Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

New Promises to Cure Cancer and Other Genetic Diseases/Disorders: Epi-drugs Through Epigenetics

Author(s): Yong-Tao Duan, Chetan B. Sangani*, Wei Liu, Kunjal V. Soni and Yongfang Yao*

Volume 19, Issue 12, 2019

Page: [972 - 994] Pages: 23

DOI: 10.2174/1568026619666190603094439

Price: $65

Abstract

All the heritable alterations in gene expression and chromatin structure due to chemical modifications that do not involve changes in the primary gene nucleotide sequence are referred to as epigenetics. DNA methylation, histone modifications, and non-coding RNAs are distinct types of epigenetic inheritance. Epigenetic patterns have been linked to the developmental stages, environmental exposure, and diet. Therapeutic strategies are now being developed to target human diseases such as cancer with mutations in epigenetic regulatory genes using specific inhibitors. Within the past two decades, seven epigenetic drugs have received regulatory approval and many others show their candidature in clinical trials. The current article represents a review of epigenetic heritance, diseases connected with epigenetic alterations and regulatory approved epigenetic drugs as future medicines.

Keywords: Cancer, Genetic diseases, Epigenetics, DNA methylation, Histone modifications, Non-coding RNAs, Epi-drug.

« Previous
Graphical Abstract

[1]
Uetake, Y.; Sluder, G. Cell-cycle progression without an intact microtuble cytoskeleton. Curr. Biol., 2007, 17(23), 2081-2086. [http://dx.doi.org/10.1016/j.cub.2007.10.065]. [PMID: 18060787].
[2]
Fazeli, Z.; Abedindo, A.; Omrani, M.D.; Ghaderian, S.M.H. Mesenchymal stem cells (MSCs) therapy for recovery of fertility: A systematic review. Stem Cell Rev., 2018, 14(1), 1-12. [http://dx.doi.org/10.1007/s12015-017-9765-x]. [PMID: 28884412].
[3]
Schuettengruber, B.; Chourrout, D.; Vervoort, M.; Leblanc, B.; Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell, 2007, 128(4), 735-745. [http://dx.doi.org/10.1016/j.cell.2007.02.009]. [PMID: 17320510].
[4]
Zhou, C.; Ji, J.; Shi, M.; Yang, L.; Yu, Y.; Liu, B.; Zhu, Z.; Zhang, J. Suberoylanilide hydroxamic acid enhances the antitumor activity of oxaliplatin by reversing the oxaliplatin induced Src activation in gastric cancer cells. Mol. Med. Rep., 2014, 10(5), 2729-2735. [http://dx.doi.org/10.3892/mmr.2014.2548]. [PMID: 25199623].
[5]
Borisy, G.; Heald, R.; Howard, J.; Janke, C.; Musacchio, A.; Nogales, E. Microtubules: 50 years on from the discovery of tubulin. Nat. Rev. Mol. Cell Biol., 2016, 17(5), 322-328. [http://dx.doi.org/10.1038/nrm.2016.45]. [PMID: 27103327].
[6]
Greene, L.M.; Meegan, M.J.; Zisterer, D.M. Combretastatins: more than just vascular targeting agents? J. Pharmacol. Exp. Ther., 2015, 355(2), 212-227. [http://dx.doi.org/10.1124/jpet.115.226225]. [PMID: 26354991].
[7]
Marquez-Curtis, L.A.; Janowska-Wieczorek, A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. BioMed Res. Int., 2013, 2013, 561098-561098. [http://dx.doi.org/10.1155/2013/561098]. [PMID: 24381939].
[8]
Wong, R.S.Y.; Cheong, S-K. Role of mesenchymal stem cells in leukaemia: Dr. Jekyll or Mr. Hyde? Clin. Exp. Med., 2014, 14(3), 235-248. [http://dx.doi.org/10.1007/s10238-013-0247-4]. [PMID: 23794030].
[9]
Wang, W.; Bochtler, T.; Wuchter, P.; Manta, L.; He, H.; Eckstein, V.; Ho, A.D.; Lutz, C. Mesenchymal stromal cells contribute to quiescence of therapy-resistant leukemic cells in acute myeloid leukemia. Eur. J. Haematol., 2017, 99(5), 392-398. [http://dx.doi.org/10.1111/ejh.12934]. [PMID: 28800175].
[10]
Rubio, S.; Quintana, J.; Eiroa, J.L.; Triana, J.; Estévez, F. Betuletol 3-methyl ether induces G(2)-M phase arrest and activates the sphingomyelin and MAPK pathways in human leukemia cells. Mol. Carcinog., 2010, 49(1), 32-43. [PMID: 19676104].
[11]
Checchi, P.M.; Nettles, J.H.; Zhou, J.; Snyder, J.P.; Joshi, H.C. Microtubule-interacting drugs for cancer treatment. Trends Pharmacol. Sci., 2003, 24(7), 361-365. [http://dx.doi.org/10.1016/S0165-6147(03)00161-5]. [PMID: 12871669].
[12]
La Regina, G.; Bai, R.; Coluccia, A.; Famiglini, V.; Passacantilli, S.; Naccarato, V.; Ortar, G.; Mazzoccoli, C.; Ruggieri, V.; Agriesti, F.; Piccoli, C.; Tataranni, T.; Nalli, M.; Brancale, A.; Vultaggio, S.; Mercurio, C.; Varasi, M.; Saponaro, C.; Sergio, S.; Maffia, M.; Coluccia, A.M.L.; Hamel, E.; Silvestri, R. 3-Aroyl-1,4-diarylpyrroles inhibit chronic myeloid leukemia cell growth through an interaction with tubulin. ACS Med. Chem. Lett., 2017, 8(5), 521-526. [http://dx.doi.org/10.1021/acsmedchemlett.7b00022]. [PMID: 28523104].
[13]
W.-C.;Chao, M.-W.; Cheng, C.-C.; Wei, Y.-C.; Wu, Y.-W.; Liou, J.-P.; Hsiao, G.; Lee, Y.-C.; Yang, C.-R. Anti-leukemia effects of the novel synthetic 1-benzylindole derivative 21-900 in vitro and in vivo. Sci. Rep., 2017, 7, 42291. [DOI: 10.1038/srep42291].
[14]
Magalhães, H.I.F.; Wilke, D.V.; Bezerra, D.P.; Cavalcanti, B.C.; Rotta, R.; de Lima, D.P.; Beatriz, A.; Moraes, M.O.; Diniz-Filho, J.; Pessoa, C. (4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)-methanone inhibits tubulin polymerization, induces G2/M arrest, and triggers apoptosis in human leukemia HL-60 cells. Toxicol. Appl. Pharmacol., 2013, 272(1), 117-126. [http://dx.doi.org/10.1016/j.taap.2013.06.001]. [PMID: 23756174].
[15]
Yang, J-S.; Hour, M-J.; Huang, W-W.; Lin, K-L.; Kuo, S-C.; Chung, J-G. MJ-29 inhibits tubulin polymerization, induces mitotic arrest, and triggers apoptosis via cyclin-dependent kinase 1-mediated Bcl-2 phosphorylation in human leukemia U937 cells. J. Pharmacol. Exp. Ther., 2010, 334(2), 477-488. [http://dx.doi.org/10.1124/jpet.109.165415]. [PMID: 20463006].
[16]
Jeyaraju, D.V.; Hurren, R.; Wang, X.; MacLean, N.; Gronda, M.; Shamas-Din, A.; Minden, M.D.; Giaever, G.; Schimmer, A.D. A novel isoflavone, ME-344, targets the cytoskeleton in acute myeloid leukemia. Oncotarget, 2016, 7(31), 49777-49785. [http://dx.doi.org/10.18632/oncotarget.10446]. [PMID: 27391350].
[17]
Bernard, D.; Gebbia, M.; Prabha, S.; Gronda, M.; MacLean, N.; Wang, X.; Hurren, R.; Sukhai, M.A.; Cho, E.E.; Manolson, M.F.; Datti, A.; Wrana, J.; Minden, M.D.; Al-Awar, R.; Aman, A.; Nislow, C.; Giaever, G.; Schimmer, A.D. Select microtubule inhibitors increase lysosome acidity and promote lysosomal disruption in acute myeloid leukemia (AML) cells. Apoptosis, 2015, 20(7), 948-959. [http://dx.doi.org/10.1007/s10495-015-1123-3]. [PMID: 25832785].
[18]
Xi, J.; Zhu, X.; Feng, Y.; Huang, N.; Luo, G.; Mao, Y.; Han, X.; Tian, W.; Wang, G.; Han, X.; Luo, R.; Huang, Z.; An, J. Development of a novel class of tubulin inhibitors with promising anticancer activities. Mol. Cancer Res., 2013, 11(8), 856-864. [http://dx.doi.org/10.1158/1541-7786.MCR-12-0177]. [PMID: 23666368].
[19]
Fang, L.; Shen, L.; Fang, Y.; Hu, Y.; He, Q.; Yang, B. MZ3 can induce G2/M-phase arrest and apoptosis in human leukemia cells. J. Cancer Res. Clin. Oncol., 2008, 134(12), 1337-1345. [http://dx.doi.org/10.1007/s00432-008-0416-0]. [PMID: 18491135].
[20]
Jalily, P.H.; Hadfield, J.A.; Hirst, N.; Rossington, S.B. Novel cyanocombretastatins as potent tubulin polymerisation inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(21), 6731-6734. [http://dx.doi.org/10.1016/j.bmcl.2012.08.089]. [PMID: 23010271].
[21]
Kumar, S.; Mehndiratta, S.; Nepali, K.; Gupta, M.K.; Koul, S.; Sharma, P.R.; Saxena, A.K.; Dhar, K.L. Novel indole-bearing combretastatin analogues as tubulin polymerization inhibitors. Org. Med. Chem. Lett., 2013, 3(1), 3-3. [http://dx.doi.org/10.1186/2191-2858-3-3]. [PMID: 23452433].
[22]
Romagnoli, R.; Baraldi, P.G.; Carrion, M.D.; Cara, C.L.; Casolari, A.; Hamel, E.; Fabbri, E.; Gambari, R. Synthesis and evaluation of haloacetyl, α-bromoacryloyl and nitrooxyacetyl benzo[b]furan and benzo[b]thiophene derivatives as potent antiproliferative agents against leukemia L1210 and K562 cells. Lett. Drug Des. Discov., 2010, 7(7), 476-486. [http://dx.doi.org/10.2174/157018010791526296]. [PMID: 20676361].
[23]
Lee, W.H.; Liu, H.E.; Chang, J-Y.; Liou, J-P.; Huang, H-M. MPT0B169, a new tubulin inhibitor, inhibits cell growth and induces G2/M arrest in nonresistant and paclitaxel-resistant cancer cells. Pharmacology, 2013, 92(1-2), 90-98. [http://dx.doi.org/10.1159/000351852]. [PMID: 23949011].
[24]
Wong, S.M.; Liu, F.H.; Lee, Y.L.; Huang, H.M. MPT0B169, a new antitubulin agent, inhibits Bcr-Abl expression and induces mitochondrion-mediated apoptosis in nonresistant and imatinib-resistant chronic myeloid leukemia cells. PLoS One, 2016, 11(1)e0148093 [http://dx.doi.org/10.1371/journal.pone.0148093]. [PMID: 26815740].
[25]
El Agha, E.; Kramann, R.; Schneider, R.K.; Li, X.; Seeger, W.; Humphreys, B.D.; Bellusci, S. Mesenchymal stem cells in fibrotic disease. Cell Stem Cell, 2017, 21(2), 166-177. [http://dx.doi.org/10.1016/j.stem.2017.07.011]. [PMID: 28777943].
[26]
Kim, S.M.; Woo, J.S.; Jeong, C.H.; Ryu, C.H.; Lim, J.Y.; Jeun, S-S. Effective combination therapy for malignant glioma with TRAIL-secreting mesenchymal stem cells and lipoxygenase inhibitor MK886. Cancer Res., 2012, 72(18), 4807-4817. [http://dx.doi.org/10.1158/0008-5472.CAN-12-0123]. [PMID: 22962275].
[27]
Zhou, H.; Mak, P.Y.; Mu, H.; Mak, D.H.; Zeng, Z.; Cortes, J.; Liu, Q.; Andreeff, M.; Carter, B.Z. Combined inhibition of β-catenin and Bcr-Abl synergistically targets tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo. Leukemia, 2017, 31(10), 2065-2074. [http://dx.doi.org/10.1038/leu.2017.87]. [PMID: 28321124].
[28]
Keating, A. Mesenchymal stromal cells: new directions. Cell Stem Cell, 2012, 10(6), 709-716. [http://dx.doi.org/10.1016/j.stem.2012.05.015]. [PMID: 22704511].
[29]
Man, R-J.; Tang, D-J.; Lu, X-Y.; Duan, Y-T.; Tao, X-X.; Yang, M-R.; Wang, L-L.; Wang, B-Z.; Xu, C.; Zhu, H-L. Synthesis and biological evaluation of novel indole derivatives containing sulfonamide scaffold as potential tubulin inhibitor. MedChemComm, 2016, 7, 1759-1767. [http://dx.doi.org/10.1039/C6MD00255B].
[30]
Moortgat, S.; Lederer, D.; Deprez, M.; Buzatu, M.; Clapuyt, P.; Boulanger, S.; Benoit, V.; Mary, S.; Guichet, A.; Ziegler, A.
Colin, E.; Bonneau, D.; Maystadt, I. Expanding the phenotypic spectrum associated with OPHN1 mutations: Report of 17 individuals with intellectual disability but no cerebellar hypoplasia. Eur. J. Med. Genet., 2018, 61(8), 442-450. [http://dx.doi.org/10.1016/j.ejmg.2018.03.002]. [PMID: 29510240].
[31]
Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute myeloid leukemia. N. Engl. J. Med., 2015, 373(12), 1136-1152. [http://dx.doi.org/10.1056/NEJMra1406184]. [PMID: 26376137].
[32]
Cheong, S.K.; Chin, S.F.; Azizon, O.; Ainoon, O.; Hamidah, N.H. Unexpected epithelial membrane antigen (EMA) and cytokeratin expression in a case of infantile acute monoblastic Leukaemia. Hematology, 1996, 1(3), 223-225. [http://dx.doi.org/10.1080/10245332.1996.11746308]. [PMID: 27406616].
[33]
Díaz-Beyá, M.; Navarro, A.; Ferrer, G.; Díaz, T.; Gel, B.; Camós, M.; Pratcorona, M.; Torrebadell, M.; Rozman, M.; Colomer, D.; Monzo, M.; Esteve, J. Acute myeloid leukemia with translocation (8;16)(p11;p13) and MYST3-CREBBP rearrangement harbors a distinctive microRNA signature targeting RET proto-oncogene. Leukemia, 2013, 27(3), 595-603. [http://dx.doi.org/10.1038/leu.2012.278]. [PMID: 23022987].
[34]
Harris, N.L.; Jaffe, E.S.; Diebold, J.; Flandrin, G.; Muller-Hermelink, H.K.; Vardiman, J.; Lister, T.A.; Bloomfield, C.D. The World Health Organization classification of neoplasms of the hematopoietic and lymphoid tissues: Report of the clinical advisory committee meeting--airlie house, virginia, november, 1997. Hematol. J., 2000, 1(1), 53-66. [http://dx.doi.org/10.1038/sj.thj.6200013]. [PMID: 11920170].
[35]
Daser, A.; Rabbitts, T.H. The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin. Cancer Biol., 2005, 15(3), 175-188. [http://dx.doi.org/10.1016/j.semcancer.2005.01.007]. [PMID: 15826832].
[36]
Tallman, M.S.; Kim, H.T.; Paietta, E.; Bennett, J.M.; Dewald, G.; Cassileth, P.A.; Wiernik, P.H.; Rowe, J.M. Acute monocytic leukemia (French-American-British classification M5) does not have a worse prognosis than other subtypes of acute myeloid leukemia: A report from the eastern cooperative oncology group. J. Clin. Oncol., 2004, 22(7), 1276-1286. [http://dx.doi.org/10.1200/JCO.2004.08.060]. [PMID: 14970186].
[37]
Haferlach, T.; Schoch, C.; Schnittger, S.; Kern, W.; Löffler, H.; Hiddemann, W. Distinct genetic patterns can be identified in acute monoblastic and acute monocytic leukaemia (FAB AML M5a and M5b): A study of 124 patients. Br. J. Haematol., 2002, 118(2), 426-431. [http://dx.doi.org/10.1046/j.1365-2141.2002.03599.x]. [PMID: 12139726].
[38]
Xue, Y.; He, J.; Wang, Y.; Guo, Y.; Xie, X.; He, Y.; Chai, Y.; Ruan, Z. Secondary near-pentaploidy and/or near-tetraploidy characterized by the duplication of 8;21 translocation in the M2 subtype of acute myeloid leukemia. Int. J. Hematol., 2000, 71(4), 359-365. [PMID: 10905056].
[39]
Martinelli, G.; Sartor, C.; Papayannidis, C.; Iacobucci, I.; Paolini, S.; Clissa, C.; Ottaviani, E.; Finelli, C. Molecular biology in myelodysplastic syndromes and acute myeloid leukemias “smoldering”. Recenti Prog. Med., 2014, 105(3), 118-122. [PMID: 24675454].
[40]
Nucifora, G.; Dickstein, J.I.; Torbenson, V.; Roulston, D.; Rowley, J.D.; Vardiman, J.W. Correlation between cell morphology and expression of the AML1/ETO chimeric transcript in patients with acute myeloid leukemia without the t(8;21). Leukemia, 1994, 8(9), 1533-1538. [PMID: 7522291].
[41]
Badros, A.; Burger, A.M.; Philip, S.; Niesvizky, R.; Kolla, S.S.; Goloubeva, O.; Harris, C.; Zwiebel, J.; Wright, J.J.; Espinoza-Delgado, I.; Baer, M.R.; Holleran, J.L.; Egorin, M.J.; Grant, S. Phase I study of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin. Cancer Res., 2009, 15(16), 5250-5257. [http://dx.doi.org/10.1158/1078-0432.CCR-08-2850]. [PMID: 19671864].
[42]
Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004, 428(6979), 198-202. [http://dx.doi.org/10.1038/nature02393]. [PMID: 15014504].
[43]
Yang, L.L.; Li, G.B.; Yan, H.X.; Sun, Q.Z.; Ma, S.; Ji, P.; Wang, Z.R.; Feng, S.; Zou, J.; Yang, S.Y. Discovery of N6-phenyl-1H-pyrazolo[3,4-d]pyrimidine-3,6-diamine derivatives as novel CK1 inhibitors using common-feature pharmacophore model based virtual screening and hit-to-lead optimization. Eur. J. Med. Chem., 2012, 56, 30-38. [http://dx.doi.org/10.1016/j.ejmech.2012.08.007]. [PMID: 22944772].
[44]
Fournel, M.; Bonfils, C.; Hou, Y.; Yan, P.T.; Trachy-Bourget, M.C.; Kalita, A.; Liu, J.; Lu, A.H.; Zhou, N.Z.; Robert, M.F.; Gillespie, J.; Wang, J.J.; Ste-Croix, H.; Rahil, J.; Lefebvre, S.; Moradei, O.; Delorme, D.; Macleod, A.R.; Besterman, J.M.; Li, Z. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol. Cancer Ther., 2008, 7(4), 759-768. [http://dx.doi.org/10.1158/1535-7163.MCT-07-2026]. [PMID: 18413790].
[45]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419. [http://dx.doi.org/10.3945/an.114.008052]. [PMID: 26178025].
[46]
Wang, J.; Hevi, S.; Kurash, J.K.; Lei, H.; Gay, F.; Bajko, J.; Su, H.; Sun, W.; Chang, H.; Xu, G.; Gaudet, F.; Li, E.; Chen, T. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat. Genet., 2009, 41(1), 125-129. [http://dx.doi.org/10.1038/ng.268]. [PMID: 19098913].
[47]
Ledbetter, M.C.; Porter, K.R.A. “Microtubule” in Plant Cell Fine Structure. J. Cell Biol., 1963, 19(1), 239-250. [http://dx.doi.org/10.1083/jcb.19.1.239]. [PMID: 19866635].
[48]
Zhang, R.; Alushin, G.M.; Brown, A.; Nogales, E. Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell, 2015, 162(4), 849-859. [http://dx.doi.org/10.1016/j.cell.2015.07.012]. [PMID: 26234155].
[49]
Tilney, L.G.; Bryan, J.; Bush, D.J.; Fujiwara, K.; Mooseker, M.S.; Murphy, D.B.; Snyder, D.H. Microtubules: Evidence for 13 protofilaments. J. Cell Biol., 1973, 59(2 Pt 1), 267-275. [http://dx.doi.org/10.1083/jcb.59.2.267]. [PMID: 4805001].
[50]
Unger, E.; Böhm, K.J.; Vater, W. Structural diversity and dynamics of microtubules and polymorphic tubulin assemblies. Electron Microsc. Rev., 1990, 3(2), 355-395. [http://dx.doi.org/10.1016/0892-0354(90)90007-F]. [PMID: 2103347].
[51]
Honore, S.; Pasquier, E.; Braguer, D. Understanding microtubule dynamics for improved cancer therapy. Cell. Mol. Life Sci., 2005, 62(24), 3039-3056. [http://dx.doi.org/10.1007/s00018-005-5330-x]. [PMID: 16314924].
[52]
Pellegrini, F.; Budman, D.R. Review: Tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest., 2005, 23(3), 264-273. [http://dx.doi.org/10.1081/CNV-200055970]. [PMID: 15948296].
[53]
Walker, R.A.; O’Brien, E.T.; Pryer, N.K.; Soboeiro, M.F.; Voter, W.A.; Erickson, H.P.; Salmon, E.D. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol., 1988, 107(4), 1437-1448. [http://dx.doi.org/10.1083/jcb.107.4.1437]. [PMID: 3170635].
[54]
Sontag, C.A.; Staley, J.T.; Erickson, H.P. In vitro assembly and GTP hydrolysis by bacterial tubulins BtubA and BtubB. J. Cell Biol., 2005, 169(2), 233-238. [http://dx.doi.org/10.1083/jcb.200410027]. [PMID: 15851515].
[55]
David-Pfeuty, T.; Erickson, H.P.; Pantaloni, D. Guanosinetriphosphatase activity of tubulin associated with microtubule assembly. Proc. Natl. Acad. Sci. USA, 1977, 74(12), 5372-5376. [http://dx.doi.org/10.1073/pnas.74.12.5372]. [PMID: 202954].
[56]
Gerdes, K.; Howard, M.; Szardenings, F. Pushing and pulling in prokaryotic DNA segregation. Cell, 2010, 141(6), 927-942. [http://dx.doi.org/10.1016/j.cell.2010.05.033]. [PMID: 20550930].
[57]
MacNeal, R.K.; Purich, D.L. Stoichiometry and role of GTP hydrolysis in bovine neurotubule assembly. J. Biol. Chem., 1978, 253(13), 4683-4687. [PMID: 659441].
[58]
Matov, A.; Applegate, K.; Kumar, P.; Thoma, C.; Krek, W.; Danuser, G.; Wittmann, T. Analysis of microtubule dynamic instability using a plus-end growth marker. Nat. Methods, 2010, 7(9), 761-768. [http://dx.doi.org/10.1038/nmeth.1493]. [PMID: 20729842].
[59]
Billger, M.A.; Bhattacharjee, G.; Williams, R.C., Jr Dynamic instability of microtubules assembled from microtubule-associated protein-free tubulin: Neither variability of growth and shortening rates nor “rescue” requires microtubule-associated proteins. Biochemistry, 1996, 35(42), 13656-13663. [http://dx.doi.org/10.1021/bi9616965]. [PMID: 8885845].
[60]
Mitchison, T.; Kirschner, M. Dynamic instability of microtubule growth. Nature, 1984, 312(5991), 237-242. [http://dx.doi.org/10.1038/312237a0]. [PMID: 6504138].
[61]
Dhonukshe, P.; Gadella, T.W.J., Jr Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell, 2003, 15(3), 597-611. [http://dx.doi.org/10.1105/tpc.008961]. [PMID: 12615935].
[62]
Mooberry, S.L.; Tien, G.; Hernandez, A.H.; Plubrukarn, A.; Davidson, B.S. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res., 1999, 59(3), 653-660. [PMID: 9973214].
[63]
Jordan, M.A.; Toso, R.J.; Thrower, D.; Wilson, L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. USA, 1993, 90(20), 9552-9556. [http://dx.doi.org/10.1073/pnas.90.20.9552]. [PMID: 8105478].
[64]
Gigant, B.; Wang, C.; Ravelli, R.B.G.; Roussi, F.; Steinmetz, M.O.; Curmi, P.A.; Sobel, A.; Knossow, M. Structural basis for the regulation of tubulin by vinblastine. Nature, 2005, 435(7041), 519-522. [http://dx.doi.org/10.1038/nature03566]. [PMID: 15917812].
[65]
Jordan, M.A.; Margolis, R.L.; Himes, R.H.; Wilson, L. Identification of a distinct class of vinblastine binding sites on microtubules. J. Mol. Biol., 1986, 187(1), 61-73. [http://dx.doi.org/10.1016/0022-2836(86)90406-7]. [PMID: 3959083].
[66]
Mahboobi, S.; Sellmer, A.; Beckers, T. Development of tubulin inhibitors as antimitotic agents for cancer therapy. Bioactive Natural Products, 2006, 33, 719-750.
[67]
Ravelli, R.B.G.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004, 428(6979), 198-202. [http://dx.doi.org/10.1038/nature02393]. [PMID: 15014504].
[68]
Uppuluri, S.; Knipling, L.; Sackett, D.L.; Wolff, J. Localization of the colchicine-binding site of tubulin. Proc. Natl. Acad. Sci. USA, 1993, 90(24), 11598-11602. [http://dx.doi.org/10.1073/pnas.90.24.11598]. [PMID: 8265596].
[69]
Serrano, L.; Avila, J.; Maccioni, R.B. Limited proteolysis of tubulin and the localization of the binding site for colchicine. J. Biol. Chem., 1984, 259(10), 6607-6611. [PMID: 6725263].
[70]
Ekins, S.; Freundlich, J.S.; Coffee, M. A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus. F1000 Res., 2014, 3, 277-277. [http://dx.doi.org/10.12688/f1000research.5741.1]. [PMID: 25653841].
[71]
Jordan, M.A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents, 2002, 2(1), 1-17. [http://dx.doi.org/10.2174/1568011023354290]. [PMID: 12678749].
[72]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265. [http://dx.doi.org/10.1038/nrc1317]. [PMID: 15057285].
[73]
Harrison, M.R.; Holen, K.D.; Liu, G. Beyond taxanes: A review of novel agents that target mitotic tubulin and microtubules, kinases, and kinesins. Clin. Adv. Hematol. Oncol., 2009, 7, 54-64.
[74]
Mickley, L.A.; Rothenberg, M.L.; Hamilton, T.C.; Ozols, R.F.; Fojo, A.T. Expression of a multidrug resistance gene in normal tissue and human-tumors. Proc. Am. Assoc. Cancer Res., 1988, 29, 297-297.
[75]
Fojo, A.T.; Ueda, K.; Slamon, D.J.; Poplack, D.G.; Gottesman, M.M.; Pastan, I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc. Natl. Acad. Sci. USA, 1987, 84(1), 265-269. [http://dx.doi.org/10.1073/pnas.84.1.265]. [PMID: 2432605].
[76]
Li, C.; Yu, D.F.; Newman, R.A.; Cabral, F.; Stephens, L.C.; Hunter, N.; Milas, L.; Wallace, S. Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate. Cancer Res., 1998, 58(11), 2404-2409. [PMID: 9622081].
[77]
Li, C.; Price, J.E.; Milas, L.; Hunter, N.R.; Ke, S.; Yu, D.F.; Charnsangavej, C.; Wallace, S. Antitumor activity of poly(L-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. Clin. Cancer Res., 1999, 5(4), 891-897. [PMID: 10213226].
[78]
O’Brien, M.E.R.; Socinski, M.A.; Popovich, A.Y.; Bondarenko, I.N.; Tomova, A.; Bilynsky, B.T.; Hotko, Y.S.; Ganul, V.L.; Kostinsky, I.Y.; Eisenfeld, A.J.; Sandalic, L.; Oldham, F.B.; Bandstra, B.; Sandler, A.B.; Singer, J.W. Randomized phase III trial comparing single-agent paclitaxel Poliglumex (CT-2103, PPX) with single-agent gemcitabine or vinorelbine for the treatment of PS 2 patients with chemotherapy-naïve advanced non-small cell lung cancer. J. Thorac. Oncol., 2008, 3(7), 728-734. [http://dx.doi.org/10.1097/JTO.0b013e31817c6b68]. [PMID: 18594318].
[79]
Bradley, M.O.; Swindell, C.S.; Anthony, F.H.; Witman, P.A.; Devanesan, P.; Webb, N.L.; Baker, S.D.; Wolff, A.C.; Donehower, R.C. Tumor targeting by conjugation of DHA to paclitaxel. J. Control. Release, 2001, 74(1-3), 233-236. [http://dx.doi.org/10.1016/S0168-3659(01)00321-2]. [PMID: 11489499].
[80]
Yuan, Y.; Lu, X.; Tao, C.L.; Chen, X.; Shao, H.W.; Huang, S.L. Forced expression of indoleamine-2,3-dioxygenase in human umbilical cord-derived mesenchymal stem cells abolishes their anti-apoptotic effect on leukemia cell lines in vitro. In Vitro Cell. Dev. Biol. Anim., 2013, 49(10), 752-758. [http://dx.doi.org/10.1007/s11626-013-9667-4]. [PMID: 23949777].
[81]
Liu, Y.; Song, B.; Wei, Y.; Chen, F.; Chi, Y.; Fan, H.; Liu, N.; Li, Z.; Han, Z.; Ma, F. Exosomes from mesenchymal stromal cells enhance imatinib-induced apoptosis in human leukemia cells via activation of caspase signaling pathway. Cytotherapy, 2018, 20(2), 181-188. [http://dx.doi.org/10.1016/j.jcyt.2017.11.006]. [PMID: 29269240].
[82]
Li, X.; Ling, W.; Pennisi, A.; Wang, Y.; Khan, S.; Heidaran, M.; Pal, A.; Zhang, X.; He, S.; Zeitlin, A.; Abbot, S.; Faleck, H.; Hariri, R.; Shaughnessy, J.D., Jr; van Rhee, F.; Nair, B.; Barlogie, B.; Epstein, J.; Yaccoby, S. Human placenta-derived adherent cells prevent bone loss, stimulate bone formation, and suppress growth of multiple myeloma in bone. Stem Cells, 2011, 29(2), 263-273. [http://dx.doi.org/10.1002/stem.572]. [PMID: 21732484].
[83]
Ginsburg, A.; Shemesh, A.; Millgram, A.; Dharan, R.; Levi-Kalisman, Y.; Ringel, I.; Raviv, U. Structure of Dynamic, Taxol-stabilized, and GMPPCP-stabilized microtubule. J. Phys. Chem. B, 2017, 121(36), 8427-8436. [http://dx.doi.org/10.1021/acs.jpcb.7b01057]. [PMID: 28820593].
[84]
Yang, C.H.; Horwitz, S.B. Taxol®: The first microtubule stabilizing agent. Int. J. Mol. Sci., 2017, 18(8), 18. [http://dx.doi.org/10.3390/ijms18081733]. [PMID: 28792473].
[85]
Sears, J.E.; Boger, D.L. Total synthesis of vinblastine, related natural products, and key analogues and development of inspired methodology suitable for the systematic study of their structure-function properties. Acc. Chem. Res., 2015, 48(3), 653-662. [http://dx.doi.org/10.1021/ar500400w]. [PMID: 25586069].
[86]
Florian, S.; Mitchison, T.J. Anti-Microtubule Drugs. In: Mitotic Spindle: Methods and Protocols; Chang, P.; Ohi, R., Eds.; Humana Press: New York, NY, 2016; Vol. 1413, pp. 403-421. [Publisher name missing] [http://dx.doi.org/10.1007/978-1-4939-3542-0_25]
[87]
Ardalani, H.; Avan, A.; Ghayour-Mobarhan, M. Podophyllotoxin: A novel potential natural anticancer agent. Avicenna J. Phytomed., 2017, 7(4), 285-294. [PMID: 28884079].
[88]
Reddy, V.G.; Bonam, S.R.; Reddy, T.S.; Akunuri, R.; Naidu, V.G.M.; Nayak, V.L.; Bhargava, S.K.; Kumar, H.M.S.; Srihari, P.; Kamal, A. 4β-amidotriazole linked podophyllotoxin congeners: DNA topoisomerase-IIα inhibition and potential anticancer agents for prostate cancer. Eur. J. Med. Chem., 2018, 144, 595-611. [http://dx.doi.org/10.1016/j.ejmech.2017.12.050]. [PMID: 29289884].
[89]
Conforti, A.; Starc, N.; Biagini, S.; Tomao, L.; Pitisci, A.; Algeri, M.; Sirleto, P.; Novelli, A.; Grisendi, G.; Candini, O.; Carella, C.; Dominici, M.; Locatelli, F.; Bernardo, M.E. Resistance to neoplastic transformation of ex-vivo expanded human mesenchymal stromal cells after exposure to supramaximal physical and chemical stress. Oncotarget, 2016, 7(47), 77416-77429. [http://dx.doi.org/10.18632/oncotarget.12678]. [PMID: 27764806].
[90]
Yao, Y-F.; Wang, Z-C.; Wu, S-Y.; Li, Q.F.; Yu, C.; Liang, X-Y.; Lv, P-C.; Duan, Y-T.; Zhu, H-L. Identification of novel 1-indolyl acetate-5-nitroimidazole derivatives of combretastatin A-4 as potential tubulin polymerization inhibitors. Biochem. Pharmacol., 2017, 137, 10-28. [http://dx.doi.org/10.1016/j.bcp.2017.04.026]. [PMID: 28456516].
[91]
Duan, Y.T.; Man, R.J.; Tang, D.J.; Yao, Y.F.; Tao, X.X.; Yu, C.; Liang, X.Y.; Makawana, J.A.; Zou, M.J.; Wang, Z.C.; Zhu, H.L. Design, synthesis and antitumor activity of novel link-bridge and B-Ring modified combretastatin A-4 (CA-4) analogues as potent antitubulin agents. Sci. Rep., 2016, 6, 25387-25399. [http://dx.doi.org/10.1038/srep25387]. [PMID: 27138035].
[92]
Yokoyama, H.; Koch, B.; Walczak, R.; Ciray-Duygu, F.; González-Sánchez, J.C.; Devos, D.P.; Mattaj, I.W.; Gruss, O.J. The nucleoporin MEL-28 promotes RanGTP-dependent γ-tubulin recruitment and microtubule nucleation in mitotic spindle formation. Nat. Commun., 2014, 5, 3270-3278. [http://dx.doi.org/10.1038/ncomms4270]. [PMID: 24509916].
[93]
Barui, A.; Chowdhury, F.; Pandit, A.; Datta, P. Rerouting mesenchymal stem cell trajectory towards epithelial lineage by engineering cellular niche. Biomaterials, 2018, 156, 28-44. [http://dx.doi.org/10.1016/j.biomaterials.2017.11.036]. [PMID: 29190496].
[94]
Li, C-L.; Leng, Y.; Zhao, B.; Gao, C.; Du, F-F.; Jin, N.; Lian, Q-Z.; Xu, S-Y.; Yan, G-L.; Xia, J-J.; Zhuang, G-H.; Fu, Q-L.; Qi, Z-Q. Human iPSC-MSC-derived xenografts modulate immune responses by inhibiting the cleavage of caspases. Stem Cells, 2017, 35(7), 1719-1732. [http://dx.doi.org/10.1002/stem.2638]. [PMID: 28520232].
[95]
Kubben, N.; Zhang, W.; Wang, L.; Voss, T.C.; Yang, J.; Qu, J.; Liu, G-H.; Misteli, T. Repression of the antioxidant NRF2 pathway in premature aging. Cell, 2016, 165(6), 1361-1374. [http://dx.doi.org/10.1016/j.cell.2016.05.017]. [PMID: 27259148].
[96]
Wang, Y.C.; Juric, D.; Francisco, B.; Yu, R.X.; Duran, G.E.; Chen, K.G.; Chen, X.; Sikic, B.I. Regional activation of chromosomal arm 7q with and without gene amplification in taxane-selected human ovarian cancer cell lines. Genes Chromosomes Cancer, 2006, 45(4), 365-374. [http://dx.doi.org/10.1002/gcc.20300]. [PMID: 16382445].
[97]
Horwitz, S.B.; Cohen, D.; Rao, S.; Ringel, I.; Shen, H.J.; Yang, C.P. Taxol: mechanisms of action and resistance. J. Natl. Cancer Inst. Monogr., 1993, 15, 55-61. [PMID: 7912530].
[98]
Horwitz, S.B.; Lothstein, L.; Manfredi, J.J.; Mellado, W.; Parness, J.; Roy, S.N.; Schiff, P.B.; Sorbara, L.; Zeheb, R. Taxol: Mechanisms of action and resistance. Ann. N. Y. Acad. Sci., 1986, 466, 733-744. [http://dx.doi.org/10.1111/j.1749-6632.1986.tb38455.x]. [PMID: 2873780].
[99]
Dumontet, C.; Duran, G.E.; Steger, K.A.; Beketic-Oreskovic, L.; Sikic, B.I. Resistance mechanisms in human sarcoma mutants derived by single-step exposure to paclitaxel (Taxol). Cancer Res., 1996, 56(5), 1091-1097. [PMID: 8640766].
[100]
Tian, Y.; Wang, J.; Wang, W.; Ding, Y.; Sun, Z.; Zhang, Q.; Wang, Y.; Xie, H.; Yan, S.; Zheng, S. Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation. Stem Cell Res. Ther., 2016, 7(1), 157-171. [http://dx.doi.org/10.1186/s13287-016-0416-y]. [PMID: 27788674].
[101]
Wen, X.; Zheng, P.; Ma, Y.; Ou, Y.; Huang, W.; Li, S.; Liu, S.; Zhang, X.; Wang, Z.; Zhang, Q.; Cheng, W.; Lin, R.; Li, H.; Cai, Y.; Hu, C.; Wu, N.; Wan, L.; Pan, T.; Rao, J.; Bei, X.; Wu, W.; Jin, J.; Yan, J.; Liu, G. Salutaxel, a Conjugate of docetaxel and a muramyl dipeptide (mdp) analogue, acts as multifunctional prodrug that inhibits tumor growth and metastasis. J. Med. Chem., 2018, 61(4), 1519-1540. [http://dx.doi.org/10.1021/acs.jmedchem.7b01407]. [PMID: 29357251].
[102]
Ankrum, J.A.; Ong, J.F.; Karp, J.M. Mesenchymal stem cells: Immune evasive, not immune privileged. Nat. Biotechnol., 2014, 32(3), 252-260. [http://dx.doi.org/10.1038/nbt.2816]. [PMID: 24561556].
[103]
Boyerinas, B.; Park, S-M.; Murmann, A.E.; Gwin, K.; Montag, A.G.; Zillhardt, M.; Hua, Y-J.; Lengyel, E.; Peter, M.E. Let-7 modulates acquired resistance of ovarian cancer to Taxanes via IMP-1-mediated stabilization of multidrug resistance 1. Int. J. Cancer, 2012, 130(8), 1787-1797. [http://dx.doi.org/10.1002/ijc.26190]. [PMID: 21618519].
[104]
Vrignaud, P.; Sémiond, D.; Lejeune, P.; Bouchard, H.; Calvet, L.; Combeau, C.; Riou, J-F.; Commerçon, A.; Lavelle, F.; Bissery, M-C. Preclinical antitumor activity of cabazitaxel, a semisynthetic taxane active in taxane-resistant tumors. Clin. Cancer Res., 2013, 19(11), 2973-2983. [http://dx.doi.org/10.1158/1078-0432.CCR-12-3146]. [PMID: 23589177].
[105]
Sémiond, D.; Sidhu, S.S.; Bissery, M.C.; Vrignaud, P. Can taxanes provide benefit in patients with CNS tumors and in pediatric patients with tumors? An update on the preclinical development of cabazitaxel. Cancer Chemother. Pharmacol., 2013, 72(3), 515-528. [http://dx.doi.org/10.1007/s00280-013-2214-x]. [PMID: 23820961].
[106]
Duran, G.E.; Derdau, V.; Weitz, D.; Philippe, N.; Blankenstein, J.; Atzrodt, J.; Sémiond, D.; Gianolio, D.A.; Macé, S.; Sikic, B.I. Cabazitaxel is more active than first-generation taxanes in ABCB1(+) cell lines due to its reduced affinity for P-glycoprotein. Cancer Chemother. Pharmacol., 2018, 81(6), 1095-1103. [http://dx.doi.org/10.1007/s00280-018-3572-1]. [PMID: 29675746].
[107]
Milas, L.; Mason, K.A.; Hunter, N.; Li, C.; Wallace, S. Poly(L-glutamic acid)-paclitaxel conjugate is a potent enhancer of tumor radiocurability. Int. J. Radiat. Oncol. Biol. Phys., 2003, 55(3), 707-712. [http://dx.doi.org/10.1016/S0360-3016(02)04153-6]. [PMID: 12573758].
[108]
Singer, J.W.; Baker, B.; De Vries, P.; Kumar, A.; Shaffer, S.; Vawter, E.; Bolton, M.; Garzone, P. Poly-(L)-glutamic acid-paclitaxel (CT-2103) XYOTAX (TM), a biodegradable polymeric drug conjugate - Characterization, preclinical pharmacology, and preliminary clinical data. In: Polymer Drugs in the Clinical Stage: Advantages and Prospects; Springer: US, 2003; Vol. 519, pp. 81-99.
[109]
Sparreboom, A.; Wolff, A.C.; Verweij, J.; Zabelina, Y.; van Zomeren, D.M.; McIntire, G.L.; Swindell, C.S.; Donehower, R.C.; Baker, S.D. Disposition of docosahexaenoic acid-paclitaxel, a novel taxane, in blood: In vitro and clinical pharmacokinetic studies. Clin. Cancer Res., 2003, 9(1), 151-159. [PMID: 12538463].
[110]
Tabernero, J.; Phase, I. Pharmacokinetic and pharmacodynamic study of weekly 1-Hour and 24-hour infusion BMS-214662, a farnesyltransferase inhibitor, in patients with advanced solid Tumors. J. Clin. Oncol., 2010, 28, 5350-5350. [DOI: 10.1200/JCO.2005.00.398].
[111]
Izquierdo, M.A.; Bowman, A.; García, M.; Jodrell, D.; Martinez, M.; Pardo, B.; Gómez, J.; López-Martin, J.A.; Jimeno, J.; Germá, J.R.; Smyth, J.F. Phase I clinical and pharmacokinetic study of plitidepsin as a 1-hour weekly intravenous infusion in patients with advanced solid tumors. Clin. Cancer Res., 2008, 14(10), 3105-3112. [http://dx.doi.org/10.1158/1078-0432.CCR-07-1652]. [PMID: 18483378].
[112]
Homsi, J.; Bedikian, A.Y.; Papadopoulos, N.E.; Kim, K.B.; Hwu, W-J.; Mahoney, S.L.; Hwu, P. Phase 2 open-label study of weekly docosahexaenoic acid-paclitaxel in patients with metastatic uveal melanoma. Melanoma Res., 2010, 20(6), 507-510. [http://dx.doi.org/10.1097/CMR.0b013e3283403ce9]. [PMID: 20881508].
[113]
Bedikian, A.Y.; DeConti, R.C.; Conry, R.; Agarwala, S.; Papadopoulos, N.; Kim, K.B.; Ernstoff, M. Phase 3 study of docosahexaenoic acid-paclitaxel versus dacarbazine in patients with metastatic malignant melanoma. Ann. Oncol., 2011, 22(4), 787-793. [http://dx.doi.org/10.1093/annonc/mdq438]. [PMID: 20855467].
[114]
Jones, R.J.; Hawkins, R.E.; Eatock, M.M.; Ferry, D.R.; Eskens, F.A.L.M.; Wilke, H.; Evans, T.R.J. A phase II open-label study of DHA-paclitaxel (Taxoprexin) by 2-h intravenous infusion in previously untreated patients with locally advanced or metastatic gastric or oesophageal adenocarcinoma. Cancer Chemother. Pharmacol., 2008, 61(3), 435-441. [http://dx.doi.org/10.1007/s00280-007-0486-8]. [PMID: 17440725].
[115]
Bissery, M-C.; Vrignaud, P.; Combeau, C.; Riou, J-F.; Bouchard, H.; Commercon, A.; Lavelle, F. Preclinical evaluation of XRP9881A, a new taxoid. Proceedings of the American Association for Cancer Research Annual Meeting, 2004, pp. 1253-1253.
[116]
Zatloukal, P.; Gervais, R.; Vansteenkiste, J.; Bosquee, L.; Sessa, C.; Brain, E.; Dansin, E.; Urban, T.; Dohollou, N.; Besenval, M.; Quoix, E. Randomized multicenter phase II study of larotaxel (XRP9881) in combination with cisplatin or gemcitabine as first-line chemotherapy in nonirradiable stage IIIB or stage IV non-small cell lung cancer. J. Thorac. Oncol., 2008, 3(8), 894-901. [http://dx.doi.org/10.1097/JTO.0b013e31817e6669]. [PMID: 18670308].
[117]
Bissery, M.C. Preclinical evaluation of new taxoids. Curr. Pharm. Des., 2001, 7(13), 1251-1257. [http://dx.doi.org/10.2174/1381612013397465]. [PMID: 11472265].
[118]
Diéras, V.; Limentani, S.; Romieu, G.; Tubiana-Hulin, M.; Lortholary, A.; Kaufman, P.; Girre, V.; Besenval, M.; Valero, V. Phase II multicenter study of larotaxel (XRP9881), a novel taxoid, in patients with metastatic breast cancer who previously received taxane-based therapy. Ann. Oncol., 2008, 19(7), 1255-1260. [http://dx.doi.org/10.1093/annonc/mdn060]. [PMID: 18381372].
[119]
Bollag, D.M.; McQueney, P.A.; Zhu, J.; Hensens, O.; Koupal, L.; Liesch, J.; Goetz, M.; Lazarides, E.; Woods, C.M. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res., 1995, 55(11), 2325-2333. [PMID: 7757983].
[120]
Müller, A.M.; Florek, M. 5-Azacytidine/5-Azacitidine. Recent Results Cancer Res., 2014, 201, 299-324. [http://dx.doi.org/10.1007/978-3-642-54490-3_19]. [PMID: 24756801].
[121]
Momparler, R.L. Epigenetic therapy of cancer with 5-aza-2′-deoxycytidine (decitabine). Semin. Oncol., 2005, 32(5), 443-451. [http://dx.doi.org/10.1053/j.seminoncol.2005.07.008]. [PMID: 16210084].
[122]
Zhao, Q.; Fan, J.; Hong, W.; Li, L.; Wu, M. Inhibition of cancer cell proliferation by 5-fluoro-2′-deoxycytidine, a DNA methylation inhibitor, through activation of DNA damage response pathway. Springerplus, 2012, 1(1), 65. [http://dx.doi.org/10.1186/2193-1801-1-65]. [PMID: 23397046].
[123]
Marquez, V.E.; Kelley, J.A.; Agbaria, R.; Ben-Kasus, T.; Cheng, J.C.; Yoo, C.B.; Jones, P.A. Zebularine: a unique molecule for an epigenetically based strategy in cancer chemotherapy. Ann. N. Y. Acad. Sci., 2005, 37. [http://dx.doi.org/10.1196/annals.1359.037].
[124]
Srivastava, P.; Paluch, B.E.; Matsuzaki, J.; James, S.R.; Collamat-Lai, G.; Taverna, P.; Karpf, A.R.; Griffiths, E.A. Immunomodulatory action of the DNA methyltransferase inhibitor SGI-110 in epithelial ovarian cancer cells and xenografts. Epigenetics, 2015, 10(3), 237-246. [http://dx.doi.org/10.1080/15592294.2015.1017198]. [PMID: 25793777].
[125]
Agarwal, S.; Amin, K.S.; Jagadeesh, S.; Baishay, G.; Rao, P.G.; Barua, N.C.; Bhattacharya, S.; Banerjee, P.P. Mahanine restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells. Mol. Cancer, 2013, 12(1), 99. [http://dx.doi.org/10.1186/1476-4598-12-99]. [PMID: 24001151].
[126]
Dueñas-Gonzalez, A.; Coronel, J.; Cetina, L.; González-Fierro, A.; Chavez-Blanco, A.; Taja-Chayeb, L. Hydralazine-valproate: a repositioned drug combination for the epigenetic therapy of cancer. Expert Opin. Drug Metab. Toxicol., 2014, 10(10), 1433-1444. [http://dx.doi.org/10.1517/17425255.2014.947263]. [PMID: 25154405].
[127]
Gao, Z.; Xu, Z.; Hung, M.S.; Lin, Y.C.; Wang, T.; Gong, M.; Zhi, X.; Jablons, D.M.; You, L. Procaine and procainamide inhibit the Wnt canonical pathway by promoter demethylation of WIF-1 in lung cancer cells. Oncol. Rep., 2009, 22(6), 1479-1484. [PMID: 19885602].
[128]
Rilova, E.; Erdmann, A.; Gros, C.; Masson, V.; Aussagues, Y.; Poughon-Cassabois, V.; Rajavelu, A.; Jeltsch, A.; Menon, Y.; Novosad, N.; Gregoire, J.M.; Vispé, S.; Schambel, P.; Ausseil, F.; Sautel, F.; Arimondo, P.B.; Cantagrel, F. Design, synthesis and biological evaluation of 4-amino-N- (4-aminophenyl)benzamide analogues of quinoline-based SGI-1027 as inhibitors of DNA methylation. ChemMedChem, 2014, 9(3), 590-601. [http://dx.doi.org/10.1002/cmdc.201300420]. [PMID: 24678024].
[129]
Ramasamy, T. S.; Ayob, A. Z.; Myint, H. H.; Thiagarajah, S.; Amini, F. Targeting colorectal cancer stem cells using curcumin and curcumin analogues: Insights into the mechanism of the therapeutic efficacy. Cancer Cell Int, 2015, 15, 015-0241. [http://dx.doi.org/10.1186/s12935-015-0241-x]
[130]
Graça, I.; Sousa, E.J.; Baptista, T.; Almeida, M.; Ramalho-Carvalho, J.; Palmeira, C.; Henrique, R.; Jerónimo, C. Anti-tumoral effect of the non-nucleoside DNMT inhibitor RG108 in human prostate cancer cells. Curr. Pharm. Des., 2014, 20(11), 1803-1811. [http://dx.doi.org/10.2174/13816128113199990516]. [PMID: 23888969].
[131]
Lee, E.; Jeong, K.W.; Jnawali, H.N.; Shin, A.; Heo, Y.S.; Kim, Y. Cytotoxic activity of 3,6-dihydroxyflavone in human cervical cancer cells and its therapeutic effect on c-Jun N-terminal kinase inhibition. Molecules, 2014, 19(9), 13200-13211. [http://dx.doi.org/10.3390/molecules190913200]. [PMID: 25165860].
[132]
Chakrabarty, S.; Ganguli, A.; Das, A.; Nag, D.; Chakrabarti, G. Epigallocatechin-3-gallate shows anti-proliferative activity in HeLa cells targeting tubulin-microtubule equilibrium. Chem. Biol. Interact., 2015, 242, 380-389. [http://dx.doi.org/10.1016/j.cbi.2015.11.004]. [PMID: 26554336].
[133]
Shukla, S.; Gupta, S. Apigenin: A promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-978. [http://dx.doi.org/10.1007/s11095-010-0089-7]. [PMID: 20306120].
[134]
Qiang, W.; Jin, T.; Yang, Q.; Liu, W.; Liu, S.; Ji, M.; He, N.; Chen, C.; Shi, B.; Hou, P. PRIMA-1 selectively induces global DNA demethylation in p53 mutant-type thyroid cancer cells. J. Biomed. Nanotechnol., 2014, 10(7), 1249-1258. [http://dx.doi.org/10.1166/jbn.2014.1862]. [PMID: 24804545].
[135]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419. [http://dx.doi.org/10.3945/an.114.008052]. [PMID: 26178025].
[136]
Wyrębska, A.; Gach, K.; Janecka, A. Combined effect of parthenolide and various anti-cancer drugs or anticancer candidate substances on malignant cells in vitro and in vivo. Mini Rev. Med. Chem., 2014, 14(3), 222-228. [http://dx.doi.org/10.2174/1389557514666140219113509]. [PMID: 24552263].
[137]
Richon, V.M. Targeting histone deacetylases: Development of vorinostat for the treatment of cancer. Epigenomics, 2010, 2(3), 457-465. [http://dx.doi.org/10.2217/epi.10.20]. [PMID: 22121904].
[138]
Li, X.; Zhang, J.; Xie, Y.; Jiang, Y.; Yingjie, Z.; Xu, W. Progress of HDAC inhibitor panobinostat in the treatment of cancer. Curr. Drug Targets, 2014, 15(6), 622-634. [http://dx.doi.org/10.2174/1389450115666140306152642]. [PMID: 24597570].
[139]
Wang, X.; Xu, J.; Wang, H.; Wu, L.; Yuan, W.; Du, J.; Cai, S. Trichostatin A, a histone deacetylase inhibitor, reverses epithelial-mesenchymal transition in colorectal cancer SW480 and prostate cancer PC3 cells. Biochem. Biophys. Res. Commun., 2015, 456(1), 320-326. [http://dx.doi.org/10.1016/j.bbrc.2014.11.079]. [PMID: 25434997].
[140]
Ganai, S. A. Strategy for enhancing the therapeutic efficacy of histone deacetylase inhibitor dacinostat: The novel paradigm to tackle monotonous cancer chemoresistance. Arch Pharm Res, 2015, 19, 015-0673. [http://dx.doi.org/10.1007/s12272-015-0673-9]
[141]
Xing, L.F.; Wang, D.T.; Yang, Y.; Pan, S.Y. Effect of HDAC-6 on PD cell induced by lactacystin. Asian Pac. J. Trop. Med., 2015, 8(10), 855-859. [http://dx.doi.org/10.1016/j.apjtm.2015.09.013]. [PMID: 26522302].
[142]
Kirschbaum, M.H.; Foon, K.A.; Frankel, P.; Ruel, C.; Pulone, B.; Tuscano, J.M.; Newman, E.M. A phase 2 study of belinostat (PXD101) in patients with relapsed or refractory acute myeloid leukemia or patients over the age of 60 with newly diagnosed acute myeloid leukemia: a California Cancer Consortium Study. Leuk. Lymphoma, 2014, 55(10), 2301-2304. [http://dx.doi.org/10.3109/10428194.2013.877134]. [PMID: 24369094].
[143]
Apuri, S.; Sokol, L. An overview of investigational Histone deacetylase inhibitors (HDACis) for the treatment of non-Hodgkin’s lymphoma. Expert Opin. Investig. Drugs, 2016, 25(6), 687-696. [http://dx.doi.org/10.1517/13543784.2016.1164140]. [PMID: 26954526].
[144]
Ruiz, R.; Raez, L.E.; Rolfo, C. Entinostat (SNDX-275) for the treatment of non-small cell lung cancer. Expert Opin. Investig. Drugs, 2015, 24(8), 1101-1109. [http://dx.doi.org/10.1517/13543784.2015.1056779]. [PMID: 26098363].
[145]
Duenas-Gonzalez, A.; Candelaria, M.; Perez-Plascencia, C.; Perez-Cardenas, E.; de la Cruz-Hernandez, E.; Herrera, L.A. Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat. Rev., 2008, 34(3), 206-222. [http://dx.doi.org/10.1016/j.ctrv.2007.11.003]. [PMID: 18226465].
[146]
Tsunedomi, R.; Iizuka, N.; Harada, S.; Oka, M. Susceptibility of hepatoma-derived cells to histone deacetylase inhibitors is associated with ID2 expression. Int. J. Oncol., 2013, 42(4), 1159-1166. [http://dx.doi.org/10.3892/ijo.2013.1811]. [PMID: 23403953].
[147]
Nielsen, T.K.; Hildmann, C.; Riester, D.; Wegener, D.; Schwienhorst, A.; Ficner, R. Complex structure of a bacterial class 2 histone deacetylase homologue with a trifluoromethylketone inhibitor. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2007, 63(Pt 4), 270-273. [http://dx.doi.org/10.1107/S1744309107012377]. [PMID: 17401192].
[148]
Tao, Y.F.; Lin, F.; Yan, X.Y.; Gao, X.G.; Teng, F.; Fu, Z.R.; Wang, Z.X. Galectin-9 in Combination with EX-527 prolongs the survival of cardiac allografts in mice after cardiac transplantation. Transplant. Proc., 2015, 47(6), 2003-2009. [http://dx.doi.org/10.1016/j.transproceed.2015.04.091]. [PMID: 26293089].
[149]
Mahajan, S.S.; Scian, M.; Sripathy, S.; Posakony, J.; Lao, U.; Loe, T.K.; Leko, V.; Thalhofer, A.; Schuler, A.D.; Bedalov, A.; Simon, J.A. Development of pyrazolone and isoxazol-5-one cambinol analogues as sirtuin inhibitors. J. Med. Chem., 2014, 57(8), 3283-3294. [http://dx.doi.org/10.1021/jm4018064]. [PMID: 24697269].
[150]
Yang, L.; Liang, Q.; Shen, K.; Ma, L.; An, N.; Deng, W.; Fei, Z.; Liu, J. A novel class I histone deacetylase inhibitor, I-7ab, induces apoptosis and arrests cell cycle progression in human colorectal cancer cells. Biomed. Pharmacother., 2015, 71, 70-78. [http://dx.doi.org/10.1016/j.biopha.2015.02.019]. [PMID: 25960218].
[151]
Eigl, B.J.; North, S.; Winquist, E.; Finch, D.; Wood, L.; Sridhar, S.S.; Powers, J.; Good, J.; Sharma, M.; Squire, J.A.; Bazov, J.; Jamaspishvili, T.; Cox, M.E.; Bradbury, P.A.; Eisenhauer, E.A.; Chi, K.N. A phase II study of the HDAC inhibitor SB939 in patients with castration resistant prostate cancer: NCIC clinical trials group study IND195. Invest. New Drugs, 2015, 33(4), 969-976. [http://dx.doi.org/10.1007/s10637-015-0252-4]. [PMID: 25983041].
[152]
Lee, F.Y.F.; Borzilleri, R.; Fairchild, C.R.; Kim, S.H.; Long, B.H.; Reventos-Suarez, C.; Vite, G.D.; Rose, W.C.; Kramer, R.A. BMS-247550: A novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin. Cancer Res., 2001, 7(5), 1429-1437. [PMID: 11350914].
[153]
Orr, G.A.; Verdier-Pinard, P.; McDaid, H.; Horwitz, S.B. Mechanisms of Taxol resistance related to microtubules. Oncogene, 2003, 22(47), 7280-7295. [http://dx.doi.org/10.1038/sj.onc.1206934]. [PMID: 14576838].
[154]
Bergstralh, D.T.; Ting, J.P.Y. Microtubule stabilizing agents: Their molecular signaling consequences and the potential for enhancement by drug combination. Cancer Treat. Rev., 2006, 32(3), 166-179. [http://dx.doi.org/10.1016/j.ctrv.2006.01.004]. [PMID: 16527420].
[155]
Diaz-Padilla, I.; Oza, A.M. Epothilones in the treatment of ovarian cancer. Future Oncol., 2011, 7(4), 559-568. [http://dx.doi.org/10.2217/fon.11.26]. [PMID: 21463144].
[156]
Cortes, J.; Baselga, J. Targeting the microtubules in breast cancer beyond taxanes: the epothilones. Oncologist, 2007, 12(3), 271-280. [http://dx.doi.org/10.1634/theoncologist.12-3-271]. [PMID: 17405891].
[157]
Yoshimura, F.; Rivkin, A.; Gabarda, A.E.; Chou, T.C.; Dong, H.; Sukenick, G.; Morel, F.F.; Taylor, R.E.; Danishefsky, S.J. Synthesis and conformational analysis of (E)-9,10-dehydroepothilone B: A suggestive link between the chemistry and biology of epothilones. Angew. Chem. Int. Ed. Engl., 2003, 42(22), 2518-2521. [http://dx.doi.org/10.1002/anie.200351407]. [PMID: 12800175].
[158]
Chou, T.C.; Zhang, X.G.; Balog, A.; Su, D.S.; Meng, D.; Savin, K.; Bertino, J.R.; Danishefsky, S.J.; Desoxyepothilone, B.; Desoxyepothilone, B. B:An efficacious microtubule-targeted antitumor agent with a promising in vivo profile relative to epothilone B. Proc. Natl. Acad. Sci. USA, 1998, 95(16), 9642-9647. [http://dx.doi.org/10.1073/pnas.95.16.9642]. [PMID: 9689134].
[159]
Chou, T.C.; O’Connor, O.A.; Tong, W.P.; Guan, Y.; Zhang, Z.G.; Stachel, S.J.; Lee, C.; Danishefsky, S.J. The synthesis, discovery, and development of a highly promising class of microtubule stabilization agents: Curative effects of desoxyepothilones B and F against human tumor xenografts in nude mice. Proc. Natl. Acad. Sci. USA, 2001, 98(14), 8113-8118. [http://dx.doi.org/10.1073/pnas.131153098]. [PMID: 11438750].
[160]
Zhou, Y.; Zhong, Z.; Liu, F.; Sun, M.; Craig, D.; Eng, S.; Feng, L.; Sherrill, M.; Cropp, G.F.; Yu, K.; Hannah, A.L.; Johnson, R.G., Jr KOS-1584: a rationally designed epothilone D analog with improved potency and pharmacokinetic (PK) properties. Proceedings of the American Association for Cancer Research Annual Meeting, 2005, pp. 595-595.
[161]
Goodin, S.; Kane, M.P.; Rubin, E.H. Epothilones: Mechanism of action and biologic activity. J. Clin. Oncol., 2004, 22(10), 2015-2025. [http://dx.doi.org/10.1200/JCO.2004.12.001]. [PMID: 15143095].
[162]
Fojo, A.T.; Menefee, M. Microtubule targeting agents: basic mechanisms of multidrug resistance (MDR). Semin. Oncol., 2005, 32(6)(Suppl. 7), S3-S8. [http://dx.doi.org/10.1053/j.seminoncol.2005.09.010]. [PMID: 16360716].
[163]
Lee, J.J.; Swain, S.M. Development of novel chemotherapeutic agents to evade the mechanisms of multidrug resistance (MDR). Semin. Oncol., 2005, 32(6)(Suppl. 7), S22-S26. [http://dx.doi.org/10.1053/j.seminoncol.2005.09.013]. [PMID: 16360719].
[164]
Villanueva, C.; Dufresne, A.; Pivot, X.; Viel, E. [Efficacy and safety of ixabepilone (BMS-247550), a novel epothilone B analogue]. Bull. Cancer, 2008, 95(2), 197-204. [PMID: 18304905].
[165]
Gregory, R.K.; Smith, I.E. Vinorelbine--a clinical review. Br. J. Cancer, 2000, 82(12), 1907-1913. [PMID: 10864196].
[166]
Joel, S. The comparative clinical pharmacology of vincristine and vindesine: Does vindesine offer any advantage in clinical use? Cancer Treat. Rev., 1996, 21(6), 513-525. [http://dx.doi.org/10.1016/0305-7372(95)90015-2]. [PMID: 8599802].
[167]
Goa, K.L.; Faulds, D. Vinorelbine. A review of its pharmacological properties and clinical use in cancer chemotherapy. Drugs Aging, 1994, 5(3), 200-234. [http://dx.doi.org/10.2165/00002512-199405030-00006]. [PMID: 7803948].
[168]
Schutz, F.A.B.; Bellmunt, J.; Rosenberg, J.E.; Choueiri, T.K. Vinflunine: Drug safety evaluation of this novel synthetic vinca alkaloid. Expert Opin. Drug Saf., 2011, 10(4), 645-653. [http://dx.doi.org/10.1517/14740338.2011.581660]. [PMID: 21524237].
[169]
Cui, J.; Sun, W.; Hao, X.; Wei, M.; Su, X.; Zhang, Y.; Su, L.; Liu, X. X. EHMT2 inhibitor BIX-01294 induces apoptosis through PMAIP1-USP9X-MCL1 axis in human bladder cancer cells. Cancer Cell Int, 2015, 15, 0140-0149.
[170]
Fu, L.; Yan, F.X.; An, X.R.; Hou, J. Effects of the histone methyltransferase inhibitor UNC0638 on histone H3K9 dimethylation of cultured ovine somatic cells and development of resulting early cloned embryos. Reprod. Domest. Anim., 2014, 49(2), e21-e25. [http://dx.doi.org/10.1111/rda.12277]. [PMID: 24467723].
[171]
Tiffen, J.C.; Gunatilake, D.; Gallagher, S.J.; Gowrishankar, K.; Heinemann, A.; Cullinane, C.; Dutton-Regester, K.; Pupo, G.M.; Strbenac, D.; Yang, J.Y.; Madore, J.; Mann, G.J.; Hayward, N.K.; McArthur, G.A.; Filipp, F.V.; Hersey, P. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget, 2015, 6(29), 27023-27036. [http://dx.doi.org/10.18632/oncotarget.4809]. [PMID: 26304929].
[172]
Horiuchi, K.Y.; Eason, M.M.; Ferry, J.J.; Planck, J.L.; Walsh, C.P.; Smith, R.F.; Howitz, K.T.; Ma, H. Assay development for histone methyltransferases. Assay Drug Dev. Technol., 2013, 11(4), 227-236. [http://dx.doi.org/10.1089/adt.2012.480]. [PMID: 23557020].
[173]
Maes, T.; Mascaró, C.; Ortega, A.; Lunardi, S.; Ciceri, F.; Somervaille, T.C.; Buesa, C. KDM1 histone lysine demethylases as targets for treatments of oncological and neurodegenerative disease. Epigenomics, 2015, 7(4), 609-626. [http://dx.doi.org/10.2217/epi.15.9]. [PMID: 26111032].
[174]
Qian, S.; Wang, Y.; Ma, H.; Zhang, L. Expansion and functional divergence of jumonji C-containing histone demethylases: Significance of duplications in ancestral angiosperms and vertebrates. Plant Physiol., 2015, 168(4), 1321-1337. [http://dx.doi.org/10.1104/pp.15.00520]. [PMID: 26059336].
[175]
Verrotti, A.; Carelli, A.; di Genova, L.; Striano, P. Epilepsy and chromosome 18 abnormalities: A review. Seizure, 2015, 32, 78-83. [http://dx.doi.org/10.1016/j.seizure.2015.09.013]. [PMID: 26552569].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy