Generic placeholder image

Current Signal Transduction Therapy

Editor-in-Chief

ISSN (Print): 1574-3624
ISSN (Online): 2212-389X

Research Article

Implementation of Neural Network with ALE for the Removal of Artifacts in EEG Signals

Author(s): R. Suresh Kumar* and P. Manimegalai

Volume 15, Issue 1, 2020

Page: [77 - 83] Pages: 7

DOI: 10.2174/1574362414666190613142424

Price: $65

Abstract

Objective: The EEG signal extraction offers an opportunity to improve the quality of life in patients, which has lost to control the ability of their body, with impairment of locomotion. Electroencephalogram (EEG) signal is an important information source for underlying brain processes.

Materials and Methods: The signal extraction and denoising technique obtained through timedomain was then processed by Adaptive Line Enhancer (ALE) to extract the signal coefficient and classify the EEG signals based on FF network. The adaptive line enhancer is used to update the coefficient during the runtime with the help of adaptive algorithms (LMS, RLS, Kalman Filter).

Results: In this work, the least mean square algorithm was employed to obtain the coefficient update with respect to the corresponding input signal. Finally, Mat lab and verilog HDL language are used to simulate the signals and got the classification accuracy rate of 80%.

Conclusion: Experiments show that this method can get high and accurate rate of classification. In this paper, it is proposed that a low-cost use of Field Programmable Gate Arrays (FPGAs) can be used to process EEG signals for extracting and denoising. As a preliminary study, this work shows the implementation of a Neural Network, integrated with ALE for EEG signal processing. The preliminary tests through the proposed architecture for the activation function shows to be reasonable both in terms of precision and in processing speed.

Keywords: Electroencephalogram, neural network, ALE, FPGA, denoising, extraction.

Graphical Abstract

[1]
Moore MM. Real-world applications for brain-computer interface technology. IEEE Trans Neural Syst Rehabil Eng 2003; 11(2): 162-5.
[http://dx.doi.org/10.1109/TNSRE.2003.814433] [PMID: 12899263]
[2]
Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 2004; 51(6): 1034-43.
[http://dx.doi.org/10.1109/TBME.2004.827072] [PMID: 15188875]
[3]
Nojima K, Ogawa S. Measurement of surge current and voltage waveforms using optical-transmission techniques. IEEE Proc 134(6): 415-22.
[4]
Fujita S, Hosokawa N, Shibuya Y. Experimental investigation of high frequency voltage oscillations in transformer winding. IEEE Trans Power Deliv 1998; 13(4): 1201-7.
[http://dx.doi.org/10.1109/61.714485]
[5]
Stevenson M, Winter R, Widrow B. Sensitivity of feedforward neural networks to weight errors. IEEE Trans Neural Netw 1990; 1(1): 71-80.
[http://dx.doi.org/10.1109/72.80206] [PMID: 18282824]
[6]
Blake JJ, Maguire LP, McGinnity TM, Roche B, McDaid LJ. The Implementation of Fuzzy Systems, Neural Networks using FPGAs. Inf Sci 1998; 112(1-4): 151-68.
[http://dx.doi.org/10.1016/S0020-0255(98)10029-4]
[7]
Cox C, Blanz W. GANGLION- A fast field-programmable gate array implementation of a connectionist classifier. IEEE J Solid-State Circuits 1992; 27(3): 288-99.
[http://dx.doi.org/10.1109/4.121550]
[8]
Krips M, Lammert T. Anton Kummert.FPGA Implementation of a Neural Network for a Real-Time Hand Tracking System Proceedings of the First IEEE Int Workshop on Electronic Design, Test and Applications. January 29 – 31; Washington, DC, US. 2002.
[9]
Hanan AR. Akkar, Firas RM. Implementation of Digital Circuits Using Neuro - Swarm Based on FPGA. Int J of Advancements in Computing Techno 2010; 2(2): 64-78.
[http://dx.doi.org/10.4156/ijact.vol2.issue2.6]
[10]
Ali Haitham Kareem, Mohammed Esraa Zeki. Design Artificial Neural Network Using FPGA IJCSNS Int J of Comp Sci and Net Security 2010; 10(8)
[11]
Steven A. Guccione and Mario J Gonzalez, A Neural Network Implementation Using Reconfigurable Architectures. USA: Dept. of Electrical and Comp Engg, The University of Texas at Austin 1994.
[12]
Muthuramalingam A, Himavathi S, Srinivasan E. Neural Network Implementation Using FPGA: Issues and Application, Int. J Inf Technol 2012; 4(2): 86-92.
[13]
Tsolis G, Xenos TD. Signal DUEMD, Statistics HO. Int J of Sig Process. Ima Process and Pattern Recognition 2011; 4(2): 91-106.
[14]
Mahbubul Alam Md. Imdadul Islam, and M. R. Amin, Performance Comparison of STFT, WT, LMS and RLS Adaptive Algorithms in Denoising of Speech Sig. IACSIT Int J Eng Technol 2011; 3(3): 235-8.
[http://dx.doi.org/10.7763/IJET.2011.V3.230]
[15]
Arun SC, Mahesh K. EEG signal preprocessing using wavelet transform. Int J Electronics Engg 2011; 3(1): 5-10.
[16]
Sahin S, Becerikli Y, Yazici S. Neural Network Implementation in Hardware Using FPGAs. Neural Information Process 2006; 4234: 1105-12.
[17]
Omondi AR, Rajapakse JC. FPGA Implementations of Neural Networks. New York: Springer 2006.
[http://dx.doi.org/10.1007/0-387-28487-7]
[18]
Ossoinig H, Reisinger E, Steger C, et al. Design and FPGA Implementation of a Neural Network Proceedings of the 7th Int Conf Sig Proces App & Techno 1996; 939-43.
[19]
Ahirwal MK, Kumar A, Singh GK. Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm. Dig Sig Proces 2014; 25: 164-72.
[http://dx.doi.org/10.1016/j.dsp.2013.10.019]
[20]
Cecotti H, Graser A. Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Tran Spatt Anal Machi Intel 2011; 33(3): 433-45.
[http://dx.doi.org/10.1109/TPAMI.2010.125]
[21]
Güler I, Übeyli ED. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J Neurosci Methods 2005; 148(2): 113-21.
[http://dx.doi.org/10.1016/j.jneumeth.2005.04.013] [PMID: 16054702]
[22]
Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 2018; 100: 270-8.
[http://dx.doi.org/10.1016/j.compbiomed.2017.09.017] [PMID: 28974302]
[23]
Mohammadi MR, Khaleghi A, Nasrabadi AM, Rafieivand S, Begol M, Zarafshan H. EEG classification of ADHD and normal children using non-linear features and neural network. Biomed Eng Lett 2016; 6(2): 66-73.
[http://dx.doi.org/10.1007/s13534-016-0218-2]
[24]
Wang XW, Nie D, Lu BL. Emotional state classification from EEG data using machine learning approach. Neurocomp 2014; 129: 94-106.
[http://dx.doi.org/10.1016/j.neucom.2013.06.046]
[25]
Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng 2007; 4(2): R1-R13.
[http://dx.doi.org/10.1088/1741-2560/4/2/R01] [PMID: 17409472]
[26]
Subasi A, Alkan A, Koklukaya E, Kiymik MK. Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing. Neural Netw 2005; 18(7): 985-97.
[http://dx.doi.org/10.1016/j.neunet.2005.01.006] [PMID: 15921885]
[27]
Nguyen HAT, Musson J, Li F, et al. EOG artifact removal using a wavelet neural network. Neuro comp 2012; 97: 374-89.
[http://dx.doi.org/10.1016/j.neucom.2012.04.016]
[28]
Djeffal F, et al. Design and simulation of nanoelectronic DG MOSFET current source using artificial neural networks. Mater Sci Eng 2007; 12: 1111-6.
[http://dx.doi.org/10.1016/j.msec.2006.09.005]
[29]
Behzad R. Design of analog CMOS integrated circuits. New Delhi, Tata: McGraw hill 2002.
[30]
Ben HH, Mhiri M, Gafsi Z, B. Kamel. Neural-based models of semiconductor devices for spice simulator. Am J Appl Sci 2008; 5: 35-91.
[http://dx.doi.org/10.3844/ajassp.2008.385.391]
[31]
Beiu V, Quintana JM, Avedillo MJ. VLSI implementations of threshold logic-a comprehensive survey. IEEE Trans Neural Netw 2003; 14(5): 1217-43.
[http://dx.doi.org/10.1109/TNN.2003.816365] [PMID: 18244573]
[32]
Kameswara RT, Rajya LM, Prasad TV. An exploration of brain computer interface and its recent trends.In J Adv Res Art Intelligence. 2012; 1: pp. (8)385-91.
[33]
Garrett D, Peterson DA, Anderson CW, Thaut MH. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans Neural Syst Rehabil Eng 2003; 11(2): 141-4.
[http://dx.doi.org/10.1109/TNSRE.2003.814441] [PMID: 12899257]
[34]
Liu H, Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans Knowl Data Eng 2005; 17(4): 491-502.
[http://dx.doi.org/10.1109/TKDE.2005.66]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy