Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

19F-NMR in Target-based Drug Discovery

Author(s): CongBao Kang*

Volume 26, Issue 26, 2019

Page: [4964 - 4983] Pages: 20

DOI: 10.2174/0929867326666190610160534

Price: $65

Abstract

Solution NMR spectroscopy plays important roles in understanding protein structures, dynamics and protein-protein/ligand interactions. In a target-based drug discovery project, NMR can serve an important function in hit identification and lead optimization. Fluorine is a valuable probe for evaluating protein conformational changes and protein-ligand interactions. Accumulated studies demonstrate that 19F-NMR can play important roles in fragment- based drug discovery (FBDD) and probing protein-ligand interactions. This review summarizes the application of 19F-NMR in understanding protein-ligand interactions and drug discovery. Several examples are included to show the roles of 19F-NMR in confirming identified hits/leads in the drug discovery process. In addition to identifying hits from fluorinecontaining compound libraries, 19F-NMR will play an important role in drug discovery by providing a fast and robust way in novel hit identification. This technique can be used for ranking compounds with different binding affinities and is particularly useful for screening competitive compounds when a reference ligand is available.

Keywords: 19F NMR, drug discovery, protein structure, hit to lead, hit identification, protein-ligand interactions.

[1]
Williamson, M.P. Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc., 2013, 73(0), 1-16.
[http://dx.doi.org/10.1016/j.pnmrs.2013.02.001] [PMID: 23962882]
[2]
Kay, L.E. NMR studies of protein structure and dynamics. J. Magn. Reson., 2005, 173(2), 193-207.
[http://dx.doi.org/10.1016/j.jmr.2004.11.021] [PMID: 15780912]
[3]
Hiller, S.; Garces, R.G.; Malia, T.J.; Orekhov, V.Y.; Colombini, M.; Wagner, G. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science, 2008, 321(5893), 1206-1210.
[http://dx.doi.org/10.1126/science.1161302] [PMID: 18755977]
[4]
Jaremko, L.; Jaremko, M.; Giller, K.; Becker, S.; Zweckstetter, M. Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science, 2014, 343(6177), 1363-1366.
[http://dx.doi.org/10.1126/science.1248725] [PMID: 24653034]
[5]
Tugarinov, V.; Choy, W.Y.; Orekhov, V.Y.; Kay, L.E. Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc. Natl. Acad. Sci. USA, 2005, 102(3), 622-627.
[http://dx.doi.org/10.1073/pnas.0407792102] [PMID: 15637152]
[6]
Gayen, S.; Li, Q.; Kang, C. Solution NMR study of the transmembrane domain of single-span membrane proteins: opportunities and strategies. Curr. Protein Pept. Sci., 2012, 13(6), 585-600.
[http://dx.doi.org/10.2174/138920312803582979] [PMID: 23004360]
[7]
Kang, C.; Li, Q. Solution NMR study of integral membrane proteins. Curr. Opin. Chem. Biol., 2011, 15(4), 560-569.
[http://dx.doi.org/10.1016/j.cbpa.2011.05.025] [PMID: 21684799]
[8]
Lugovskoy, A.A.; Zhou, P.; Chou, J.J.; McCarty, J.S.; Li, P.; Wagner, G. Solution structure of the CIDE-N domain of CIDE-B and a model for CIDE-N/CIDE-N interactions in the DNA fragmentation pathway of apoptosis. Cell, 1999, 99(7), 747-755.
[http://dx.doi.org/10.1016/S0092-8674(00)81672-4] [PMID: 10619428]
[9]
Call, M.E.; Schnell, J.R.; Xu, C.; Lutz, R.A.; Chou, J.J.; Wucherpfennig, K.W. The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell, 2006, 127(2), 355-368.
[http://dx.doi.org/10.1016/j.cell.2006.08.044] [PMID: 17055436]
[10]
Gardner, K.H.; Kay, L.E. The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu. Rev. Biophys. Biomol. Struct., 1998, 27, 357-406.
[http://dx.doi.org/10.1146/annurev.biophys.27.1.357] [PMID: 9646872]
[11]
Tugarinov, V.; Kay, L.E. Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J. Am. Chem. Soc., 2003, 125(45), 13868-13878.
[http://dx.doi.org/10.1021/ja030345s] [PMID: 14599227]
[12]
Billeter, M. Non-uniform sampling in biomolecular NMR. J. Biomol. NMR, 2017, 68(2), 65-66.
[http://dx.doi.org/10.1007/s10858-017-0116-7] [PMID: 28620800]
[13]
Li, Y.; Kang, C. Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules, 2017, 22(9), 1399.
[http://dx.doi.org/10.3390/molecules22091399] [PMID: 28832542]
[14]
Leung, E.W.; Yagi, H.; Harjani, J.R.; Mulcair, M.D.; Scanlon, M.J.; Baell, J.B.; Norton, R.S. 19F NMR as a probe of ligand interactions with the iNOS binding site of SPRY domain-containing SOCS box protein 2. Chem. Biol. Drug Des., 2014, 84(5), 616-625.
[http://dx.doi.org/10.1111/cbdd.12355] [PMID: 24813479]
[15]
Pellecchia, M.; Sem, D.S.; Wüthrich, K. NMR in drug discovery. Nat. Rev. Drug Discov., 2002, 1(3), 211-219.
[http://dx.doi.org/10.1038/nrd748] [PMID: 12120505]
[16]
Weigelt, J.; Wikström, M.; Schultz, J.; van Dongen, M.J. Site-selective labeling strategies for screening by NMR. Comb. Chem. High Throughput Screen., 2002, 5(8), 623-630.
[http://dx.doi.org/10.2174/1386207023329978] [PMID: 12470259]
[17]
Powers, R. Applications of NMR to structure-based drug design in structural genomics. J. Struct. Funct. Genomics, 2002, 2(2), 113-123.
[http://dx.doi.org/10.1023/A:1020445506369] [PMID: 12836668]
[18]
Huth, J.R.; Sun, C. Utility of NMR in lead optimization: fragment-based approaches. Comb. Chem. High Throughput Screen., 2002, 5(8), 631-643.
[http://dx.doi.org/10.2174/1386207023329941] [PMID: 12470260]
[19]
Hajduk, P.J.; Burns, D.J. Integration of NMR and high-throughput screening. Comb. Chem. High Throughput Screen., 2002, 5(8), 613-621.
[http://dx.doi.org/10.2174/1386207023329996] [PMID: 12470258]
[20]
Dalvit, C.; Flocco, M.; Veronesi, M.; Stockman, B.J. Fluorine-NMR competition binding experiments for high-throughput screening of large compound mixtures. Comb. Chem. High Throughput Screen., 2002, 5(8), 605-611.
[http://dx.doi.org/10.2174/1386207023329923] [PMID: 12470257]
[21]
Medek, A.; Hajduk, P.J.; Mack, J.; Fesik, S.W. The use of differential chemical shifts for determining the binding site location and orientation of protein-bound ligands. J. Am. Chem. Soc., 2000, 122, 1241-1242.
[http://dx.doi.org/10.1021/ja993921m]
[22]
Kleckner, I.R.; Foster, M.P. An introduction to NMR-based approaches for measuring protein dynamics. Biochim. Biophys. Acta, 2011, 1814(8), 942-968.
[http://dx.doi.org/10.1016/j.bbapap.2010.10.012] [PMID: 21059410]
[23]
Bhunia, A.; Bhattacharjya, S.; Chatterjee, S. Applications of saturation transfer difference NMR in biological systems. Drug Discov. Today, 2012, 17(9-10), 505-513.
[http://dx.doi.org/10.1016/j.drudis.2011.12.016] [PMID: 22210119]
[24]
Wagstaff, J.L.; Taylor, S.L.; Howard, M.J. Recent developments and applications of saturation transfer difference nuclear magnetic resonance (STD NMR) spectroscopy. Mol. Biosyst., 2013, 9(4), 571-577.
[http://dx.doi.org/10.1039/C2MB25395J] [PMID: 23232937]
[25]
Jhoti, H.; Cleasby, A.; Verdonk, M.; Williams, G. Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr. Opin. Chem. Biol., 2007, 11(5), 485-493.
[http://dx.doi.org/10.1016/j.cbpa.2007.07.010] [PMID: 17851109]
[26]
Lesuisse, D.; Lange, G.; Deprez, P.; Bénard, D.; Schoot, B.; Delettre, G.; Marquette, J.P.; Broto, P.; Jean-Baptiste, V.; Bichet, P.; Sarubbi, E.; Mandine, E. SAR and X-ray. A new approach combining fragment-based screening and rational drug design: application to the discovery of nanomolar inhibitors of Src SH2. J. Med. Chem., 2002, 45(12), 2379-2387.
[http://dx.doi.org/10.1021/jm010927p] [PMID: 12036348]
[27]
Erlanson, D.A.; McDowell, R.S.; O’Brien, T. Fragment-based drug discovery. J. Med. Chem., 2004, 47(14), 3463-3482.
[http://dx.doi.org/10.1021/jm040031v] [PMID: 15214773]
[28]
Gossert, A.D.; Jahnke, W. NMR in drug discovery: A practical guide to identification and validation of ligands interacting with biological macromolecules. Prog. Nucl. Magn. Reson. Spectrosc., 2016, 97, 82-125.
[http://dx.doi.org/10.1016/j.pnmrs.2016.09.001] [PMID: 27888841]
[29]
Bartoschek, S.; Klabunde, T.; Defossa, E.; Dietrich, V.; Stengelin, S.; Griesinger, C.; Carlomagno, T.; Focken, I.; Wendt, K.U. Drug design for G-protein-coupled receptors by a ligand-based NMR method. Angew. Chem. Int. Ed. Engl., 2010, 49(8), 1426-1429.
[http://dx.doi.org/10.1002/anie.200905102] [PMID: 20084646]
[30]
Begley, D.W.; Zheng, S.; Varani, G. Fragment-based discovery of novel thymidylate synthase leads by NMR screening and group epitope mapping. Chem. Biol. Drug Des., 2010, 76(3), 218-233.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01010.x] [PMID: 20626411]
[31]
Dias, D.M.; Ciulli, A. NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes. Prog. Biophys. Mol. Biol., 2014, 116(2-3), 101-112.
[http://dx.doi.org/10.1016/j.pbiomolbio.2014.08.012] [PMID: 25175337]
[32]
Hanzawa, H.; Takizawa, T. [NMR screening in fragment-based drug discovery Yakugaku Zasshi, 2010, 130(3), 325-333. [NMR screening in fragment-based drug discovery].
[http://dx.doi.org/10.1248/yakushi.130.325] [PMID: 20190517]
[33]
Yanamala, N.; Dutta, A.; Beck, B.; van Fleet, B.; Hay, K.; Yazbak, A.; Ishima, R.; Doemling, A.; Klein-Seetharaman, J. NMR-based screening of membrane protein ligands. Chem. Biol. Drug Des., 2010, 75(3), 237-256.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00940.x] [PMID: 20331645]
[34]
Schnell, J.R.; Zhou, G.P.; Zweckstetter, M.; Rigby, A.C.; Chou, J.J. Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha. Protein Sci., 2005, 14(9), 2421-2428.
[35]
Schnell, J.R.; Chou, J.J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 2008, 451(7178), 591-595.
[http://dx.doi.org/10.1038/nature06531] [PMID: 18235503]
[36]
Wang, J.; Pielak, R.M.; McClintock, M.A.; Chou, J.J. Solution structure and functional analysis of the influenza B proton channel. Nat. Struct. Mol. Biol., 2009, 16(12), 1267-1271.
[http://dx.doi.org/10.1038/nsmb.1707] [PMID: 19898475]
[37]
Call, M.E.; Wucherpfennig, K.W.; Chou, J.J. The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat. Immunol., 2010, 11(11), 1023-1029.
[http://dx.doi.org/10.1038/ni.1943] [PMID: 20890284]
[38]
Berardi, M.J.; Shih, W.M.; Harrison, S.C.; Chou, J.J. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature, 2011, 476(7358), 109-113.
[http://dx.doi.org/10.1038/nature10257] [PMID: 21785437]
[39]
OuYang, B.; Xie, S.; Berardi, M.J.; Zhao, X.; Dev, J.; Yu, W.; Sun, B.; Chou, J.J. Unusual architecture of the p7 channel from hepatitis C virus. Nature, 2013, 498(7455), 521-525.
[http://dx.doi.org/10.1038/nature12283] [PMID: 23739335]
[40]
Oxenoid, K.; Dong, Y.; Cao, C.; Cui, T.; Sancak, Y.; Markhard, A.L.; Grabarek, Z.; Kong, L.; Liu, Z.; Ouyang, B.; Cong, Y.; Mootha, V.K.; Chou, J.J. Architecture of the mitochondrial calcium uniporter. Nature, 2016, 533(7602), 269-273.
[http://dx.doi.org/10.1038/nature17656] [PMID: 27135929]
[41]
Van Horn, W.D.; Kim, H.J.; Ellis, C.D.; Hadziselimovic, A.; Sulistijo, E.S.; Karra, M.D.; Tian, C.; Sönnichsen, F.D.; Sanders, C.R. Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science, 2009, 324(5935), 1726-1729.
[http://dx.doi.org/10.1126/science.1171716] [PMID: 19556511]
[42]
Kang, C.; Tian, C.; Sönnichsen, F.D.; Smith, J.A.; Meiler, J.; George, A.L., Jr; Vanoye, C.G.; Kim, H.J.; Sanders, C.R. Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel. Biochemistry, 2008, 47(31), 7999-8006.
[http://dx.doi.org/10.1021/bi800875q] [PMID: 18611041]
[43]
Sharma, A.K.; Zhou, G.P.; Kupferman, J.; Surks, H.K.; Christensen, E.N.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase Ialpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase. J. Biol. Chem., 2008, 283(47), 32860-32869.
[http://dx.doi.org/10.1074/jbc.M804916200] [PMID: 18782776]
[44]
Zhou, G-P.; Surks, H.K.; Schnell, J.R.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. The Three-Dimensional Structure of the cGMP-Dependent Protein Kinase I - α Leucine Zipper Domain and Its Interaction with the Myosin Binding Subunit. Blood, 2004, 104(11), 3539-3539.
[45]
Chou, J.J.; Li, S.; Klee, C.B.; Bax, A. Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains. Nat. Struct. Biol., 2001, 8(11), 990-997.
[http://dx.doi.org/10.1038/nsb1101-990] [PMID: 11685248]
[46]
Chou, J.J.; Li, H.; Salvesen, G.S.; Yuan, J.; Wagner, G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell, 1999, 96(5), 615-624.
[http://dx.doi.org/10.1016/S0092-8674(00)80572-3] [PMID: 10089877]
[47]
Fu, Q.; Fu, T.M.; Cruz, A.C.; Sengupta, P.; Thomas, S.K.; Wang, S.; Siegel, R.M.; Wu, H.; Chou, J.J. Structural Basis and Functional Role of Intramembrane Trimerization of the Fas/CD95 Death Receptor. Mol. Cell, 2016, 61(4), 602-613.
[http://dx.doi.org/10.1016/j.molcel.2016.01.009] [PMID: 26853147]
[48]
Pielak, R.M.; Schnell, J.R.; Chou, J.J. Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proc. Natl. Acad. Sci. USA, 2009, 106(18), 7379-7384.
[http://dx.doi.org/10.1073/pnas.0902548106] [PMID: 19383794]
[49]
Dev, J.; Park, D.; Fu, Q.; Chen, J.; Ha, H.J.; Ghantous, F.; Herrmann, T.; Chang, W.; Liu, Z.; Frey, G.; Seaman, M.S.; Chen, B.; Chou, J.J. Structural basis for membrane anchoring of HIV-1 envelope spike. Science, 2016, 353(6295), 172-175.
[http://dx.doi.org/10.1126/science.aaf7066] [PMID: 27338706]
[50]
Chou, J.J.; Matsuo, H.; Duan, H.; Wagner, G. Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell, 1998, 94(2), 171-180.
[http://dx.doi.org/10.1016/S0092-8674(00)81417-8] [PMID: 9695946]
[51]
Xu, C.; Gagnon, E.; Call, M.E.; Schnell, J.R.; Schwieters, C.D.; Carman, C.V.; Chou, J.J.; Wucherpfennig, K.W. Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell, 2008, 135(4), 702-713.
[http://dx.doi.org/10.1016/j.cell.2008.09.044] [PMID: 19013279]
[52]
Gagnon, E.; Xu, C.; Yang, W.; Chu, H.H.; Call, M.E.; Chou, J.J.; Wucherpfennig, K.W. Response multilayered control of T cell receptor phosphorylation. Cell, 2010, 142(5), 669-671.
[http://dx.doi.org/10.1016/j.cell.2010.08.019] [PMID: 20813252]
[53]
Pielak, R.M.; Chou, J.J. Flu channel drug resistance: a tale of two sites. Protein Cell, 2010, 1(3), 246-258.
[http://dx.doi.org/10.1007/s13238-010-0025-y] [PMID: 21203971]
[54]
Berardi, M.J.; Chou, J.J. Fatty acid flippase activity of UCP2 is essential for its proton transport in mitochondria. Cell Metab., 2014, 20(3), 541-552.
[http://dx.doi.org/10.1016/j.cmet.2014.07.004] [PMID: 25127353]
[55]
Mantsyzov, A.B.; Shen, Y.; Lee, J.H.; Hummer, G.; Bax, A. MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data. J. Biomol. NMR, 2015, 63(1), 85-95.
[http://dx.doi.org/10.1007/s10858-015-9971-2] [PMID: 26219516]
[56]
Shen, Y.; Bax, A. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N. Methods Mol. Biol., 2015, 1260, 17-32.
[http://dx.doi.org/10.1007/978-1-4939-2239-0_2] [PMID: 25502373]
[57]
Shen, Y.; Delaglio, F.; Cornilescu, G.; Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR, 2009, 44(4), 213-223.
[http://dx.doi.org/10.1007/s10858-009-9333-z] [PMID: 19548092]
[58]
Shen, Y.; Bax, A. Homology modeling of larger proteins guided by chemical shifts. Nat. Methods, 2015, 12(8), 747-750.
[http://dx.doi.org/10.1038/nmeth.3437] [PMID: 26053889]
[59]
Shen, Y.; Bax, A. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J. Biomol. NMR, 2010, 48(1), 13-22.
[http://dx.doi.org/10.1007/s10858-010-9433-9] [PMID: 20628786]
[60]
Zimmerman, D.E.; Kulikowski, C.A.; Huang, Y.; Feng, W.; Tashiro, M.; Shimotakahara, S.; Chien, C-y.; Powers, R.; Montelione, G.T. Automated analysis of protein NMR assignments using methods from artificial intelligence11Edited by P. E. Wright.J. Mol. Biol; , 1997, 269, pp. (4)592-610.
[61]
Maciejewski, M.W.; Schuyler, A.D.; Gryk, M.R.; Moraru, I.I.; Romero, P.R.; Ulrich, E.L.; Eghbalnia, H.R.; Livny, M.; Delaglio, F.; Hoch, J.C. NMRbox: A Resource for Biomolecular NMR Computation. Biophys. J., 2017, 112(8), 1529-1534.
[http://dx.doi.org/10.1016/j.bpj.2017.03.011] [PMID: 28445744]
[62]
Lee, W.; Markley, J.L. PINE-SPARKY.2 for automated NMR-based protein structure research. Bioinformatics, 2018, 34(9), 1586-1588.
[http://dx.doi.org/10.1093/bioinformatics/btx785] [PMID: 29281006]
[63]
Chou, K.C. Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem., 2004, 11(16), 2105-2134.
[http://dx.doi.org/10.2174/0929867043364667] [PMID: 15279552]
[64]
Chou, K.C.; Jones, D.; Heinrikson, R.L. Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett., 1997, 419(1), 49-54.
[http://dx.doi.org/10.1016/S0014-5793(97)01246-5] [PMID: 9426218]
[65]
Chou, K.C.; Tomasselli, A.G.; Heinrikson, R.L. Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett., 2000, 470(3), 249-256.
[http://dx.doi.org/10.1016/S0014-5793(00)01333-8] [PMID: 10745077]
[66]
Chou, K.C. Insights from modeling three-dimensional structures of the human potassium and sodium channels. J. Proteome Res., 2004, 3(4), 856-861.
[http://dx.doi.org/10.1021/pr049931q] [PMID: 15359741]
[67]
Chou, K.C. Insights from modeling the tertiary structure of human BACE2. J. Proteome Res., 2004, 3(5), 1069-1072.
[http://dx.doi.org/10.1021/pr049905s] [PMID: 15473697]
[68]
Chou, K.C. Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem. Biophys. Res. Commun., 2004, 319(2), 433-438.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.016] [PMID: 15178425]
[69]
Chou, K.C. Insights from modeling the 3D structure of DNA-CBF3b complex. J. Proteome Res., 2005, 4(5), 1657-1660.
[http://dx.doi.org/10.1021/pr050135+] [PMID: 16212418]
[70]
Wang, S.Q.; Du, Q.S.; Chou, K.C. Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem. Biophys. Res. Commun., 2007, 354(3), 634-640.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.235] [PMID: 17266937]
[71]
Huang, R.B.; Cheng, D.; Liao, S.M.; Lu, B.; Wang, Q.Y.; Xie, N.Z.; Troy Ii, F.A.; Zhou, G.P. The Intrinsic Relationship Between Structure and Function of the Sialyltransferase ST8Sia Family Members. Curr. Top. Med. Chem., 2017, 17(21), 2359-2369.
[http://dx.doi.org/10.2174/1568026617666170414150730] [PMID: 28413949]
[72]
Chou, K.C.; Forsén, S. Graphical rules for enzyme-catalysed rate laws. Biochem. J., 1980, 187(3), 829-835.
[http://dx.doi.org/10.1042/bj1870829] [PMID: 7188428]
[73]
Zhou, G.P.; Deng, M.H. An extension of Chou’s graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways. Biochem. J., 1984, 222(1), 169-176.
[http://dx.doi.org/10.1042/bj2220169] [PMID: 6477507]
[74]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Aristoff, P.A.; Tarpley, W.G.; Reusser, F. Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E. J. Biol. Chem., 1993, 268(9), 6119-6124.
[PMID: 7681060]
[75]
Althaus, I.W.; Gonzales, A.J.; Chou, J.J.; Romero, D.L.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Resnick, L.; Busso, M.E.; So, A.G. The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. J. Biol. Chem., 1993, 268(20), 14875-14880.
[PMID: 7686907]
[76]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Palmer, J.R.; Thomas, R.C.; Aristoff, P.A. Kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-88204E. Biochemistry, 1993, 32(26), 6548-6554.
[http://dx.doi.org/10.1021/bi00077a008] [PMID: 7687145]
[77]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res., 2013, 41(6)e68
[http://dx.doi.org/10.1093/nar/gks1450] [PMID: 23303794]
[78]
Feng, P.M.; Chen, W.; Lin, H.; Chou, K.C. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442(1), 118-125.
[http://dx.doi.org/10.1016/j.ab.2013.05.024] [PMID: 23756733]
[79]
Ding, H.; Deng, E.Z.; Yuan, L.F.; Liu, L.; Lin, H.; Chen, W.; Chou, K.C. iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res. Int., 2014, 2014286419
[http://dx.doi.org/10.1155/2014/286419] [PMID: 24991545]
[80]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. BioMed Res. Int., 2014, 2014623149
[http://dx.doi.org/10.1155/2014/623149] [PMID: 24967386]
[81]
Lin, H.; Deng, E.Z.; Ding, H.; Chen, W.; Chou, K.C. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res., 2014, 42(21), 12961-12972.
[http://dx.doi.org/10.1093/nar/gku1019] [PMID: 25361964]
[82]
Chen, W.; Feng, P.; Ding, H.; Lin, H.; Chou, K.C. iRNA-Methyl: Identifying N(6)-methyladenosine sites using pseudo nucleotide composition. Anal. Biochem., 2015, 490, 26-33.
[http://dx.doi.org/10.1016/j.ab.2015.08.021] [PMID: 26314792]
[83]
Chen, W.; Feng, P.; Ding, H.; Lin, H.; Chou, K.C. Using deformation energy to analyze nucleosome positioning in genomes. Genomics, 2016, 107(2-3), 69-75.
[http://dx.doi.org/10.1016/j.ygeno.2015.12.005] [PMID: 26724497]
[84]
Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K.C. iRNAPseU: Identifying RNA pseudouridine sites. Mol. Ther. Nucleic Acids, 2016. 5e332.
[http://dx.doi.org/10.1038/mtna.2016.37] [PMID: 28427142]
[85]
Zhang, C.J.; Tang, H.; Li, W.C.; Lin, H.; Chen, W.; Chou, K.C. iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition. Oncotarget, 2016, 7(43), 69783-69793.
[http://dx.doi.org/10.18632/oncotarget.11975] [PMID: 27626500]
[86]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.C. iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget, 2017, 8(3), 4208-4217.
[http://dx.doi.org/10.18632/oncotarget.13758] [PMID: 27926534]
[87]
Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W.; Chou, K.C. iDNA6mA-PseKNC: Identifying DNA N(6)-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics, 2019, 111(1), 96-102.
[88]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.C. iRNA-3typeA: Identifying Three Types of Modification at RNA’s Adenosine Sites. Mol. Ther. Nucleic Acids, 2018, 11, 468-474.
[http://dx.doi.org/10.1016/j.omtn.2018.03.012] [PMID: 29858081]
[89]
Su, Z.D.; Huang, Y.; Zhang, Z.Y.; Zhao, Y.W.; Wang, D.; Chen, W.; Chou, K.C.; Lin, H. iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics, 2018, 34(24), 4196-4204.
[http://dx.doi.org/10.1093/bioinformatics/bty508] [PMID: 29931187]
[90]
Yang, H.; Qiu, W.R.; Liu, G.; Guo, F.B.; Chen, W.; Chou, K.C.; Lin, H. iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int. J. Biol. Sci., 2018, 14(8), 883-891.
[http://dx.doi.org/10.7150/ijbs.24616] [PMID: 29989083]
[91]
Chou, K.C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol., 2011, 273(1), 236-247.
[http://dx.doi.org/10.1016/j.jtbi.2010.12.024] [PMID: 21168420]
[92]
Chou, K-C.; Lin, W-Z.; Xiao, X. Wenxiang: a web-server for drawing wenxiang diagrams. Nat. Sci., 2011, 03(10), 4.
[http://dx.doi.org/10.4236/ns.2011.310111]
[93]
Zhou, G.P. The structural determinations of the leucine zipper coiled-coil domains of the cGMP-dependent protein kinase Iα and its interaction with the myosin binding subunit of the myosin light chains phosphase. Protein Pept. Lett., 2011, 18(10), 966-978.
[http://dx.doi.org/10.2174/0929866511107010966] [PMID: 21592084]
[94]
Zhou, G.P.; Huang, R.B. The pH-triggered conversion of the PrP(c) to PrP(sc.). Curr. Top. Med. Chem., 2013, 13(10), 1152-1163.
[http://dx.doi.org/10.2174/15680266113139990003] [PMID: 23647538]
[95]
Bjorndahl, T.C.; Zhou, G.P.; Liu, X.; Perez-Pineiro, R.; Semenchenko, V.; Saleem, F.; Acharya, S.; Bujold, A.; Sobsey, C.A.; Wishart, D.S. Detailed biophysical characterization of the acid-induced PrP(c) to PrP(β) conversion process. Biochemistry, 2011, 50(7), 1162-1173.
[http://dx.doi.org/10.1021/bi101435c] [PMID: 21189021]
[96]
Zhou, G.P. The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism. J. Theor. Biol., 2011, 284(1), 142-148.
[http://dx.doi.org/10.1016/j.jtbi.2011.06.006] [PMID: 21718705]
[97]
Liu, Z.; Xiao, X.; Qiu, W.R.; Chou, K.C. Benchmark data for identifying DNA methylation sites via pseudo trinucleotide composition. Data Brief, 2015, 4, 87-89.
[http://dx.doi.org/10.1016/j.dib.2015.04.021] [PMID: 26217768]
[98]
Khan, Y.D.; Rasool, N.; Hussain, W.; Khan, S.A.; Chou, K.C. iPhosT-PseAAC: Identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC. Anal. Biochem., 2018, 550, 109-116.
[http://dx.doi.org/10.1016/j.ab.2018.04.021] [PMID: 29704476]
[99]
Lin, W-Z.; Cheng, X.; Xiao, X.; Chou, K-C. pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC. Bioinformatics, 2018, 35(3), 398-406.
[PMID: 29028927]
[100]
Zhou, G.P.; Huang, R.B.; Troy, F.A. II 3D structural conformation and functional domains of polysialyltransferase ST8Sia IV required for polysialylation of neural cell adhesion molecules. Protein Pept. Lett., 2015, 22(2), 137-148.
[http://dx.doi.org/10.2174/0929866521666141019192221] [PMID: 25329332]
[101]
Chou, K.C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins, 2001, 43(3), 246-255.
[http://dx.doi.org/10.1002/prot.1035] [PMID: 11288174]
[102]
Kuo-Chen, C. Pseudo Amino Acid Composition and its Applications in Bioinformatics, Proteomics and System Biology. Curr. Proteomics, 2009, 6(4), 262-274.
[http://dx.doi.org/10.2174/157016409789973707]
[103]
Chen, W.; Lei, T.Y.; Jin, D.C.; Lin, H.; Chou, K.C. PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition. Anal. Biochem., 2014, 456, 53-60.
[http://dx.doi.org/10.1016/j.ab.2014.04.001] [PMID: 24732113]
[104]
Chen, W.; Lin, H.; Chou, K.C. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol. Biosyst., 2015, 11(10), 2620-2634.
[http://dx.doi.org/10.1039/C5MB00155B] [PMID: 26099739]
[105]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene, 2017, 628, 315-321.
[http://dx.doi.org/10.1016/j.gene.2017.07.036] [PMID: 28728979]
[106]
Xiao, X.; Cheng, X.; Su, S.; Mao, Q.; Chou, K-C. pLoc-mGpos: Incorporate Key Gene Ontology Information into General PseAAC for Predicting Subcellular Localization of Gram-Positive Bacterial Proteins. Nat. Sci., 2017, 9(9), 330-349.
[107]
Cheng, X.; Xiao, X.; Chou, K-C. pLoc_bal-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC. J. Theor. Biol., 2018, 458, 92-102.
[http://dx.doi.org/10.1016/j.jtbi.2018.09.005] [PMID: 30201434]
[108]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc_bal-mPlant: Predict Subcellular Localization of Plant Proteins by General PseAAC and Balancing Training Dataset. Curr. Pharm. Des., 2018, 24(34), 4013-4022.
[http://dx.doi.org/10.2174/1381612824666181119145030] [PMID: 30451108]
[109]
Chou, K-C.; Cheng, X.; Xiao, X. pLoc_bal-mHum: Predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset. Genomics, 2018. S0888-7543(18)30276-3
[http://dx.doi.org/10.1016/j.ygeno.2018.08.007] [PMID: 30179658]
[110]
Xiao, X.; Cheng, X.; Chen, G.; Mao, Q.; Chou, K.C. pLoc_bal-mVirus: predict subcellular localization of multi-label virus proteins by PseAAC and IHTS treatment to balance training dataset. Med. Chem., 2018, 15(5), 496-509.
[http://dx.doi.org/10.2174/1573406415666181217114710] [PMID: 30556503]
[111]
Chou, K.C.; Cheng, X.; Xiao, X. pLoc_bal-mEuk: predict subcellular localization of eukaryotic proteins by general PseAAC and quasi-balancing training dataset. Med. Chem., 2018, 15(5), 472-485.
[http://dx.doi.org/10.2174/1573406415666181218102517] [PMID: 30569871]
[112]
Hussain, W.; Khan, Y.D.; Rasool, N.; Khan, S.A.; Chou, K-C. SPrenylC-PseAAC: A sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins. J. Theor. Biol., 2019, 468, 1-11.
[http://dx.doi.org/10.1016/j.jtbi.2019.02.007] [PMID: 30768975]
[113]
Xu, Y.; Wen, X.; Wen, L.S.; Wu, L.Y.; Deng, N.Y.; Chou, K.C. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One, 2014, 9(8)e105018
[http://dx.doi.org/10.1371/journal.pone.0105018] [PMID: 25121969]
[114]
Xu, Y.; Shao, X.J.; Wu, L.Y.; Deng, N.Y.; Chou, K.C. iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ, 2013. 1e171
[http://dx.doi.org/10.7717/peerj.171] [PMID: 24109555]
[115]
Xu, Y.; Ding, J.; Wu, L.Y.; Chou, K.C. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One, 2013, 8(2)e55844
[http://dx.doi.org/10.1371/journal.pone.0055844] [PMID: 23409062]
[116]
Liu, Z.; Xiao, X.; Yu, D.J.; Jia, J.; Qiu, W.R.; Chou, K.C. pRNAm-PC: Predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties. Anal. Biochem., 2016, 497, 60-67.
[http://dx.doi.org/10.1016/j.ab.2015.12.017] [PMID: 26748145]
[117]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 2016, 7(23), 34558-34570.
[http://dx.doi.org/10.18632/oncotarget.9148] [PMID: 27153555]
[118]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol., 2016, 394, 223-230.
[http://dx.doi.org/10.1016/j.jtbi.2016.01.020] [PMID: 26807806]
[119]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal. Biochem., 2016, 497, 48-56.
[http://dx.doi.org/10.1016/j.ab.2015.12.009] [PMID: 26723495]
[120]
Liu, Z.; Xiao, X.; Qiu, W.R.; Chou, K.C. iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Anal. Biochem., 2015, 474, 69-77.
[http://dx.doi.org/10.1016/j.ab.2014.12.009] [PMID: 25596338]
[121]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Chou, K.C. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget, 2016, 7(28), 44310-44321.
[http://dx.doi.org/10.18632/oncotarget.10027] [PMID: 27322424]
[122]
Qiu, W.R.; Jiang, S.Y.; Xu, Z.C.; Xiao, X.; Chou, K.C. iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition. Oncotarget, 2017, 8(25), 41178-41188.
[http://dx.doi.org/10.18632/oncotarget.17104] [PMID: 28476023]
[123]
Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W.; Chou, K-C. iDNA6mA-PseKNC: Identifying DNA N6-methyl-adenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics, 2019, 111(1), 96-102.
[http://dx.doi.org/10.1016/j.ygeno.2018.01.005] [PMID: 29360500]
[124]
Hussain, W.; Khan, Y.D.; Rasool, N.; Khan, S.A.; Chou, K-C. SPalmitoylC-PseAAC: A sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins. Anal. Biochem., 2019, 568, 14-23.
[http://dx.doi.org/10.1016/j.ab.2018.12.019] [PMID: 30593778]
[125]
Jia, J.; Li, X.; Qiu, W.; Xiao, X.; Chou, K-C. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC. J. Theor. Biol., 2019, 460, 195-203.
[http://dx.doi.org/10.1016/j.jtbi.2018.10.021] [PMID: 30312687]
[126]
Khan, Y.D.; Jamil, M.; Hussain, W.; Rasool, N.; Khan, S.A.; Chou, K-C. pSSbond-PseAAC: Prediction of disulfide bonding sites by integration of PseAAC and statistical moments. J. Theor. Biol., 2019, 463, 47-55.
[http://dx.doi.org/10.1016/j.jtbi.2018.12.015] [PMID: 30550863]
[127]
Zhang, M.; Li, F.; Marquez-Lago, T.T.; Leier, A.; Fan, C.; Kwoh, C.K.; Chou, K.-C.; Song, J.; Jia, C. MULTiPly: a novel multi-layer predictor for discovering general and specific types of promoters. 2019, 35(17), 2957-2965.
[http://dx.doi.org/10.1093/bioinformatics/btz016]
[128]
Yi, L.; Shuo, W.; Jianying, W.; Guangya, Z.; Qiang, Z.; Xiang, Z.; Bing, N.; Qin, C.; Kuo-Chen, C. An Epidemic Avian Influenza Prediction Model Based on Google Trends. Lett. Org. Chem., 2019, 16(4), 303-310.
[http://dx.doi.org/10.2174/1570178615666180724103325]
[129]
Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L.; Chou, K.C. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res., 2015, 43(W1)W65-71
[http://dx.doi.org/10.1093/nar/gkv458] [PMID: 25958395]
[130]
Cheng, X.; Zhao, S.G.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics, 2017, 33(22), 3524-3531.
[http://dx.doi.org/10.1093/bioinformatics/btx476] [PMID: 29036535]
[131]
Liu, B.; Wu, H.; Chou, K-C. An Improved Package of Web Servers for Generating Various Modes of Pseudo Components of DNA, RNA, and Protein Sequences. Nat. Sci., 2017, 9(4), 6791.
[132]
Chou, K.C. An Unprecedented Revolution in Medicinal Chemistry Driven by the Progress of Biological Science. Curr. Top. Med. Chem., 2017, 17(21), 2337-2358.
[http://dx.doi.org/10.2174/1568026617666170414145508] [PMID: 28413951]
[133]
Chou, K.C.; Elrod, D.W. Bioinformatical analysis of G-protein-coupled receptors. J. Proteome Res., 2002, 1(5), 429-433.
[http://dx.doi.org/10.1021/pr025527k] [PMID: 12645914]
[134]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics, 2018, 34(9), 1448-1456.
[http://dx.doi.org/10.1093/bioinformatics/btx711] [PMID: 29106451]
[135]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics, 2017. S0888-7543(17)30102-7
[PMID: 28989035]
[136]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC. Mol. Biosyst., 2017, 13(9), 1722-1727.
[http://dx.doi.org/10.1039/C7MB00267J] [PMID: 28702580]
[137]
Xiao, X.; Cheng, X.; Chen, G.; Mao, Q.; Chou, K.C. pLoc_bal-mGpos: Predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC. Genomics, 2019, 111(4), 886-892.
[PMID: 29842950]
[138]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics, 2018, 110(1), 50-58.
[http://dx.doi.org/10.1016/j.ygeno.2017.08.005] [PMID: 28818512]
[139]
Chou, K.C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst., 2013, 9(6), 1092-1100.
[http://dx.doi.org/10.1039/c3mb25555g] [PMID: 23536215]
[140]
Chou, K.C.; Zhang, C.T.; Maggiora, G.M. Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth. Biopolymers, 1994, 34(1), 143-153.
[http://dx.doi.org/10.1002/bip.360340114] [PMID: 8110966]
[141]
Chou, K-C.; Shen, H-B. REVIEW: Recent advances in developing web-servers for predicting protein attributes. Nat. Sci., 2009, 1(2), 30.
[142]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. iGPCR-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking. PLoS One, 2013, 8(8)e72234
[http://dx.doi.org/10.1371/journal.pone.0072234] [PMID: 24015221]
[143]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. Predict drug-protein interaction in cellular networking. Curr. Top. Med. Chem., 2013, 13(14), 1707-1712.
[http://dx.doi.org/10.2174/15680266113139990121] [PMID: 23889048]
[144]
Xiao, X.; Wang, P.; Chou, K.C. GPCR-CA: A cellular automaton image approach for predicting G-protein-coupled receptor functional classes. J. Comput. Chem., 2009, 30(9), 1414-1423.
[http://dx.doi.org/10.1002/jcc.21163] [PMID: 19037861]
[145]
Xiao, X.; Wang, P.; Chou, K.C. GPCR-2L: predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions. Mol. Biosyst., 2011, 7(3), 911-919.
[http://dx.doi.org/10.1039/C0MB00170H] [PMID: 21180772]
[146]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J. Theor. Biol., 2015, 377, 47-56.
[http://dx.doi.org/10.1016/j.jtbi.2015.04.011] [PMID: 25908206]
[147]
Xiao, X.; Min, J.L.; Lin, W.Z.; Liu, Z.; Cheng, X.; Chou, K.C. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach. J. Biomol. Struct. Dyn., 2015, 33(10), 2221-2233.
[http://dx.doi.org/10.1080/07391102.2014.998710] [PMID: 25513722]
[148]
Liu, B.; Wang, S.; Long, R.; Chou, K.C. iRSpot-EL: identify recombination spots with an ensemble learning approach. Bioinformatics, 2017, 33(1), 35-41.
[http://dx.doi.org/10.1093/bioinformatics/btw539] [PMID: 27531102]
[149]
Chou, K.C. Impacts of bioinformatics to medicinal chemistry. Med. Chem., 2015, 11(3), 218-234.
[http://dx.doi.org/10.2174/1573406411666141229162834] [PMID: 25548930]
[150]
Hajduk, P.J.; Meadows, R.P.; Fesik, S.W. NMR-based screening in drug discovery. Q. Rev. Biophys., 1999, 32(3), 211-240.
[http://dx.doi.org/10.1017/S0033583500003528] [PMID: 11194565]
[151]
Shuker, S.B.; Hajduk, P.J.; Meadows, R.P.; Fesik, S.W. Discovering high-affinity ligands for proteins: SAR by NMR. Science, 1996, 274(5292), 1531-1534.
[http://dx.doi.org/10.1126/science.274.5292.1531] [PMID: 8929414]
[152]
de Vries, S.J.; van Dijk, M.; Bonvin, A.M. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc., 2010, 5(5), 883-897.
[http://dx.doi.org/10.1038/nprot.2010.32] [PMID: 20431534]
[153]
Chen, W-N.; Otting, G. Using tert-butyl groups in a ligand to identify its binding site on a protein. ACS Med. Chem. Lett., 2018, 9(2), 109-113.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00464] [PMID: 29456797]
[154]
Proudfoot, A.; Bussiere, D.E.; Lingel, A. High-Confidence Protein-Ligand Complex Modeling by NMR-Guided Docking Enables Early Hit Optimization. J. Am. Chem. Soc., 2017, 139(49), 17824-17833.
[http://dx.doi.org/10.1021/jacs.7b07171] [PMID: 29190085]
[155]
Tugarinov, V.; Kanelis, V.; Kay, L.E. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc., 2006, 1(2), 749-754.
[http://dx.doi.org/10.1038/nprot.2006.101] [PMID: 17406304]
[156]
Tugarinov, V.; Kay, L.E. Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins. ChemBioChem, 2005, 6(9), 1567-1577.
[http://dx.doi.org/10.1002/cbic.200500110] [PMID: 16075427]
[157]
Liu, D.; Cowburn, D. Split Inteins: Methods and Protocols; Mootz, H.D., Ed.; Springer New York: New York, NY, 2017, pp. 131-145.
[http://dx.doi.org/10.1007/978-1-4939-6451-2_9]
[158]
Freiburger, L.; Sonntag, M.; Hennig, J.; Li, J.; Zou, P.; Sattler, M. Efficient segmental isotope labeling of multi-domain proteins using Sortase A. J. Biomol. NMR, 2015, 63(1), 1-8.
[http://dx.doi.org/10.1007/s10858-015-9981-0] [PMID: 26319988]
[159]
Li, Y.; Li, Q.; Wong, Y.L.; Liew, L.S.; Kang, C. Membrane topology of NS2B of dengue virus revealed by NMR spectroscopy. Biochim. Biophys. Acta, 2015, 1848(10 Pt A), 2244-2252.
[http://dx.doi.org/10.1016/j.bbamem.2015.06.010] [PMID: 26072288]
[160]
Li, Y.; Wong, Y.L.; Lee, M.Y.; Li, Q.; Wang, Q.Y.; Lescar, J.; Shi, P.Y.; Kang, C. Secondary structure and membrane topology of the full-length dengue virus NS4B in micelles. Angew. Chem. Int. Ed. Engl., 2016, 55(39), 12068-12072.
[http://dx.doi.org/10.1002/anie.201606609] [PMID: 27554985]
[161]
Su, X.C.; Ozawa, K.; Qi, R.; Vasudevan, S.G.; Lim, S.P.; Otting, G. NMR analysis of the dynamic exchange of the NS2B cofactor between open and closed conformations of the West Nile virus NS2B-NS3 protease. PLoS Negl. Trop. Dis., 2009, 3(12)e561
[http://dx.doi.org/10.1371/journal.pntd.0000561] [PMID: 19997625]
[162]
Liu, F.; Fromm, H.J. 31P nuclear magnetic resonance spectroscopy studies of substrate and product binding to fructose-1,6-bisphosphatase. J. Biol. Chem., 1991, 266(18), 11774-11778.
[PMID: 1646815]
[163]
Shaw, C.F.; Coffer, M.T.; Klingbeil, J.; Mirabelli, C.K. Application of phosphorus-31 NMR chemical shift: gold affinity correlation to hemoglobin-gold binding and the first inter-protein gold transfer reaction. J. Am. Chem. Soc., 1988, 110(3), 729-734.
[http://dx.doi.org/10.1021/ja00211a011]
[164]
Chatterjee, D.; Zhiping, L.L.; Tan, S-M.; Bhattacharjya, S. Interaction analyses of the integrin β2 cytoplasmic tail with the F3 FERM domain of talin and 14-3-3ζ reveal a ternary complex with phosphorylated tail. J. Mol. Biol., 2016, 428(20), 4129-4142.
[http://dx.doi.org/10.1016/j.jmb.2016.08.014] [PMID: 27545410]
[165]
Gupta, S.; Chit, J.C-Y.; Feng, C.; Bhunia, A.; Tan, S-M.; Bhattacharjya, S. An alternative phosphorylation switch in integrin β2 (CD18) tail for Dok1 binding. Sci. Rep., 2015, 5, 11630.
[http://dx.doi.org/10.1038/srep11630] [PMID: 26108885]
[166]
Norton, R.S.; Leung, E.W.; Chandrashekaran, I.R.; MacRaild, C.A. Applications of (19)F-NMR in fragment-based drug discovery. Molecules, 2016, 21(7)E860
[http://dx.doi.org/10.3390/molecules21070860] [PMID: 27438818]
[167]
Harner, M.J.; Frank, A.O.; Fesik, S.W. Fragment-based drug discovery using NMR spectroscopy. J. Biomol. NMR, 2013, 56(2), 65-75.
[http://dx.doi.org/10.1007/s10858-013-9740-z] [PMID: 23686385]
[168]
Ma, R.; Wang, P.; Wu, J.; Ruan, K. Process of fragment-based lead discovery-a perspective from NMR. Molecules, 2016, 21(7), 854.
[http://dx.doi.org/10.3390/molecules21070854] [PMID: 27438813]
[169]
Kang, C. Applications of in-cell NMR in structural biology and drug discovery. Int. J. Mol. Sci., 2019, 20(1)E139
[http://dx.doi.org/10.3390/ijms20010139] [PMID: 30609728]
[170]
Schaumburg, K.; Deverell, C. Fluorine-19 nuclear magnetic resonance chemical shift of hydrofluoric acid in normal water and heavy water solutions. J. Am. Chem. Soc., 1968, 90(10), 2495-2499.
[http://dx.doi.org/10.1021/ja01012a009]
[171]
Gerig, J.T. Fluorine NMR of proteins. Prog. Nucl. Magn. Reson. Spectrosc., 1994, 26, 293-370.
[http://dx.doi.org/10.1016/0079-6565(94)80009-X]
[172]
Didenko, T.; Liu, J.J.; Horst, R.; Stevens, R.C.; Wüthrich, K. Fluorine-19 NMR of integral membrane proteins illustrated with studies of GPCRs. Curr. Opin. Struct. Biol., 2013, 23(5), 740-747.
[http://dx.doi.org/10.1016/j.sbi.2013.07.011] [PMID: 23932201]
[173]
Kitevski-LeBlanc, J.L.; Prosser, R.S. Current applications of 19F NMR to studies of protein structure and dynamics. Prog. Nucl. Magn. Reson. Spectrosc., 2012, 62, 1-33.
[http://dx.doi.org/10.1016/j.pnmrs.2011.06.003] [PMID: 22364614]
[174]
Arntson, K.E.; Pomerantz, W.C.K. Protein-observed fluorine, N.M.R. protein-observed fluorine NMR: A bioorthogonal approach for small molecule discovery. J. Med. Chem., 2016, 59(11), 5158-5171.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01447] [PMID: 26599421]
[175]
Evanics, F.; Kitevski, J.L.; Bezsonova, I.; Forman-Kay, J.; Prosser, R.S. 19F NMR studies of solvent exposure and peptide binding to an SH3 domain. Biochim. Biophys. Acta, 2007, 1770(2), 221-230.
[http://dx.doi.org/10.1016/j.bbagen.2006.10.017] [PMID: 17182189]
[176]
Frutos, S.; Tarrago, T.; Giralt, E. A fast and robust 19F NMR-based method for finding new HIV-1 protease inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(10), 2677-2681.
[http://dx.doi.org/10.1016/j.bmcl.2006.02.031] [PMID: 16517158]
[177]
Kitamura, K.; Kume, M.; Yamamoto, M.; Takegami, S.; Kitade, T. 19F NMR spectroscopic study on the binding of triflupromazine to bovine and human serum albumins. J. Pharm. Biomed. Anal., 2004, 36(2), 411-414.
[http://dx.doi.org/10.1016/j.jpba.2004.06.027] [PMID: 15496337]
[178]
Shikii, K.; Sakurai, S.; Utsumi, H.; Seki, H.; Tashiro, M. Application of the 19F NMR technique to observe binding of the general anesthetic halothane to human serum albumin. Anal. Sci., 2004, 20(10), 1475-1477.
[179]
Yu, L.; Hajduk, P.J.; Mack, J.; Olejniczak, E.T. Structural studies of Bcl-xL/ligand complexes using 19F NMR. J. Biomol. NMR, 2006, 34(4), 221-227.
[http://dx.doi.org/10.1007/s10858-006-0005-y] [PMID: 16645812]
[180]
Sun, Z.Y.; Pratt, E.A.; Simplaceanu, V.; Ho, C.A. 19F-NMR study of the equilibrium unfolding of membrane-associated D-lactate dehydrogenase of Escherichia coli. Biochemistry, 1996, 35(51), 16502-16509.
[http://dx.doi.org/10.1021/bi9620619] [PMID: 8987983]
[181]
Jackson, J.C.; Hammill, J.T.; Mehl, R.A. Site-specific incorporation of a (19)F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity. J. Am. Chem. Soc., 2007, 129(5), 1160-1166.
[http://dx.doi.org/10.1021/ja064661t] [PMID: 17263397]
[182]
Hammill, J.T.; Miyake-Stoner, S.; Hazen, J.L.; Jackson, J.C.; Mehl, R.A. Preparation of site-specifically labeled fluorinated proteins for 19F-NMR structural characterization. Nat. Protoc., 2007, 2(10), 2601-2607.
[http://dx.doi.org/10.1038/nprot.2007.379] [PMID: 17948003]
[183]
Leone, M.; Rodriguez-Mias, R.A.; Pellecchia, M. Selective incorporation of 19F-labeled Trp side chains for NMR-spectroscopy-based ligand-protein interaction studies. ChemBioChem, 2003, 4(7), 649-650.
[http://dx.doi.org/10.1002/cbic.200300597] [PMID: 12851935]
[184]
Al-Abdul-Wahid, M.S.; Demill, C.M.; Serwin, M.B.; Prosser, R.S.; Stewart, B.A. Effect of juxtamembrane tryptophans on the immersion depth of Synaptobrevin, an integral vesicle membrane protein. Biochim. Biophys. Acta, 2012, 1818(12), 2994-2999.
[http://dx.doi.org/10.1016/j.bbamem.2012.07.018] [PMID: 22846509]
[185]
Curtis-Marof, R.; Doko, D.; Rowe, M.L.; Richards, K.L.; Williamson, R.A.; Howard, M.J. (19)F NMR spectroscopy monitors ligand binding to recombinantly fluorine-labelled b′x from human protein disulphide isomerase (hPDI) †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4ob00699b Click here for additional data file. Org. Biomol. Chem., 2014, 12(23), 3808-3812.
[186]
Kim, H.W.; Perez, J.A.; Ferguson, S.J.; Campbell, I.D. The specific incorporation of labelled aromatic amino acids into proteins through growth of bacteria in the presence of glyphosate. Application to fluorotryptophan labelling to the H(+)-ATPase of Escherichia coli and NMR studies. FEBS Lett., 1990, 272(1-2), 34-36.
[http://dx.doi.org/10.1016/0014-5793(90)80442-L] [PMID: 2146161]
[187]
Khan, F.; Kuprov, I.; Craggs, T.D.; Hore, P.J.; Jackson, S.E. 19F NMR studies of the native and denatured states of green fluorescent protein. J. Am. Chem. Soc., 2006, 128(33), 10729-10737.
[http://dx.doi.org/10.1021/ja060618u] [PMID: 16910667]
[188]
Kitevski-LeBlanc, J.L.; Evanics, F.; Prosser, R.S. Approaches for the measurement of solvent exposure in proteins by 19F NMR. J. Biomol. NMR, 2009, 45(3), 255-264.
[http://dx.doi.org/10.1007/s10858-009-9359-2] [PMID: 19655092]
[189]
Rule, G.S.; Pratt, E.A.; Simplaceanu, V.; Ho, C. Nuclear magnetic resonance and molecular genetic studies of the membrane-bound D-lactate dehydrogenase of Escherichia coli. Biochemistry, 1987, 26(2), 549-556.
[http://dx.doi.org/10.1021/bi00376a029] [PMID: 3548821]
[190]
Crowley, P.B.; Kyne, C.; Monteith, W.B. Simple and inexpensive incorporation of 19F-tryptophan for protein NMR spectroscopy. Chem. Commun. (Camb.), 2012, 48(86), 10681-10683.
[http://dx.doi.org/10.1039/c2cc35347d] [PMID: 23000821]
[191]
Hammill, J.T.; Miyake-Stoner, S.; Hazen, J.L.; Jackson, J.C.; Mehl, R.A. Preparation of site-specifically labeled fluorinated proteins for 19F-NMR structural characterization. Nat. Protoc., 2007, 2(10), 2601-2607.
[http://dx.doi.org/10.1038/nprot.2007.379] [PMID: 17948003]
[192]
Jackson, J.C.; Hammill, J.T.; Mehl, R.A. Site-specific incorporation of a (19)F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity. J. Am. Chem. Soc., 2007, 129(5), 1160-1166.
[http://dx.doi.org/10.1021/ja064661t] [PMID: 17263397]
[193]
Jones, D.H.; Cellitti, S.E.; Hao, X.; Zhang, Q.; Jahnz, M.; Summerer, D.; Schultz, P.G.; Uno, T.; Geierstanger, B.H. Site-specific labeling of proteins with NMR-active unnatural amino acids. J. Biomol. NMR, 2010, 46(1), 89-100.
[http://dx.doi.org/10.1007/s10858-009-9365-4] [PMID: 19669620]
[194]
Cellitti, S.E.; Jones, D.H.; Lagpacan, L.; Hao, X.; Zhang, Q.; Hu, H.; Brittain, S.M.; Brinker, A.; Caldwell, J.; Bursulaya, B.; Spraggon, G.; Brock, A.; Ryu, Y.; Uno, T.; Schultz, P.G.; Geierstanger, B.H. In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc., 2008, 130(29), 9268-9281.
[http://dx.doi.org/10.1021/ja801602q] [PMID: 18576636]
[195]
Shi, P.; Li, D.; Chen, H.; Xiong, Y.; Wang, Y.; Tian, C. In situ 19F NMR studies of an E. coli membrane protein. Protein Sci., 2012, 21(4), 596-600.
[196]
Afonin, S.; Glaser, R.W.; Berditchevskaia, M.; Wadhwani, P.; Gührs, K.H.; Möllmann, U.; Perner, A.; Ulrich, A.S. 4-fluorophenylglycine as a label for 19F NMR structure analysis of membrane-associated peptides. ChemBioChem, 2003, 4(11), 1151-1163.
[http://dx.doi.org/10.1002/cbic.200300568] [PMID: 14613106]
[197]
Hattori, Y.; Heidenreich, D.; Ono, Y.; Sugiki, T.; Yokoyama, K.I.; Suzuki, E.I.; Fujiwara, T.; Kojima, C. Protein 19F-labeling using transglutaminase for the NMR study of intermolecular interactions. J. Biomol. NMR, 2017, 68(4), 271-279.
[http://dx.doi.org/10.1007/s10858-017-0125-6] [PMID: 28756478]
[198]
Booth, P.J. The trials and tribulations of membrane protein folding in vitro. Biochimica et Biophysica Acta (BBA) -. Biomembranes, 2003, 1610(1), 51-56.
[http://dx.doi.org/10.1016/S0005-2736(02)00714-9]
[199]
Liang, B.; Tamm, L.K. NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nat. Struct. Mol. Biol., 2016, 23(6), 468-474.
[http://dx.doi.org/10.1038/nsmb.3226] [PMID: 27273629]
[200]
Horst, R.; Liu, J.J.; Stevens, R.C.; Wüthrich, K. β2-adrenergic receptor activation by agonists studied with 19F NMR spectroscopy. Angew. Chem. Int. Ed. Engl., 2013, 52(41), 10762-10765.
[http://dx.doi.org/10.1002/anie.201305286] [PMID: 23956158]
[201]
Kitevski-LeBlanc, J.L.; Al-Abdul-Wahid, M.S.; Prosser, R.S. A mutagenesis-free approach to assignment of (19)F NMR resonances in biosynthetically labeled proteins. J. Am. Chem. Soc., 2009, 131(6), 2054-2055.
[http://dx.doi.org/10.1021/ja8085752] [PMID: 19173647]
[202]
Anderluh, G.; Razpotnik, A.; Podlesek, Z.; Maček, P.; Separovic, F.; Norton, R.S. Interaction of the eukaryotic pore-forming cytolysin equinatoxin II with model membranes: 19F NMR studies. J. Mol. Biol., 2005, 347(1), 27-39.
[http://dx.doi.org/10.1016/j.jmb.2004.12.058] [PMID: 15733915]
[203]
Gee, C.T.; Arntson, K.E.; Urick, A.K.; Mishra, N.K.; Hawk, L.M.L.; Wisniewski, A.J.; Pomerantz, W.C.K. Protein-observed (19)F-NMR for fragment screening, affinity quantification and druggability assessment. Nat. Protoc., 2016, 11(8), 1414-1427.
[http://dx.doi.org/10.1038/nprot.2016.079] [PMID: 27414758]
[204]
Michurin, O.M.; Afonin, S.; Berditsch, M.; Daniliuc, C.G.; Ulrich, A.S.; Komarov, I.V.; Radchenko, D.S. Delivering Structural Information on the Polar Face of Membrane‐Active Peptides: 19F‐NMR Labels with a Cationic Side Chain. Angew. Chem., 2016, 128(47), 14815-14819.
[http://dx.doi.org/10.1002/ange.201607161]
[205]
Larda, S.T.; Pichugin, D.; Prosser, R.S. Site-Specific Labeling of Protein Lysine Residues and N-Terminal Amino Groups with Indoles and Indole-Derivatives. Bioconjug. Chem., 2015, 26(12), 2376-2383.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00457] [PMID: 26587689]
[206]
Liu, J.J.; Horst, R.; Katritch, V.; Stevens, R.C.; Wüthrich, K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science, 2012, 335(6072), 1106-1110.
[http://dx.doi.org/10.1126/science.1215802] [PMID: 22267580]
[207]
Danielson, M.A.; Falke, J.J. Use of 19F NMR to probe protein structure and conformational changes. Annu. Rev. Biophys. Biomol. Struct., 1996, 25, 163-195.
[http://dx.doi.org/10.1146/annurev.bb.25.060196.001115] [PMID: 8800468]
[208]
Marsh, E.N.G.; Suzuki, Y. Using (19)F NMR to probe biological interactions of proteins and peptides. ACS Chem. Biol., 2014, 9(6), 1242-1250.
[http://dx.doi.org/10.1021/cb500111u] [PMID: 24762032]
[209]
Cobb, S.L.; Murphy, C.D. 19F NMR applications in chemical biology. J. Fluor. Chem., 2009, 130(2), 132-143.
[http://dx.doi.org/10.1016/j.jfluchem.2008.11.003]
[210]
Zhu, L.; Yang, J.; Li, H.; Sun, H.; Liu, J.; Wang, J. Conformational change study of dengue virus NS2B-NS3 protease using 19F NMR spectroscopy. Biochem. Biophys. Res. Commun., 2015, 461(4), 677-680.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.090] [PMID: 25918021]
[211]
Ye, L.; Van Eps, N.; Zimmer, M.; Ernst, O.P.; Prosser, R.S. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature, 2016, 533(7602), 265-268.
[http://dx.doi.org/10.1038/nature17668] [PMID: 27144352]
[212]
Shimba, N.; Yamada, N.; Yokoyama, K.; Suzuki, E. Enzymatic labeling of arbitrary proteins. Anal. Biochem., 2002, 301(1), 123-127.
[http://dx.doi.org/10.1006/abio.2001.5485] [PMID: 11811976]
[213]
O’Hagan, D.; Schaffrath, C.; Cobb, S.L.; Hamilton, J.T.; Murphy, C.D. Biochemistry: biosynthesis of an organofluorine molecule. Nature, 2002, 416(6878), 279.
[http://dx.doi.org/10.1038/416279a] [PMID: 11907567]
[214]
Reddy, V.P. In Organofluorine Compounds in Biology and Medicine; Elsevier: Amsterdam, 2015, pp. 1-27.
[215]
Bauer, M.R.; Jones, R.N.; Baud, M.G.J.; Wilcken, R.; Boeckler, F.M.; Fersht, A.R.; Joerger, A.C.; Spencer, J. Harnessing Fluorine-Sulfur Contacts and Multipolar Interactions for the Design of p53 Mutant Y220C Rescue Drugs. ACS Chem. Biol., 2016, 11(8), 2265-2274.
[http://dx.doi.org/10.1021/acschembio.6b00315] [PMID: 27267810]
[216]
Swallow, S. Progress in Medicinal Chemistry; Lawton, G; Witty, D.R., Ed.; Elsevier, 2015, Vol. 54, pp. 65-133.
[217]
Böhm, H.J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. Fluorine in medicinal chemistry. ChemBioChem, 2004, 5(5), 637-643.
[http://dx.doi.org/10.1002/cbic.200301023] [PMID: 15122635]
[218]
Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev., 2008, 37(2), 320-330.
[http://dx.doi.org/10.1039/B610213C] [PMID: 18197348]
[219]
Dalvit, C.; Fagerness, P.E.; Hadden, D.T.A.; Sarver, R.W.; Stockman, B.J. Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. J. Am. Chem. Soc., 2003, 125(25), 7696-7703.
[http://dx.doi.org/10.1021/ja034646d] [PMID: 12812511]
[220]
Tengel, T.; Fex, T.; Emtenas, H.; Almqvist, F.; Sethson, I.; Kihlberg, J. Use of 19F NMR spectroscopy to screen chemical libraries for ligands that bind to proteins. Org. Biomol. Chem., 2004, 2(5), 725-731.
[http://dx.doi.org/10.1039/B313166A] [PMID: 14985813]
[221]
Jahnke, W.; Floersheim, P.; Ostermeier, C.; Zhang, X.; Hemmig, R.; Hurth, K.; Uzunov, D.P. NMR reporter screening for the detection of high-affinity ligands. Angew. Chem. Int. Ed. Engl., 2002, 41(18), 3420-3423.
[http://dx.doi.org/10.1002/1521-3773(20020916)41:18<3420:AID-ANIE3420>3.0.CO;2-E] [PMID: 12298051]
[222]
Siriwardena, A.H.; Tian, F.; Noble, S.; Prestegard, J.H. A straightforward NMR-spectroscopy-based method for rapid library screening. Angew. Chem. Int. Ed. Engl., 2002, 41(18), 3454-3457.
[http://dx.doi.org/10.1002/1521-3773(20020916)41:18<3454:AID-ANIE3454>3.0.CO;2-L] [PMID: 12298062]
[223]
Page, R.; Peti, W.; Wilson, I.A.; Stevens, R.C.; Wüthrich, K. NMR screening and crystal quality of bacterially expressed prokaryotic and eukaryotic proteins in a structural genomics pipeline. Proc. Natl. Acad. Sci. USA, 2005, 102(6), 1901-1905.
[http://dx.doi.org/10.1073/pnas.0408490102] [PMID: 15677718]
[224]
Yoon, H.R.; Kang, C.B.; Chia, J.; Tang, K.; Yoon, H.S. Expression, purification, and molecular characterization of Plasmodium falciparum FK506-binding protein 35 (PfFKBP35). Protein Expr. Purif., 2007, 53(1), 179-185.
[http://dx.doi.org/10.1016/j.pep.2006.12.019] [PMID: 17289400]
[225]
Li, Y.; Wong, Y.L.; Ng, F.M.; Liu, B.; Wong, Y.X.; Poh, Z.Y.; Then, S.W.; Lee, M.Y.; Ng, H.Q.; Hung, A.W.; Cherian, J.; Hill, J.; Keller, T.H.; Kang, C. Characterization of the interaction between Escherichia coli topoisomerase IV E subunit and an ATP competitive inhibitor. Biochem. Biophys. Res. Commun., 2015, 467(4), 961-966.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.036] [PMID: 26471301]
[226]
Dalvit, C.; Flocco, M.; Knapp, S.; Mostardini, M.; Perego, R.; Stockman, B.J.; Veronesi, M.; Varasi, M. High-throughput NMR-based screening with competition binding experiments. J. Am. Chem. Soc., 2002, 124(26), 7702-7709.
[http://dx.doi.org/10.1021/ja020174b] [PMID: 12083923]
[227]
Hopkins, A.L.; Groom, C.R.; Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today, 2004, 9(10), 430-431.
[http://dx.doi.org/10.1016/S1359-6446(04)03069-7] [PMID: 15109945]
[228]
Fejzo, J.; Lepre, C.; Xie, X. Application of NMR screening in drug discovery. Curr. Top. Med. Chem., 2003, 3(1), 81-97.
[http://dx.doi.org/10.2174/1568026033392796] [PMID: 12570779]
[229]
Mayer, M.; Meyer, B. Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy. Angew. Chem. Int. Ed. Engl., 1999, 38(12), 1784-1788.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1784:AID-ANIE1784>3.0.CO;2-Q] [PMID: 29711196]
[230]
Meyer, B.; Peters, T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. Engl., 2003, 42(8), 864-890.
[http://dx.doi.org/10.1002/anie.200390233] [PMID: 12596167]
[231]
Basarab, G.S.; Manchester, J.I.; Bist, S.; Boriack-Sjodin, P.A.; Dangel, B.; Illingworth, R.; Sherer, B.A.; Sriram, S.; Uria-Nickelsen, M.; Eakin, A.E. Fragment-to-hit-to-lead discovery of a novel pyridylurea scaffold of ATP competitive dual targeting type II topoisomerase inhibiting antibacterial agents. J. Med. Chem., 2013, 56(21), 8712-8735.
[http://dx.doi.org/10.1021/jm401208b] [PMID: 24098982]
[232]
Li, Y.; Wong, Y.X.; Poh, Z.Y.; Wong, Y.L.; Lee, M.Y.; Ng, H.Q.; Liu, B.; Hung, A.W.; Cherian, J.; Hill, J.; Keller, T.H.; Kang, C. NMR structural characterization of the N-terminal active domain of the gyrase B subunit from Pseudomonas aeruginosa and its complex with an inhibitor. FEBS Lett., 2015, 589(19 Pt B), 2683-2689.
[http://dx.doi.org/10.1016/j.febslet.2015.07.044] [PMID: 26272827]
[233]
Kang, C.; Li, Y.; Cherian, J.; Liu, B.; Ng, H.Q.; Lee, M.Y.; Binte Ahmad, N.H.; Poh, Z.Y.; Wong, Y.X.; Huang, Q.; Wong, Y.L.; Hung, A.W.; Hill, J.; Keller, T.H. Biophysical Studies of Bacterial Topoisomerases Substantiate Their Binding Modes to an Inhibitor. Biophys. J., 2015, 109(9), 1969-1977.
[http://dx.doi.org/10.1016/j.bpj.2015.10.001] [PMID: 26536273]
[234]
Cao, X.; Li, Y.; Jin, X.; Li, Y.; Guo, F.; Jin, T. Molecular mechanism of divalent-metal-induced activation of NS3 helicase and insights into Zika virus inhibitor design. Nucleic Acids Res., 2016, 44(21), 10505-10514.
[http://dx.doi.org/10.1093/nar/gkw941] [PMID: 27915293]
[235]
Li, Y.; Wong, Y.L.; Ng, F.M.; Liu, B.; Wong, Y.X.; Poh, Z.Y.; Liu, S.; Then, S.W.; Lee, M.Y.; Ng, H.Q.; Huang, Q.; Hung, A.W.; Cherian, J.; Hill, J.; Keller, T.H.; Kang, C. Escherichia coli topoisomerase IV E subunit and an inhibitor binding mode revealed by NMR spectroscopy. J. Biol. Chem., 2016, 291(34), 17743-17753.
[http://dx.doi.org/10.1074/jbc.M116.737429] [PMID: 27365392]
[236]
Chen, G-Y.; Ng, F.M.; Tan, Y.W.; Poulsen, A.; Seetoh, W.; Lin, G.; Kang, C.; Then, S.W.; Ahmad, N.H.; Wong, Y.L.; Ng, H.Q.; Chia, C.S.B.; Lau, Q.Y.; Hill, J.; Hung, A.W.; Keller, T.H. Application of Fragment-Based Drug Discovery against DNA Gyrase B. ChemPlusChem, 2015, 80(8), 1250-1254.
[http://dx.doi.org/10.1002/cplu.201500197]
[237]
Kang, C.; Keller, T.H.; Luo, D. Zika Virus Protease: An Antiviral Drug Target. Trends Microbiol., 2017, 25(10), 797-808.
[http://dx.doi.org/10.1016/j.tim.2017.07.001] [PMID: 28789826]
[238]
Li, Y.; Zhang, Z.; Phoo, W.W.; Loh, Y.R.; Wang, W.; Liu, S.; Chen, M.W.; Hung, A.W.; Keller, T.H.; Luo, D.; Kang, C. Structural Dynamics of Zika Virus NS2B-NS3 Protease Binding to Dipeptide Inhibitors. Structure 25, (8), 1242-1250.2017, e1243
[http://dx.doi.org/10.1016/j.str.2017.06.006]
[239]
Zhang, Z.; Li, Y.; Loh, Y.R.; Phoo, W.W.; Hung, A.W.; Kang, C.; Luo, D. Crystal structure of unlinked NS2B-NS3 protease from Zika virus. Science, 2016, 354(6319), 1597-1600.
[http://dx.doi.org/10.1126/science.aai9309] [PMID: 27940580]
[240]
Polier, S.; Samant, R.S.; Clarke, P.A.; Workman, P.; Prodromou, C.; Pearl, L.H. ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system. Nat. Chem. Biol., 2013, 9(5), 307-312.
[http://dx.doi.org/10.1038/nchembio.1212] [PMID: 23502424]
[241]
Garcia Fortanet, J.; Chen, C.H.; Chen, Y.N.; Chen, Z.; Deng, Z.; Firestone, B.; Fekkes, P.; Fodor, M.; Fortin, P.D.; Fridrich, C.; Grunenfelder, D.; Ho, S.; Kang, Z.B.; Karki, R.; Kato, M.; Keen, N.; LaBonte, L.R.; Larrow, J.; Lenoir, F.; Liu, G.; Liu, S.; Lombardo, F.; Majumdar, D.; Meyer, M.J.; Palermo, M.; Perez, L.; Pu, M.; Ramsey, T.; Sellers, W.R.; Shultz, M.D.; Stams, T.; Towler, C.; Wang, P.; Williams, S.L.; Zhang, J.H.; LaMarche, M.J. Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor. J. Med. Chem., 2016, 59(17), 7773-7782.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00680] [PMID: 27347692]
[242]
Chen, Y.N.; LaMarche, M.J.; Chan, H.M.; Fekkes, P.; Garcia-Fortanet, J.; Acker, M.G.; Antonakos, B.; Chen, C.H.; Chen, Z.; Cooke, V.G.; Dobson, J.R.; Deng, Z.; Fei, F.; Firestone, B.; Fodor, M.; Fridrich, C.; Gao, H.; Grunenfelder, D.; Hao, H.X.; Jacob, J.; Ho, S.; Hsiao, K.; Kang, Z.B.; Karki, R.; Kato, M.; Larrow, J.; La Bonte, L.R.; Lenoir, F.; Liu, G.; Liu, S.; Majumdar, D.; Meyer, M.J.; Palermo, M.; Perez, L.; Pu, M.; Price, E.; Quinn, C.; Shakya, S.; Shultz, M.D.; Slisz, J.; Venkatesan, K.; Wang, P.; Warmuth, M.; Williams, S.; Yang, G.; Yuan, J.; Zhang, J.H.; Zhu, P.; Ramsey, T.; Keen, N.J.; Sellers, W.R.; Stams, T.; Fortin, P.D. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature, 2016, 535(7610), 148-152.
[http://dx.doi.org/10.1038/nature18621] [PMID: 27362227]
[243]
Blevins, M.A.; Towers, C.G.; Patrick, A.N.; Zhao, R.; Ford, H.L. The SIX1-EYA transcriptional complex as a therapeutic target in cancer. Expert Opin. Ther. Targets, 2015, 19(2), 213-225.
[http://dx.doi.org/10.1517/14728222.2014.978860] [PMID: 25555392]
[244]
Krueger, A.B.; Drasin, D.J.; Lea, W.A.; Patrick, A.N.; Patnaik, S.; Backos, D.S.; Matheson, C.J.; Hu, X.; Barnaeva, E.; Holliday, M.J.; Blevins, M.A.; Robin, T.P.; Eisenmesser, E.Z.; Ferrer, M.; Simeonov, A.; Southall, N.; Reigan, P.; Marugan, J.; Ford, H.L.; Zhao, R. Allosteric inhibitors of the Eya2 phosphatase are selective and inhibit Eya2-mediated cell migration. J. Biol. Chem., 2014, 289(23), 16349-16361.
[http://dx.doi.org/10.1074/jbc.M114.566729] [PMID: 24755226]
[245]
Skora, L.; Jahnke, W. 19F-NMR-Based Dual-Site Reporter Assay for the Discovery and Distinction of Catalytic and Allosteric Kinase Inhibitors. ACS Med. Chem. Lett., 2017, 8(6), 632-635.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00084] [PMID: 28626524]
[246]
Erlanson, D.A.; Fesik, S.W.; Hubbard, R.E.; Jahnke, W.; Jhoti, H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discov., 2016, 15(9), 605-619.
[http://dx.doi.org/10.1038/nrd.2016.109] [PMID: 27417849]
[247]
Hajduk, P.J.; Huth, J.R.; Fesik, S.W. Druggability indices for protein targets derived from NMR-based screening data. J. Med. Chem., 2005, 48(7), 2518-2525.
[http://dx.doi.org/10.1021/jm049131r] [PMID: 15801841]
[248]
Congreve, M.; Chessari, G.; Tisi, D.; Woodhead, A.J. Recent developments in fragment-based drug discovery. J. Med. Chem., 2008, 51(13), 3661-3680.
[http://dx.doi.org/10.1021/jm8000373] [PMID: 18457385]
[249]
Valkov, E.; Sharpe, T.; Marsh, M.; Greive, S.; Hyvönen, M. Targeting protein-protein interactions and fragment-based drug discovery. Top. Curr. Chem., 2012, 317, 145-179.
[http://dx.doi.org/10.1007/128_2011_265] [PMID: 22006238]
[250]
Haselhorst, T.; Blanchard, H.; Frank, M.; Kraschnefski, M.J.; Kiefel, M.J.; Szyczew, A.J.; Dyason, J.C.; Fleming, F.; Holloway, G.; Coulson, B.S.; von Itzstein, M. STD NMR spectroscopy and molecular modeling investigation of the binding of N-acetylneuraminic acid derivatives to rhesus rotavirus VP8* core. Glycobiology, 2007, 17(1), 68-81.
[http://dx.doi.org/10.1093/glycob/cwl051] [PMID: 16973731]
[251]
Wang, Y.S.; Liu, D.; Wyss, D.F.; Competition, S.T.D. NMR for the detection of high-affinity ligands and NMR-based screening. Magnetic resonance in chemistry. MRC, 2004, 42(6), 485-489.
[PMID: 15137040]
[252]
Angulo, J.; Enríquez-Navas, P.M.; Nieto, P.M. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates. Chemistry, 2010, 16(26), 7803-7812.
[http://dx.doi.org/10.1002/chem.200903528] [PMID: 20496354]
[253]
Norton, R.S.; Leung, E.W.; Chandrashekaran, I.R.; MacRaild, C.A. Applications of (19)F-NMR in Fragment-Based Drug Discovery. Molecules, 2016, 21(7), 860.
[http://dx.doi.org/10.3390/molecules21070860] [PMID: 27438818]
[254]
Gee, C.T.; Arntson, K.E.; Urick, A.K.; Mishra, N.K.; Hawk, L.M.L.; Wisniewski, A.J.; Pomerantz, W.C.K. Protein-observed (19)F-NMR for fragment screening, affinity quantification and druggability assessment. Nat. Protoc., 2016, 11(8), 1414-1427.
[http://dx.doi.org/10.1038/nprot.2016.079] [PMID: 27414758]
[255]
Mello, J.D.F.R.E.; Gomes, R.A.; Vital-Fujii, D.G.; Ferreira, G.M.; Trossini, G.H.G. Fragment-based drug discovery as alternative strategy to the drug development for neglected diseases. Chem. Biol. Drug Des., 2017, 90(6), 1067-1078.
[http://dx.doi.org/10.1111/cbdd.13030] [PMID: 28547936]
[256]
Zartler, E.R.; Mo, H. Practical aspects of NMR-based fragment discovery. Curr. Top. Med. Chem., 2007, 7(16), 1592-1599.
[http://dx.doi.org/10.2174/156802607782341055] [PMID: 17979770]
[257]
Huth, J.R.; Sun, C.; Sauer, D.R.; Hajduk, P.J. Utilization of NMR-derived fragment leads in drug design. Methods Enzymol., 2005, 394, 549-571.
[http://dx.doi.org/10.1016/S0076-6879(05)94023-8] [PMID: 15808237]
[258]
Hammann, C.; Norman, D.G.; Lilley, D.M. Dissection of the ion-induced folding of the hammerhead ribozyme using 19F NMR. Proc. Natl. Acad. Sci. USA, 2001, 98(10), 5503-5508.
[http://dx.doi.org/10.1073/pnas.091097498] [PMID: 11331743]
[259]
Rydzik, A.M.; Brem, J.; van Berkel, S.S.; Pfeffer, I.; Makena, A.; Claridge, T.D.; Schofield, C.J. Monitoring conformational changes in the NDM-1 metallo-β-lactamase by 19F NMR spectroscopy. Angew. Chem. Int. Ed. Engl., 2014, 53(12), 3129-3133.
[http://dx.doi.org/10.1002/anie.201310866] [PMID: 24615874]
[260]
Peng, L.X.; Liu, X.H.; Lu, B.; Liao, S.M.; Zhou, F.; Huang, J.M.; Chen, D.; Troy, F.A., II; Zhou, G.P.; Huang, R.B. The Inhibition of Polysialyltranseferase ST8SiaIV Through Heparin Binding to Polysialyltransferase Domain (PSTD). Med. Chem., 2019, 15(5), 486-495.
[http://dx.doi.org/10.2174/1573406415666181218101623] [PMID: 30569872]
[261]
Hennig, M.; Munzarová, M.L.; Bermel, W.; Scott, L.G.; Sklenář, V.; Williamson, J.R. Measurement of long-range 1H-19F scalar coupling constants and their glycosidic torsion dependence in 5-fluoropyrimidine-substituted RNA. J. Am. Chem. Soc., 2006, 128(17), 5851-5858.
[http://dx.doi.org/10.1021/ja060165t] [PMID: 16637654]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy