Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

The Synthesis of Amides through Direct Amination of Aldehydes with Amines

Author(s): Yaorui Ma and Junfei Luo*

Volume 23, Issue 8, 2019

Page: [901 - 919] Pages: 19

DOI: 10.2174/1385272823666190614114457

Price: $65

Abstract

Amide bonds are amongst the most fundamental groups in organic synthesis, and they are widely found in natural products, pharmaceuticals and material science. Over the past decade, methods for the direct amination of aldehydes have received much attention as they represent atom- and step-economic routes for amide synthesis from readily available starting materials. Herein, the research advances on the direct amination of aldehydes are reviewed and categorized by the types of catalyst system. Detailed reaction scopes and mechanisms will be discussed, as well as the limitations of current procedures and the prospects for the future.

Keywords: Aldehydes, amines, alcohols, direct amination, dehydrogenative cross-coupling, amides.

Graphical Abstract

[1]
Montalbetti, C.A.G.N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61(46), 10827-10852. [http://dx.doi.org/10.1016/j.tet.2005.08.031].
[2]
Albericio, F. Developments in peptide and amide synthesis. Curr. Opin. Chem. Biol., 2004, 8(3), 211-221. [http://dx.doi.org/10.1016/j.cbpa.2004.03.002]. [PMID: 15183318].
[3]
Jaradat, D.M.M. Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids, 2018, 50(1), 39-68. [http://dx.doi.org/10.1007/s00726-017-2516-0]. [PMID: 29185032].
[4]
Tang, W.; Becker, M.L. “Click” reactions: A versatile toolbox for the synthesis of peptide-conjugates. Chem. Soc. Rev., 2014, 43(20), 7013-7039. [http://dx.doi.org/10.1039/C4CS00139G]. [PMID: 24993161].
[5]
Ferrand, Y.; Huc, I. Designing helical molecular capsules based on folded aromatic amide oligomers. Acc. Chem. Res., 2018, 51(4), 970-977. [http://dx.doi.org/10.1021/acs.accounts.8b00075]. [PMID: 29589916].
[6]
Bachmann, F.; Ruppenstein, M.; Thiem, L. Synthesis of aminosaccharide-derived polymers with urea, urethane, and amide linkages. J. Polym. Sci. Pol. Chem., 2001, 39(13), 2332-2341. [http://dx.doi.org/10.1002/pola.1210].
[7]
Guo, X.; Facchetti, A.; Marks, T.J. Imide- and amide-functionalized polymer semiconductors. Chem. Rev., 2014, 114(18), 8943-9021. [http://dx.doi.org/10.1021/cr500225d]. [PMID: 25181005].
[8]
Buckwalter, D.J.; Dennis, J.M.; Long, T.E. Amide-containing segmented copolymers. Prog. Polym. Sci., 2015, 45, 1-22. [http://dx.doi.org/10.1016/j.progpolymsci.2014.11.003].
[9]
Macoy, D.M.; Kim, W.Y.; Lee, S.Y.; Kim, M.G. Biotic stress related functions of hydroxycinnamic acid amide in plants. J. Plant Biol., 2015, 58(3), 156-163. [http://dx.doi.org/10.1007/s12374-015-0104-y].
[10]
Schwartz, B.D.; Skinner-Adams, T.S.; Andrews, K.T.; Coster, M.J.; Edstein, M.D.; MacKenzie, D.; Charman, S.A.; Koltun, M.; Blundell, S.; Campbell, A.; Pouwer, R.H.; Quinn, R.J.; Beattie, K.D.; Healy, P.C.; Davis, R.A. Synthesis and antimalarial evaluation of amide and urea derivatives based on the thiaplakortone. A natural product scaffold. Org. Biomol. Chem., 2015, 13(5), 1558-1570. [http://dx.doi.org/10.1039/C4OB01849D]. [PMID: 25490858].
[11]
Siddiqui, B.S.; Gulzar, T.; Begum, S.; Afshan, F.; Sultana, R. A new natural product and insecticidal amides from seeds of Piper nigrum Linn. Nat. Prod. Res., 2008, 22(13), 1107-1111. [http://dx.doi.org/10.1080/14786410500045705]. [PMID: 18855209].
[12]
Chatterjee, S.; Manna, A.; Chakraborty, I.; Bhaumik, T. Chiron approach from D-mannitol to access a diastereomer of the reported structure of an acetogenin, an amide alkaloid and a sex pheromone. Carbohydr. Res., 2019, 473, 5-11. [http://dx.doi.org/10.1016/j.carres.2018.12.008]. [PMID: 30590155].
[13]
Ahmadi, A.; Khalili, M.; Olama, Z.; Karami, S.; Nahri-Niknafs, B. Synthesis and study of analgesic and anti-inflammatory activities of amide derivatives of ibuprofen. Mini Rev. Med. Chem., 2017, 17(9), 799-804. [http://dx.doi.org/10.2174/1389557516666161226155951]. [PMID: 28029080].
[14]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147. [http://dx.doi.org/10.1111/cbdd.12055]. [PMID: 23253135].
[15]
Maienfisch, P.; Edmunds, A.J.F. Thiazole and isothiazole ring-containing compounds in crop protection. Adv. Heterocycl. Chem., 2017, 121, 35-88. [http://dx.doi.org/10.1016/bs.aihch.2016.04.010].
[16]
Gordon, K.C.; McGoverin, C.M.; Strachan, C.J.; Rades, T. The use of quantum chemistry in pharmaceutical research as illustrated by case studies of indometacin and carbamazepine. J. Pharm. Pharmacol., 2007, 59(2), 271-277. [http://dx.doi.org/10.1211/jpp.59.2.0013]. [PMID: 17270080].
[17]
Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J.A.; Charlier, P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev., 2008, 32(2), 234-258. [http://dx.doi.org/10.1111/j.1574-6976.2008.00105.x]. [PMID: 18266856].
[18]
Roughley, S.D.; Jordan, A.M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem., 2011, 54(10), 3451-3479. [http://dx.doi.org/10.1021/jm200187y]. [PMID: 21504168].
[19]
Carey, J.S.; Laffan, D.; Thomson, C.; Williams, M.T. Analysis of the reactions used for the preparation of drug candidate molecules. Org. Biomol. Chem., 2006, 4(12), 2337-2347. [http://dx.doi.org/10.1039/b602413k]. [PMID: 16763676].
[20]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68. [http://dx.doi.org/10.1021/cc9800071]. [PMID: 10746014].
[21]
Constable, D.J.C.; Dunn, P.J.; Hayler, J.D.; Humphrey, G.R. Key green chemistry research areas-a perspective from pharmaceutical manufacturers. Green Chem., 2007, 9(5), 411-420. [http://dx.doi.org/10.1039/B703488C].
[22]
Dunetz, J.R.; Magano, J.; Weisenburger, G.A. Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals. Org. Process Res. Dev., 2016, 20, 140-177. [http://dx.doi.org/10.1021/op500305s].
[23]
Adams, J.P.; Alder, C.M.; Andrews, I.; Bullion, A.M.; Campbell-Crawford, M.; Darcy, M.G.; Hayler, J.D.; Henderson, R.K.; Oare, C.A.; Pendrak, I.; Redman, A.M. Development of GSK’s reagent guides-embedding sustainability into reagent selection. Green Chem., 2013, 15, 1542-1549. [http://dx.doi.org/10.1039/c3gc40225h].
[24]
Bryan, M.C.; Dillon, B.; Hamann, L.G.; Hughes, G.J.; Kopach, M.E.; Peterson, E.A.; Pourashraf, M.; Raheem, I.; Richardson, P.; Richter, D.; Sneddon, H.F. Sustainable practices in medicinal chemistry: Current state and future directions. J. Med. Chem., 2013, 56(15), 6007-6021. [http://dx.doi.org/10.1021/jm400250p]. [PMID: 23586692].
[25]
Bandichhor, R.; Bhattacharya, A.; Diorazio, L.; Dunn, P.; Fraunhoffer, K.; Gallou, F.; Hayler, J.; Hickey, M.; Hinkley, B.; Hughes, D.; Humphreys, L.; Kaptein, B.; Mathew, S.; Oh, L.; Richardson, P.; White, T.; Wuyts, S. Green chemistry articles of interest to the pharmaceutical industry. Org. Process Res. Dev., 2013, 17, 615-626. [http://dx.doi.org/10.1021/op4000434].
[26]
Amarnath, L.; Andrews, I.; Bandichhor, R.; Bhattacharya, A.; Dunn, P.; Hayler, J.; Hinkley, W.; Holub, N.; Hughes, D.; Humphreys, L.; Kaptein, B.; Krishnen, H.; Lorenz, K.; Mathew, S.; Nagaraju, G.; Rammeloo, T.; Richardson, P.; Wang, L.; Wells, A.; White, T. Green chemistry articles of interest to the pharmaceutical industry. Org. Process Res. Dev., 2012, 16, 535-544. [http://dx.doi.org/10.1021/op300068d].
[27]
Andrews, I.; Dunn, P.; Hayler, J.; Hinkley, B.; Hughes, D.; Kaptein, B.; Lorenz, K.; Mathew, S.; Rammeloo, T.; Wang, L.; Wells, A.; White, T.D. Green chemistry articles of interest to the pharmaceutical industry. Org. Process Res. Dev., 2011, 15, 22-30. [http://dx.doi.org/10.1021/op1003105].
[28]
Valeur, E.; Bradley, M. Amide bond formation: Beyond the myth of coupling reagents. Chem. Soc. Rev., 2009, 38(2), 606-631. [http://dx.doi.org/10.1039/B701677H]. [PMID: 19169468].
[29]
Ishihara, K.; Lu, Y. Boronic acid-DMAPO cooperative catalysis for dehydrative condensation between carboxylic acids and amines. Chem. Sci. (Camb.), 2016, 7(2), 1276-1280. [http://dx.doi.org/10.1039/C5SC03761A]. [PMID: 29910884].
[30]
Grzyb, J.B.; Batey, R.A. Carbamoylimidazolium salts as diversification reagents: an application to the synthesis of tertiary amides from carboxylic acids. Tetrahedron Lett., 2003, 44(29), 7485-7488. [http://dx.doi.org/10.1016/j.tetlet.2003.08.026].
[31]
Katritzky, A.R.; Singh, S.K.; Cai, C.; Bobrov, S. Direct synthesis of esters and amides from unprotected hydroxyaromatic and -aliphatic carboxylic acids. J. Org. Chem., 2006, 71(9), 3364-3374. [http://dx.doi.org/10.1021/jo052293q]. [PMID: 16626115].
[32]
Fujihara, T.; Katafuchi, Y.; Iwai, T.; Terao, J.; Tsuji, Y. Palladium-catalyzed intermolecular addition of formamides to alkynes. J. Am. Chem. Soc., 2010, 132(6), 2094-2098. [http://dx.doi.org/10.1021/ja910038p]. [PMID: 20095608].
[33]
Wu, J.J.; Li, Y.W.; Zhou, H.Y.; Wen, A.H.; Lun, C.C.; Yao, S.Y.; Ke, Z.F.; Ye, B.H. Copper-catalyzed carbamoylation of terminal alkynes with formamides via cross-dehydrogenative coupling. ACS Catal., 2016, 6(2), 1263-1267. [http://dx.doi.org/10.1021/acscatal.5b02881].
[34]
Nakao, Y.; Morita, E.; Idei, H.; Hiyama, T. Dehydrogenative [4 + 2] cycloaddition of formamides with alkynes through double C-H activation. J. Am. Chem. Soc., 2011, 133(10), 3264-3267. [http://dx.doi.org/10.1021/ja1102037]. [PMID: 21341789].
[35]
Augustine, J.K.; Kumar, R.; Bombrun, A.; Mandal, A.B. An efficient catalytic method for the Beckmann rearrangement of ketoximes to amides and aldoximes to nitriles mediated by propylphosphonic anhydride (T3P®). Tetrahedron Lett., 2011, 52(10), 1074-1077. [http://dx.doi.org/10.1016/j.tetlet.2010.12.090].
[36]
Li, Q.; Yan, L.Y.; Xia, D.; Shen, Y.C. Research progress of beckmann rearrangement. Youji Huaxue, 2011, 31, 2034-2042.
[37]
Crochet, P.; Cadierno, V. Catalytic synthesis of amides via aldoximes rearrangement. Chem. Commun. (Camb.), 2015, 51(13), 2495-2505. [http://dx.doi.org/10.1039/C4CC08684H]. [PMID: 25503254].
[38]
Stephenson, N.A.; Zhu, J.; Gellman, S.H.; Stahl, S.S. Catalytic transamidation reactions compatible with tertiary amide metathesis under ambient conditions. J. Am. Chem. Soc., 2009, 131(29), 10003-10008. [http://dx.doi.org/10.1021/ja8094262]. [PMID: 19621957].
[39]
Starkov, P.; Sheppard, T.D. Borate esters as convenient reagents for direct amidation of carboxylic acids and transamidation of primary amides. Org. Biomol. Chem., 2011, 9(5), 1320-1323. [http://dx.doi.org/10.1039/c0ob01069c]. [PMID: 21212879].
[40]
Nguyen, T.B.; Sorres, J.; Tran, M.Q.; Ermolenko, L.; Al-Mourabit, A. Boric acid: a highly efficient catalyst for transamidation of carboxamides with amines. Org. Lett., 2012, 14(12), 3202-3205. [http://dx.doi.org/10.1021/ol301308c]. [PMID: 22676810].
[41]
Batra, S.; Dighe, S.U. Visible light-induced iodine-catalyzed transformation of terminal alkynes to primary amides via C☰C bond cleavage under aqueous conditions. Adv. Synth. Catal., 2016, 358, 500-505. [http://dx.doi.org/10.1002/adsc.201500906].
[42]
Sawant, D.N.; Wagh, Y.S.; Bhatte, K.D.; Bhanage, B.M. Carbon monoxide-free one-step synthesis of isoindole-1,3-diones by cycloaminocarbonylation of o-Haloarenes using formamides. Eur. J. Org. Chem., 2011, 6719-6724. [http://dx.doi.org/10.1002/ejoc.201101000].
[43]
Nordeman, P.; Odell, L.R.; Larhed, M. Aminocarbonylations employing Mo(CO)6 and a bridged two-vial system: allowing the use of nitro group substituted aryl iodides and aryl bromides. J. Org. Chem., 2012, 77(24), 11393-11398. [http://dx.doi.org/10.1021/jo302322w]. [PMID: 23205569].
[44]
Iranpoor, N.; Firouzabadi, H.; Motevalli, S.; Talebi, M. Palladium-free aminocarbonylation of aryl, benzyl, and styryl iodides and bromides by amines using Mo(CO)6 and norbornadiene. Tetrahedron, 2013, 69(1), 418-426. [http://dx.doi.org/10.1016/j.tet.2012.10.002].
[45]
Hughes, N.L.; Brown, C.L.; Irwin, A.A.; Cao, Q.; Muldoon, M.J. Palladium(II)-catalysed aminocarbonylation of terminal alkynes for the synthesis of 2-ynamides: addressing the challenges of solvents and gas mixtures. ChemSusChem, 2017, 10(4), 675-680. [http://dx.doi.org/10.1002/cssc.201601601]. [PMID: 27906507].
[46]
Sha, F.; Alper, H. Ligand-and additive-controlled Pd-catalyzed aminocarbonylation of alkynes with aminophenols: highly chemo-and regioselective synthesis of alpha,beta-unsaturated. ACS Catal., 2017, 7(3), 220-229. [http://dx.doi.org/10.1021/acscatal.7b00367].
[47]
Driller, K.M.; Prateeptongkum, S.; Jackstell, R.; Beller, M. A general and selective iron-catalyzed aminocarbonylation of alkynes: synthesis of acryl- and cinnamides. Angew. Chem. Int. Ed. Engl., 2011, 50(2), 537-541. [http://dx.doi.org/10.1002/anie.201005823]. [PMID: 21120980].
[48]
Gadge, S.T.; Khedkar, M.V.; Lanke, S.R.; Bhanage, B.M. Oxidative aminocarbonylation of terminal alkynes for the synthesis of alk-2-ynamides by using palladium-on-carbon as efficient, heterogeneous, phosphine-free, and reusable catalyst. Adv. Synth. Catal., 2012, 354(10), 2049-2056. [http://dx.doi.org/10.1002/adsc.201200041].
[49]
Shen, B.; Makley, D.M.; Johnston, J.N. Umpolung reactivity in amide and peptide synthesis. Nature, 2010, 465(7301), 1027-1032. [http://dx.doi.org/10.1038/nature09125]. [PMID: 20577205].
[50]
Gupta, M.; Paul, S.; Gupta, R. General aspects of 12 basic principles of green chemistry with applications. Curr. Sci. India, 2010, 99(10), 1341-1360.
[51]
Anastas, P.; Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312. [http://dx.doi.org/10.1039/B918763B]. [PMID: 20023854].
[52]
Li, C-J.; Trost, B.M. Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13197-13202. [http://dx.doi.org/10.1073/pnas.0804348105]. [PMID: 18768813].
[53]
Pattabiraman, V.R.; Bode, J.W. Rethinking amide bond synthesis. Nature, 2011, 480(7378), 471-479. [http://dx.doi.org/10.1038/nature10702]. [PMID: 22193101].
[54]
Allen, C.L.; Williams, J.M. Metal-catalysed approaches to amide bond formation. Chem. Soc. Rev., 2011, 40(7), 3405-3415. [http://dx.doi.org/10.1039/c0cs00196a]. [PMID: 21416075].
[55]
Fujihara, T.; Tsuji, Y. Transition metal-catalyzed synthesis of pi-conjaguted cyclic esters and mmides from alkynes and carbonyl reagent. Heterocycles, 2014, 89(6), 1343-1367. [http://dx.doi.org/10.3987/REV-13-786].
[56]
Ojeda-Porras, A.; Gamba-Sánchez, D. Recent developments in amide synthesis using nonactivated starting materials. J. Org. Chem., 2016, 81(23), 11548-11555. [http://dx.doi.org/10.1021/acs.joc.6b02358]. [PMID: 27934465].
[57]
de Figueiredo, R.M.; Suppo, J.S.; Campagne, J.M. Nonclassical Routes for amide bond formation. Chem. Rev., 2016, 116(19), 12029-12122. [http://dx.doi.org/10.1021/acs.chemrev.6b00237]. [PMID: 27673596].
[58]
Lanigan, R.M.; Sheppard, T.D. Recent developments in amide synthesis: direct amidation of carboxylic acids and transamidation reactions. Eur. J. Org. Chem., 2013, 33, 7453-7465. [http://dx.doi.org/10.1002/ejoc.201300573].
[59]
Dong, H.; Hou, M. Recent progress in synthesis of amides. Youji Huaxue, 2017, 37, 267-283. [http://dx.doi.org/10.6023/cjoc201608014].
[60]
Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Catalytic amide formation from non-activated carboxylic acids and amines. Chem. Soc. Rev., 2014, 43(8), 2714-2742. [http://dx.doi.org/10.1039/C3CS60345H]. [PMID: 24430887].
[61]
Chen, C.; Verpoort, F.; Wu, Q. Atom-economic dehydrogenative amide synthesis via ruthenium catalysis. RSC Adv., 2016, 6, 55599-55607. [http://dx.doi.org/10.1039/C6RA10643A].
[62]
Yoo, W-J.; Li, C-J. Highly efficient oxidative amidation of aldehydes with amine hydrochloride salts. J. Am. Chem. Soc., 2006, 128(40), 13064-13065. [http://dx.doi.org/10.1021/ja064315b]. [PMID: 17017781].
[63]
Zhu, M.; Fujita, K.; Yamaguchi, R. Aerobic oxidative amidation of aromatic and cinnamic aldehydes with secondary amines by CuI/2-pyridonate catalytic system. J. Org. Chem., 2012, 77(20), 9102-9109. [http://dx.doi.org/10.1021/jo301553v]. [PMID: 23006061].
[64]
Ghosh, S.C.; Ngiam, J.S.Y.; Seayad, A.M.; Tuan, D.T.; Chai, C.L.L.; Chen, A. Copper-catalyzed oxidative amidation of aldehydes with amine salts: synthesis of primary, secondary, and tertiary amides. J. Org. Chem., 2012, 77(18), 8007-8015. [http://dx.doi.org/10.1021/jo301252c]. [PMID: 22894712].
[65]
Ding, Y.; Zhang, X.; Zhang, D.; Chen, Y.; Wu, Z.; Wang, P.; Xue, W.; Song, B.; Yang, S. Copper-catalyzed oxidative amidation between aldehydes and arylamines under mild conditions. Tetrahedron Lett., 2015, 56(6), 831-833. [http://dx.doi.org/10.1016/j.tetlet.2014.12.113].
[66]
Lu, S-Y.; Badsara, S.S.; Wu, Y-C.; Reddy, D.M.; Lee, C-F. CuCl/TBHP catalyzed synthesis of amides from aldehydes and amines in water. Tetrahedron Lett., 2016, 57(6), 633-636. [http://dx.doi.org/10.1016/j.tetlet.2015.12.060].
[67]
Mamaghani, M.; Shirini, F.; Sheykhan, M.; Mohsenimehr, M. Synthesis of a copper(II) complex covalently anchoring a (2-iminomethyl)phenol moiety supported on HAp-encapsulated-α-Fe2O3 as an inorganic–organic hybrid magnetic nanocatalyst for the synthesis of primary and secondary amides. RSC Adv., 2015, 5, 44524-44529. [http://dx.doi.org/10.1039/C5RA03977K].
[68]
Zultanski, S.L.; Zhao, J.; Stahl, S.S. Practical synthesis of amides via Copper/ABNO-Catalyzed aerobic oxidative coupling of alcohols and amines. J. Am. Chem. Soc., 2016, 138(20), 6416-6419. [http://dx.doi.org/10.1021/jacs.6b03931]. [PMID: 27171973].
[69]
Naota, T.; Murahasi, S-I. Ruthenium-catalyzed transformations of amino alcohols to lactams. Synlett, 1991, 10, 693-694. [http://dx.doi.org/10.1055/s-1991-34758].
[70]
Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct synthesis of amides from alcohols and amines with liberation of H2. Science, 2007, 317(5839), 790-792. [http://dx.doi.org/10.1126/science.1145295]. [PMID: 17690291].
[71]
Nordstrøm, L.U.; Vogt, H.; Madsen, R. Amide synthesis from alcohols and amines by the extrusion of dihydrogen. J. Am. Chem. Soc., 2008, 130(52), 17672-17673. [http://dx.doi.org/10.1021/ja808129p]. [PMID: 19061316].
[72]
Zhang, Y.; Chen, C.; Ghosh, S.C.; Li, Y.; Hong, S.H. Well-defined N-heterocyclic carbene based ruthenium catalysts for direct amide synthesis from alcohols and amines. Organomet., 2010, 29(6), 1374-1378. [http://dx.doi.org/10.1021/om901020h].
[73]
Zhang, J.; Gandelman, M.; Shimon, L.J.W.; Rozenberg, H.; Milstein, D. Electron-Rich, bulky ruthenium PNP-type complexes. Acceptorless catalytic alcohol dehydrogenation. Organometallics, 2004, 23(17), 4026-4033. [http://dx.doi.org/10.1021/om049716j].
[74]
Del Zotto, A.; Baratta, W.; Sandri, M.; Verardo, G.; Rigo, P. Cyclopentadienyl ruII complexes as highly efficient catalysts for the N-methylation of alkylamines by methanol. Eur. J. Inorg. Chem., 2004, 524-529. [http://dx.doi.org/10.1002/ejic.200300518].
[75]
Tillack, A.; Hollmann, D.; Michalik, D.; Beller, M. A novel ruthenium-catalyzed amination of primary and secondary alcohols. Tetrahedron Lett., 2006, 47(50), 8881-8885. [http://dx.doi.org/10.1016/j.tetlet.2006.10.042].
[76]
Murahashi, S-I.; Ito, K.; Naota, T.; Maeda, Y. Ruthenium catalyzed transformation of alcohols to esters and lactones. Tetrahedron Lett., 1981, 22, 5327-5330. [http://dx.doi.org/10.1016/S0040-4039(01)92493-1].
[77]
Muthaiah, S.; Ghosh, S.C.; Jee, J-E.; Chen, C.; Zhang, J.; Hong, S.H. Direct amide synthesis from either alcohols or aldehydes with amines: activity of Ru(II) hydride and Ru(0) complexes. J. Org. Chem., 2010, 75(9), 3002-3006. [http://dx.doi.org/10.1021/jo100254g]. [PMID: 20369820].
[78]
Kim, K.; Kang, B.; Hong, S.H. N-Heterocyclic carbene-based well-defined ruthenium hydride complexes for direct amide synthesis from alcohols and amines under base-free conditions. Tetrahedron, 2015, 71(26-27), 4565-4569. [http://dx.doi.org/10.1016/j.tet.2015.02.016].
[79]
Kim, S.H.; Hong, S.H. Ruthenium-catalyzed urea synthesis using methanol as the C1 source. Org. Lett., 2016, 18(2), 212-215. [http://dx.doi.org/10.1021/acs.orglett.5b03328]. [PMID: 26695391].
[80]
Islam, S.M.; Ghosh, K.; Roy, A.S.; Molla, R.A. Polymer-anchored Ru(II) complex as an efficient catalyst for the synthesis of primary amides from nitriles and of secondary amides from alcohols and amines. Appl. Organomet. Chem., 2014, 28(12), 900-907. [http://dx.doi.org/10.1002/aoc.3233].
[81]
Tillack, A.; Rudloff, I.; Beller, M. Catalytic amination of aldehydes to amides. Eur. J. Org. Chem., 2001, 2001(3), 523-528. [http://dx.doi.org/10.1002/1099-0690(200102)2001:3<523:AID-EJOC523>3.0.CO;2-Z].
[82]
Zweifel, T.; Naubron, J-V.; Grützmacher, H. Catalyzed dehydrogenative coupling of primary alcohols with water, methanol, or amines. Angew. Chem. Int. Ed. Engl., 2009, 48(3), 559-563. [http://dx.doi.org/10.1002/anie.200804757]. [PMID: 19072802].
[83]
Wu, Z.; Hull, K.L. Rhodium-catalyzed oxidative amidation of allylic alcohols and aldehydes: effective conversion of amines and anilines into amides. Chem. Sci. (Camb.), 2016, 7(2), 969-975. [http://dx.doi.org/10.1039/C5SC03103F]. [PMID: 29896367].
[84]
Wang, Y.; Zhu, D.; Tang, L.; Wang, S.; Wang, Z. Highly efficient amide synthesis from alcohols and amines by virtue of a water-soluble gold/DNA catalyst. Angew. Chem. Int. Ed. Engl., 2011, 50(38), 8917-8921. [http://dx.doi.org/10.1002/anie.201102374]. [PMID: 21905181].
[85]
Li, G-L.; Kung, K.K-Y.; Wong, M-K. Gold-catalyzed amide synthesis from aldehydes and amines in aqueous medium. Chem. Commun. (Camb.), 2012, 48(34), 4112-4114. [http://dx.doi.org/10.1039/c2cc17689k]. [PMID: 22434237].
[86]
Whittaker, A.M.; Dong, V.M. Nickel-catalyzed dehydrogenative cross-coupling: direct transformation of aldehydes into esters and amides. Angew. Chem. Int. Ed. Engl., 2015, 54(4), 1312-1315. [http://dx.doi.org/10.1002/anie.201410322]. [PMID: 25424967].
[87]
Ghosh, S.C.; Ngiam, J.S.Y.; Seayad, A.M.; Tuan, D.T.; Johannes, C.W.; Chen, A. Tandem oxidative amidation of benzyl alcohols with amine hydrochloride salts catalysed by iron nitrate. Tetrahedron Lett., 2013, 54(36), 4922-4925. [http://dx.doi.org/10.1016/j.tetlet.2013.07.005].
[88]
Hong, S.; Marks, T.J. Organolanthanide-catalyzed hydroamination. Acc. Chem. Res., 2004, 37(9), 673-686. [http://dx.doi.org/10.1021/ar040051r]. [PMID: 15379583].
[89]
Ryu, J.S.; Li, G.Y.; Marks, T.J. Organolathanide-catalyzed regioselective intermolecular hydroamination of alkenes, alkynes, vinylarenes, di- and trivinylarenes, and methylenecyclopropanes. Scope and mechanistic comparison to intramolecular cyclohydroaminations. J. Am. Chem. Soc., 2003, 125(41), 12584-12605. [http://dx.doi.org/10.1021/ja035867m]. [PMID: 14531704].
[90]
Arredondo, V.M.; Tian, S.; McDonald, F.E.; Marks, T.J. Organolanthanide-catalyzed hydroamination/cyclization. Efficient allene-based transformations for the syntheses of naturally occurring alkaloids. J. Am. Chem. Soc., 1999, 121(15), 3633-3639. [http://dx.doi.org/10.1021/ja984305d].
[91]
Fu, P.F.; Brard, L.; Li, Y.W.; Marks, T.J. Regioselection and enantioselection in organolanthanide-catalyzed olefin hydrosilylation. A kinetic and mechanistic study. J. Am. Chem. Soc., 1995, 117(27), 7157-7168. [http://dx.doi.org/10.1021/ja00132a015].
[92]
Sakakura, T.; Lautenschlager, H.J.; Tanaka, M. Hydrosilylation catalysed by organoneodymium complexes. J. Chem. Soc. Chem. Commun., 1991, 1, 40-41. [http://dx.doi.org/10.1039/c39910000040].
[93]
Ge, S.Z.; Meetsma, A.; Hessen, B. Highly efficient hydrosilylation of alkenes by organoyttrium catalysts with sterically demanding amidinate and guanidinate ligands. Organometallics, 2008, 27(13), 3131-3135. [http://dx.doi.org/10.1021/om800032g].
[94]
(a)Weidner, V.L.; Barger, C.J.; Delferro, M.; Lohr, T.L.; Marks, T.J. Rapid, mild, and selective ketone and aldehyde hydroboration/reduction mediated by a simple lanthanide catalyst. Acs. Catal, 2017, 7(2), 1244-1247 C2.
(b)Chen, S.F.; Yan, D.D.; Xue, M.Q.; Hong, Y.B.; Yao, Y.M.; Shen, Q. Tris(cyclopentadienyl)lanthanide complexes as catalysts for hydroboration reaction toward aldehydes and ketones. Org. Lett., 2017, 19(13), 3382-3385. [PMID: 28644031].
[95]
Chen, S.; Yan, D.; Xue, M.; Hong, Y.; Yao, Y.; Shen, Q. Tris(cyclopentadienyl)lanthanide complexes as catalysts for hydroboration reaction toward aldehydes and ketones. Org. Lett., 2017, 19(13), 3382-3385. [http://dx.doi.org/10.1021/acs.orglett.7b01335]. [PMID: 28644031].
[96]
Zhu, Z.Y.; Dai, P.; Wu, Z.J.; Xue, M.Q.; Yao, Y.M.; Shen, Q.; Bao, X.G. Lanthanide aryloxides catalyzed hydroboration of aldehydes and ketones. Catal. Commun., 2018, 112, 26-30. [http://dx.doi.org/10.1016/j.catcom.2018.04.014].
[97]
Weiss, C.J.; Marks, T.J. Organo-f-element catalysts for efficient and highly selective hydroalkoxylation and hydrothiolation. Dalton Trans., 2010, 39(29), 6576-6588. [http://dx.doi.org/10.1039/c003089a]. [PMID: 20490409].
[98]
Seo, S.; Yu, X.; Marks, T.J. Intramolecular hydroalkoxylation/cyclization of alkynyl alcohols mediated by lanthanide catalysts. Scope and reaction mechanism. J. Am. Chem. Soc., 2009, 131(1), 263-276. [http://dx.doi.org/10.1021/ja8072462]. [PMID: 19086869].
[99]
Dzudza, A.; Marks, T.J. Efficient intramolecular hydroalkoxylation/cyclization of unactivated alkenols mediated by lanthanide triflate ionic liquids. Org. Lett., 2009, 11(7), 1523-1526. [http://dx.doi.org/10.1021/ol8029559]. [PMID: 19271730].
[100]
Seo, S.; Marks, T.J. Mild amidation of aldehydes with amines mediated by lanthanide catalysts. Org. Lett., 2008, 10(2), 317-319. [http://dx.doi.org/10.1021/ol702788j]. [PMID: 18092795].
[101]
Wu, Y.; Wang, S.; Zhang, L.; Yang, G.; Zhu, X.; Zhou, Z.; Zhu, H.; Wu, S. Cyclopentadienyl-free rare-earth metal amides [(CH2SiMe2)(2,6‐iPr2C6H3)N2LnN(SiMe3)2(THF)] as highly efficient versatile catalysts for C-C and C-N bond formation. Eur. J. Org. Chem., 2010, 2010(2), 326-332. [http://dx.doi.org/10.1002/ejoc.200901015].
[102]
Thomson, J.A.; Schafer, L.L. Yttrium (amidate) complexes for catalytic C-N bond formation. Rapid, room temperature amidation of aldehydes. Dalton Trans., 2012, 41(26), 7897-7904. [http://dx.doi.org/10.1039/c2dt30214d]. [PMID: 22555513].
[103]
Qian, C.; Zhang, X.; Zhang, Y.; Shen, Q. Heterobimetallic complexes of lanthanide and lithium metals with dianionic guanidinate ligands: syntheses, structures and catalytic activity for amidation of aldehydes with amines. J. Organomet. Chem., 2010, 695(5), 747-752. [http://dx.doi.org/10.1016/j.jorganchem.2009.12.010].
[104]
Qian, C.; Zhang, X.; Li, J.; Xu, F.; Zhang, Y.; Shen, Q. Trisguanidinate lanthanide complexes: Syntheses, structures, and catalytic activity for mild amidation of aldehydes with amines. Organomet., 2009, 28(13), 3856-3862. [http://dx.doi.org/10.1021/om900120v].
[105]
Li, J.; Xu, F.; Zhang, Y.; Shen, Q. Heterobimetallic lanthanide/sodium phenoxides: efficient catalysts for amidation of aldehydes with amines. J. Org. Chem., 2009, 74(6), 2575-2577. [http://dx.doi.org/10.1021/jo802617d]. [PMID: 19209872].
[106]
Xu, B.; Huang, L.; Yang, Z.; Yao, Y.; Zhang, Y.; Shen, Q. Synthesis and structural diversity of heterobimetallic lanthanide-potassium complexes and catalytic activity for amidation of aldehydes with amines. Organomet., 2011, 30(13), 3588-3595. [http://dx.doi.org/10.1021/om200283j].
[107]
Ekoue-Kovi, K.; Wolf, C. Metal-free one-pot oxidative amination of aldehydes to amides. Org. Lett., 2007, 9(17), 3429-3432. [http://dx.doi.org/10.1021/ol7014626]. [PMID: 17655318].
[108]
Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Cross coupling of acyl and aminyl radicals: direct synthesis of amides catalyzed by Bu4NI with TBHP as an oxidant. Angew. Chem. Int. Ed. Engl., 2012, 51(13), 3231-3235. [http://dx.doi.org/10.1002/anie.201108763]. [PMID: 22337620].
[109]
Fu, R.; Yang, Y.; Zhang, J.; Shao, J.; Xia, X.; Ma, Y.; Yuan, R. Direct oxidative amidation of aldehydes with amines catalyzed by heteropolyanion-based ionic liquids under solvent-free conditions via a dual-catalysis process. Org. Biomol. Chem., 2016, 14(5), 1784-1793. [http://dx.doi.org/10.1039/C5OB02376A]. [PMID: 26750757].
[110]
Tank, R.; Pathak, U.; Vimal, M.; Bhattacharyya, S.; Pandey, L.K. Hydrogen peroxide mediated efficient amidation and esterification of aldehydes: Scope and selectivity. Green Chem., 2011, 13, 3350-3354. [http://dx.doi.org/10.1039/c1gc16041a].
[111]
Liang, J.; Lv, J.; Shang, Z.; Liang, J. Metal-free synthesis of amides by oxidative amidation of aldehydes with amines in PEG/oxidant system. Tetrahedron, 2011, 67(44), 8532-8535. [http://dx.doi.org/10.1016/j.tet.2011.08.091].
[112]
Bode, J.W.; Sohn, S.S. N-heterocyclic carbene-catalyzed redox amidations of α-functionalized aldehydes with amines. J. Am. Chem. Soc., 2007, 129(45), 13798-13799. [http://dx.doi.org/10.1021/ja0768136]. [PMID: 17956104].
[113]
Vora, H.U.; Rovis, T. Nucleophilic carbene and HOAt relay catalysis in an amide bond coupling: An orthogonal peptide bond forming reaction. J. Am. Chem. Soc., 2007, 129(45), 13796-13797. [http://dx.doi.org/10.1021/ja0764052]. [PMID: 17929821].
[114]
De Sarkar, S.; Studer, A. Oxidative amidation and azidation of aldehydes by NHC catalysis. Org. Lett., 2010, 12(9), 1992-1995. [http://dx.doi.org/10.1021/ol1004643]. [PMID: 20359171].
[115]
Ta, L.; Axelsson, A.; Sundén, H. N-Acylation of oxazolidinones via aerobic oxidative NHC catalysis. J. Org. Chem., 2018, 83(19), 12261-12268. [http://dx.doi.org/10.1021/acs.joc.8b01723]. [PMID: 30156849].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy