palladium(II)-catalysed aminocarbonylation of terminal alkynes for the synthesis of 2-ynamides: addressing the challenges of solvents and gas mixtures. ChemSusChem, 2017, 10(4), 675-680. [http://dx.doi.org/10.1002/cssc.201601601]. [PMID: 27906507].
[46]
Sha, F.; Alper, H. Ligand-and additive-controlled Pd-catalyzed aminocarbonylation of alkynes with aminophenols: highly chemo-and regioselective synthesis of alpha,beta-unsaturated. ACS Catal., 2017, 7(3), 220-229. [http://dx.doi.org/10.1021/acscatal.7b00367].
[47]
Driller, K.M.; Prateeptongkum, S.; Jackstell, R.; Beller, M. A general and selective iron-catalyzed aminocarbonylation of alkynes: synthesis of acryl- and cinnamides. Angew. Chem. Int. Ed. Engl., 2011, 50(2), 537-541. [http://dx.doi.org/10.1002/anie.201005823]. [PMID: 21120980].
[48]
Gadge, S.T.; Khedkar, M.V.; Lanke, S.R.; Bhanage, B.M. Oxidative aminocarbonylation of terminal alkynes for the synthesis of alk-2-ynamides by using palladium-on-carbon as efficient, heterogeneous, phosphine-free, and reusable catalyst. Adv. Synth. Catal., 2012, 354(10), 2049-2056. [http://dx.doi.org/10.1002/adsc.201200041].
[49]
Shen, B.; Makley, D.M.; Johnston, J.N. Umpolung reactivity in amide and peptide synthesis. Nature, 2010, 465(7301), 1027-1032. [http://dx.doi.org/10.1038/nature09125]. [PMID: 20577205].
[50]
Gupta, M.; Paul, S.; Gupta, R. General aspects of 12 basic principles of green chemistry with applications. Curr. Sci. India, 2010, 99(10), 1341-1360.
[51]
Anastas, P.; Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312. [http://dx.doi.org/10.1039/B918763B]. [PMID: 20023854].
[52]
Li, C-J.; Trost, B.M. Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13197-13202. [http://dx.doi.org/10.1073/pnas.0804348105]. [PMID: 18768813].
[53]
Pattabiraman, V.R.; Bode, J.W. Rethinking amide bond synthesis. Nature, 2011, 480(7378), 471-479. [http://dx.doi.org/10.1038/nature10702]. [PMID: 22193101].
[54]
Allen, C.L.; Williams, J.M. Metal-catalysed approaches to amide bond formation. Chem. Soc. Rev., 2011, 40(7), 3405-3415. [http://dx.doi.org/10.1039/c0cs00196a]. [PMID: 21416075].
[55]
Fujihara, T.; Tsuji, Y. Transition metal-catalyzed synthesis of pi-conjaguted cyclic esters and mmides from alkynes and carbonyl reagent. Heterocycles, 2014, 89(6), 1343-1367. [http://dx.doi.org/10.3987/REV-13-786].
[56]
Ojeda-Porras, A.; Gamba-Sánchez, D. Recent developments in amide synthesis using nonactivated starting materials. J. Org. Chem., 2016, 81(23), 11548-11555. [http://dx.doi.org/10.1021/acs.joc.6b02358]. [PMID: 27934465].
[57]
de Figueiredo, R.M.; Suppo, J.S.; Campagne, J.M. Nonclassical Routes for amide bond formation. Chem. Rev., 2016, 116(19), 12029-12122. [http://dx.doi.org/10.1021/acs.chemrev.6b00237]. [PMID: 27673596].
[58]
Lanigan, R.M.; Sheppard, T.D. Recent developments in amide synthesis: direct amidation of carboxylic acids and transamidation reactions. Eur. J. Org. Chem., 2013, 33, 7453-7465. [http://dx.doi.org/10.1002/ejoc.201300573].
[59]
Dong, H.; Hou, M. Recent progress in synthesis of amides. Youji Huaxue, 2017, 37, 267-283. [http://dx.doi.org/10.6023/cjoc201608014].
[60]
Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Catalytic amide formation from non-activated carboxylic acids and amines. Chem. Soc. Rev., 2014, 43(8), 2714-2742. [http://dx.doi.org/10.1039/C3CS60345H]. [PMID: 24430887].
[61]
Chen, C.; Verpoort, F.; Wu, Q. Atom-economic dehydrogenative amide synthesis via ruthenium catalysis. RSC Adv., 2016, 6, 55599-55607. [http://dx.doi.org/10.1039/C6RA10643A].
[62]
Yoo, W-J.; Li, C-J. Highly efficient oxidative amidation of aldehydes with amine hydrochloride salts. J. Am. Chem. Soc., 2006, 128(40), 13064-13065. [http://dx.doi.org/10.1021/ja064315b]. [PMID: 17017781].
[63]
Zhu, M.; Fujita, K.; Yamaguchi, R. Aerobic oxidative amidation of aromatic and cinnamic aldehydes with secondary amines by CuI/2-pyridonate catalytic system. J. Org. Chem., 2012, 77(20), 9102-9109. [http://dx.doi.org/10.1021/jo301553v]. [PMID: 23006061].
[64]
Ghosh, S.C.; Ngiam, J.S.Y.; Seayad, A.M.; Tuan, D.T.; Chai, C.L.L.; Chen, A. Copper-catalyzed oxidative amidation of aldehydes with amine salts: synthesis of primary, secondary, and tertiary amides. J. Org. Chem., 2012, 77(18), 8007-8015. [http://dx.doi.org/10.1021/jo301252c]. [PMID: 22894712].
[65]
Ding, Y.; Zhang, X.; Zhang, D.; Chen, Y.; Wu, Z.; Wang, P.; Xue, W.; Song, B.; Yang, S. Copper-catalyzed oxidative amidation between aldehydes and arylamines under mild conditions. Tetrahedron Lett., 2015, 56(6), 831-833. [http://dx.doi.org/10.1016/j.tetlet.2014.12.113].
[66]
Lu, S-Y.; Badsara, S.S.; Wu, Y-C.; Reddy, D.M.; Lee, C-F. CuCl/TBHP catalyzed synthesis of amides from aldehydes and amines in water. Tetrahedron Lett., 2016, 57(6), 633-636. [http://dx.doi.org/10.1016/j.tetlet.2015.12.060].
[67]
Mamaghani, M.; Shirini, F.; Sheykhan, M.; Mohsenimehr, M. Synthesis of a copper(II) complex covalently anchoring a (2-iminomethyl)phenol moiety supported on HAp-encapsulated-α-Fe2O3 as an inorganic–organic hybrid magnetic nanocatalyst for the synthesis of primary and secondary amides. RSC Adv., 2015, 5, 44524-44529. [http://dx.doi.org/10.1039/C5RA03977K].
[68]
Zultanski, S.L.; Zhao, J.; Stahl, S.S. Practical synthesis of amides via Copper/ABNO-Catalyzed aerobic oxidative coupling of alcohols and amines. J. Am. Chem. Soc., 2016, 138(20), 6416-6419. [http://dx.doi.org/10.1021/jacs.6b03931]. [PMID: 27171973].
[69]
Naota, T.; Murahasi, S-I. Ruthenium-catalyzed transformations of amino alcohols to lactams. Synlett, 1991, 10, 693-694. [http://dx.doi.org/10.1055/s-1991-34758].
[70]
Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct synthesis of amides from alcohols and amines with liberation of H2. Science, 2007, 317(5839), 790-792. [http://dx.doi.org/10.1126/science.1145295]. [PMID: 17690291].
[71]
Nordstrøm, L.U.; Vogt, H.; Madsen, R. Amide synthesis from alcohols and amines by the extrusion of dihydrogen. J. Am. Chem. Soc., 2008, 130(52), 17672-17673. [http://dx.doi.org/10.1021/ja808129p]. [PMID: 19061316].
[72]
Zhang, Y.; Chen, C.; Ghosh, S.C.; Li, Y.; Hong, S.H. Well-defined N-heterocyclic carbene based ruthenium catalysts for direct amide synthesis from alcohols and amines. Organomet., 2010, 29(6), 1374-1378. [http://dx.doi.org/10.1021/om901020h].
[73]
Zhang, J.; Gandelman, M.; Shimon, L.J.W.; Rozenberg, H.; Milstein, D. Electron-Rich, bulky ruthenium PNP-type complexes. Acceptorless catalytic alcohol dehydrogenation. Organometallics, 2004, 23(17), 4026-4033. [http://dx.doi.org/10.1021/om049716j].
[74]
Del Zotto, A.; Baratta, W.; Sandri, M.; Verardo, G.; Rigo, P. Cyclopentadienyl ruII complexes as highly efficient catalysts for the N-methylation of alkylamines by methanol. Eur. J. Inorg. Chem., 2004, 524-529. [http://dx.doi.org/10.1002/ejic.200300518].
[75]
Tillack, A.; Hollmann, D.; Michalik, D.; Beller, M. A novel ruthenium-catalyzed amination of primary and secondary alcohols. Tetrahedron Lett., 2006, 47(50), 8881-8885. [http://dx.doi.org/10.1016/j.tetlet.2006.10.042].
[76]
Murahashi, S-I.; Ito, K.; Naota, T.; Maeda, Y. Ruthenium catalyzed transformation of alcohols to esters and lactones. Tetrahedron Lett., 1981, 22, 5327-5330. [http://dx.doi.org/10.1016/S0040-4039(01)92493-1].
[77]
Muthaiah, S.; Ghosh, S.C.; Jee, J-E.; Chen, C.; Zhang, J.; Hong, S.H. Direct amide synthesis from either alcohols or aldehydes with amines: activity of Ru(II) hydride and Ru(0) complexes. J. Org. Chem., 2010, 75(9), 3002-3006. [http://dx.doi.org/10.1021/jo100254g]. [PMID: 20369820].
[78]
Kim, K.; Kang, B.; Hong, S.H. N-Heterocyclic carbene-based well-defined ruthenium hydride complexes for direct amide synthesis from alcohols and amines under base-free conditions. Tetrahedron, 2015, 71(26-27), 4565-4569. [http://dx.doi.org/10.1016/j.tet.2015.02.016].
[79]
Kim, S.H.; Hong, S.H. Ruthenium-catalyzed urea synthesis using methanol as the C1 source. Org. Lett., 2016, 18(2), 212-215. [http://dx.doi.org/10.1021/acs.orglett.5b03328]. [PMID: 26695391].
[80]
Islam, S.M.; Ghosh, K.; Roy, A.S.; Molla, R.A. Polymer-anchored Ru(II) complex as an efficient catalyst for the synthesis of primary amides from nitriles and of secondary amides from alcohols and amines. Appl. Organomet. Chem., 2014, 28(12), 900-907. [http://dx.doi.org/10.1002/aoc.3233].
[81]
Tillack, A.; Rudloff, I.; Beller, M. Catalytic amination of aldehydes to amides. Eur. J. Org. Chem., 2001, 2001(3), 523-528. [http://dx.doi.org/10.1002/1099-0690(200102)2001:3<523:AID-EJOC523>3.0.CO;2-Z].
[82]
Zweifel, T.; Naubron, J-V.; Grützmacher, H. Catalyzed dehydrogenative coupling of primary alcohols with water, methanol, or amines. Angew. Chem. Int. Ed. Engl., 2009, 48(3), 559-563. [http://dx.doi.org/10.1002/anie.200804757]. [PMID: 19072802].
[83]
Wu, Z.; Hull, K.L. Rhodium-catalyzed oxidative amidation of allylic alcohols and aldehydes: effective conversion of amines and anilines into amides. Chem. Sci. (Camb.), 2016, 7(2), 969-975. [http://dx.doi.org/10.1039/C5SC03103F]. [PMID: 29896367].
[84]
Wang, Y.; Zhu, D.; Tang, L.; Wang, S.; Wang, Z. Highly efficient amide synthesis from alcohols and amines by virtue of a water-soluble gold/DNA catalyst. Angew. Chem. Int. Ed. Engl., 2011, 50(38), 8917-8921. [http://dx.doi.org/10.1002/anie.201102374]. [PMID: 21905181].
[85]
Li, G-L.; Kung, K.K-Y.; Wong, M-K. Gold-catalyzed amide synthesis from aldehydes and amines in aqueous medium. Chem. Commun. (Camb.), 2012, 48(34), 4112-4114. [http://dx.doi.org/10.1039/c2cc17689k]. [PMID: 22434237].
[86]
Whittaker, A.M.; Dong, V.M. Nickel-catalyzed dehydrogenative cross-coupling: direct transformation of aldehydes into esters and amides. Angew. Chem. Int. Ed. Engl., 2015, 54(4), 1312-1315. [http://dx.doi.org/10.1002/anie.201410322]. [PMID: 25424967].
[87]
Ghosh, S.C.; Ngiam, J.S.Y.; Seayad, A.M.; Tuan, D.T.; Johannes, C.W.; Chen, A. Tandem oxidative amidation of benzyl alcohols with amine hydrochloride salts catalysed by iron nitrate. Tetrahedron Lett., 2013, 54(36), 4922-4925. [http://dx.doi.org/10.1016/j.tetlet.2013.07.005].
[88]
Hong, S.; Marks, T.J. Organolanthanide-catalyzed hydroamination. Acc. Chem. Res., 2004, 37(9), 673-686. [http://dx.doi.org/10.1021/ar040051r]. [PMID: 15379583].
[89]
Ryu, J.S.; Li, G.Y.; Marks, T.J. Organolathanide-catalyzed regioselective intermolecular hydroamination of alkenes, alkynes, vinylarenes, di- and trivinylarenes, and methylenecyclopropanes. Scope and mechanistic comparison to intramolecular cyclohydroaminations. J. Am. Chem. Soc., 2003, 125(41), 12584-12605. [http://dx.doi.org/10.1021/ja035867m]. [PMID: 14531704].
[90]
Arredondo, V.M.; Tian, S.; McDonald, F.E.; Marks, T.J. Organolanthanide-catalyzed hydroamination/cyclization. Efficient allene-based transformations for the syntheses of naturally occurring alkaloids. J. Am. Chem. Soc., 1999, 121(15), 3633-3639. [http://dx.doi.org/10.1021/ja984305d].
[91]
Fu, P.F.; Brard, L.; Li, Y.W.; Marks, T.J. Regioselection and enantioselection in organolanthanide-catalyzed olefin hydrosilylation. A kinetic and mechanistic study. J. Am. Chem. Soc., 1995, 117(27), 7157-7168. [http://dx.doi.org/10.1021/ja00132a015].
[92]
Sakakura, T.; Lautenschlager, H.J.; Tanaka, M. Hydrosilylation catalysed by organoneodymium complexes. J. Chem. Soc. Chem. Commun., 1991, 1, 40-41. [http://dx.doi.org/10.1039/c39910000040].
[93]
Ge, S.Z.; Meetsma, A.; Hessen, B. Highly efficient hydrosilylation of alkenes by organoyttrium catalysts with sterically demanding amidinate and guanidinate ligands. Organometallics, 2008, 27(13), 3131-3135. [http://dx.doi.org/10.1021/om800032g].
[94]
(a)Weidner, V.L.; Barger, C.J.; Delferro, M.; Lohr, T.L.; Marks, T.J. Rapid,
mild, and selective ketone and aldehyde hydroboration/reduction mediated
by a simple lanthanide catalyst. Acs. Catal, 2017, 7(2), 1244-1247 C2.
(b)Chen, S.F.; Yan, D.D.; Xue, M.Q.; Hong, Y.B.; Yao, Y.M.; Shen, Q. Tris(cyclopentadienyl)lanthanide complexes as catalysts for hydroboration reaction toward aldehydes and ketones. Org. Lett., 2017, 19(13), 3382-3385. [PMID: 28644031].
[95]
Chen, S.; Yan, D.; Xue, M.; Hong, Y.; Yao, Y.; Shen, Q. Tris(cyclopentadienyl)lanthanide complexes as catalysts for hydroboration reaction toward aldehydes and ketones. Org. Lett., 2017, 19(13), 3382-3385. [http://dx.doi.org/10.1021/acs.orglett.7b01335]. [PMID: 28644031].
[96]
Zhu, Z.Y.; Dai, P.; Wu, Z.J.; Xue, M.Q.; Yao, Y.M.; Shen, Q.; Bao, X.G. Lanthanide aryloxides catalyzed hydroboration of aldehydes and ketones. Catal. Commun., 2018, 112, 26-30. [http://dx.doi.org/10.1016/j.catcom.2018.04.014].
[97]
Weiss, C.J.; Marks, T.J. Organo-f-element catalysts for efficient and highly selective hydroalkoxylation and hydrothiolation. Dalton Trans., 2010, 39(29), 6576-6588. [http://dx.doi.org/10.1039/c003089a]. [PMID: 20490409].
[98]
Seo, S.; Yu, X.; Marks, T.J. Intramolecular hydroalkoxylation/cyclization of alkynyl alcohols mediated by lanthanide catalysts. Scope and reaction mechanism. J. Am. Chem. Soc., 2009, 131(1), 263-276. [http://dx.doi.org/10.1021/ja8072462]. [PMID: 19086869].
[99]
Dzudza, A.; Marks, T.J. Efficient intramolecular hydroalkoxylation/cyclization of unactivated alkenols mediated by lanthanide triflate ionic liquids. Org. Lett., 2009, 11(7), 1523-1526. [http://dx.doi.org/10.1021/ol8029559]. [PMID: 19271730].
[100]
Seo, S.; Marks, T.J. Mild amidation of aldehydes with amines mediated by lanthanide catalysts. Org. Lett., 2008, 10(2), 317-319. [http://dx.doi.org/10.1021/ol702788j]. [PMID: 18092795].
[101]
Wu, Y.; Wang, S.; Zhang, L.; Yang, G.; Zhu, X.; Zhou, Z.; Zhu, H.; Wu, S. Cyclopentadienyl-free rare-earth metal amides [(CH2SiMe2)(2,6‐iPr2C6H3)N2LnN(SiMe3)2(THF)] as highly efficient versatile catalysts for C-C and C-N bond formation. Eur. J. Org. Chem., 2010, 2010(2), 326-332. [http://dx.doi.org/10.1002/ejoc.200901015].
[102]
Thomson, J.A.; Schafer, L.L. Yttrium (amidate) complexes for catalytic C-N bond formation. Rapid, room temperature amidation of aldehydes. Dalton Trans., 2012, 41(26), 7897-7904. [http://dx.doi.org/10.1039/c2dt30214d]. [PMID: 22555513].
[103]
Qian, C.; Zhang, X.; Zhang, Y.; Shen, Q. Heterobimetallic complexes of lanthanide and lithium metals with dianionic guanidinate ligands: syntheses, structures and catalytic activity for amidation of aldehydes with amines. J. Organomet. Chem., 2010, 695(5), 747-752. [http://dx.doi.org/10.1016/j.jorganchem.2009.12.010].
[104]
Qian, C.; Zhang, X.; Li, J.; Xu, F.; Zhang, Y.; Shen, Q. Trisguanidinate lanthanide complexes: Syntheses, structures, and catalytic activity for mild amidation of aldehydes with amines. Organomet., 2009, 28(13), 3856-3862. [http://dx.doi.org/10.1021/om900120v].
[105]
Li, J.; Xu, F.; Zhang, Y.; Shen, Q. Heterobimetallic lanthanide/sodium phenoxides: efficient catalysts for amidation of aldehydes with amines. J. Org. Chem., 2009, 74(6), 2575-2577. [http://dx.doi.org/10.1021/jo802617d]. [PMID: 19209872].
[106]
Xu, B.; Huang, L.; Yang, Z.; Yao, Y.; Zhang, Y.; Shen, Q. Synthesis and structural diversity of heterobimetallic lanthanide-potassium complexes and catalytic activity for amidation of aldehydes with amines. Organomet., 2011, 30(13), 3588-3595. [http://dx.doi.org/10.1021/om200283j].
[107]
Ekoue-Kovi, K.; Wolf, C. Metal-free one-pot oxidative amination of aldehydes to amides. Org. Lett., 2007, 9(17), 3429-3432. [http://dx.doi.org/10.1021/ol7014626]. [PMID: 17655318].
[108]
Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Cross coupling of acyl and aminyl radicals: direct synthesis of amides catalyzed by Bu4NI with TBHP as an oxidant. Angew. Chem. Int. Ed. Engl., 2012, 51(13), 3231-3235. [http://dx.doi.org/10.1002/anie.201108763]. [PMID: 22337620].
[109]
Fu, R.; Yang, Y.; Zhang, J.; Shao, J.; Xia, X.; Ma, Y.; Yuan, R. Direct oxidative amidation of aldehydes with amines catalyzed by heteropolyanion-based ionic liquids under solvent-free conditions via a dual-catalysis process. Org. Biomol. Chem., 2016, 14(5), 1784-1793. [http://dx.doi.org/10.1039/C5OB02376A]. [PMID: 26750757].
[110]
Tank, R.; Pathak, U.; Vimal, M.; Bhattacharyya, S.; Pandey, L.K. Hydrogen peroxide mediated efficient amidation and esterification of aldehydes: Scope and selectivity. Green Chem., 2011, 13, 3350-3354. [http://dx.doi.org/10.1039/c1gc16041a].
[111]
Liang, J.; Lv, J.; Shang, Z.; Liang, J. Metal-free synthesis of amides by oxidative amidation of aldehydes with amines in PEG/oxidant system. Tetrahedron, 2011, 67(44), 8532-8535. [http://dx.doi.org/10.1016/j.tet.2011.08.091].
[112]
Bode, J.W.; Sohn, S.S. N-heterocyclic carbene-catalyzed redox amidations of α-functionalized aldehydes with amines. J. Am. Chem. Soc., 2007, 129(45), 13798-13799. [http://dx.doi.org/10.1021/ja0768136]. [PMID: 17956104].
[113]
Vora, H.U.; Rovis, T. Nucleophilic carbene and HOAt relay catalysis in an amide bond coupling: An orthogonal peptide bond forming reaction. J. Am. Chem. Soc., 2007, 129(45), 13796-13797. [http://dx.doi.org/10.1021/ja0764052]. [PMID: 17929821].
[114]
De Sarkar, S.; Studer, A. Oxidative amidation and azidation of aldehydes by NHC catalysis. Org. Lett., 2010, 12(9), 1992-1995. [http://dx.doi.org/10.1021/ol1004643]. [PMID: 20359171].
[115]
Ta, L.; Axelsson, A.; Sundén, H. N-Acylation of oxazolidinones via aerobic oxidative NHC catalysis. J. Org. Chem., 2018, 83(19), 12261-12268. [http://dx.doi.org/10.1021/acs.joc.8b01723]. [PMID: 30156849].