Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

How Computational Epitope Mapping Identifies the Interactions between Nanoparticles Derived from Papaya Mosaic Virus Capsid Proteins and Immune System

Author(s): Mahbobeh Zamani-Babgohari, Kathleen L. Hefferon*, Tsu Huang and Mounir G. AbouHaidar

Volume 20, Issue 3, 2019

Page: [214 - 225] Pages: 12

DOI: 10.2174/1389202920666190527080230

Price: $65

Abstract

Background: Nanoparticles derived from plant viruses possess fascinating structures, versatile functions and safe properties, rendering them valuable for a variety of applications. Papaya mosaic Virus-Like Particles (VLPs) are nanoparticles that contain a repetitive number of virus capsid proteins (PMV-CP) and are considered to be promising platforms for vaccine design. Previous studies have reported the antigenicity of PMV nanoparticles in mammalian systems.

Materials and Methods: As experiments that concern vaccine development require careful design and can be time consuming, computational experiments are of particular importance. Therefore, prior to expressing PMV-CP in E. coli and producing nanoparticles, we performed an in silico analysis of the virus particles using software programs based on a series of sophisticated algorithms and modeling networks as useful tools for vaccine design. A computational study of PMV-CP in the context of the immune system reaction allowed us to clarify particle structure and other unknown features prior to their introduction in vitro.

Results: The results illustrated that the produced nanoparticles can trigger an immune response in the absence of fusion with any foreign antigen.

Conclusion: Based on the in silico analyses, the empty capsid protein was determined to be recognised by different B and T cells, as well as cells which carry MHC epitopes.

Keywords: PMV-CP, virus nanoparticles, antigenic epitopes, immune response, vaccine design, in silico analysis.

Graphical Abstract

[1]
Rohovie, M.J.; Nagasawa, M.; Swartz, J.R. Virus‐like particles: next‐generation nanoparticles for targeted therapeutic delivery. Bioeng. Transl. Med., 2017, 2(1), 43-57.
[2]
Lee-Shanok, R. Construction and preliminary characterization of papaya mosaic virus as an expression vector for the presentation of foreign epitopes. M.Sc. Thesis, University of Toronto: Canada. 2001.
[3]
Rioux, G.; Babin, C.; Majeau, N.; Leclerc, D. Engineering of papaya mosaic virus (PapMV) nanoparticles through fusion of the HA11 peptide to several putative surface-exposed sites. PLoS One, 2012, 7(2), e31925.
[4]
Hefferon, K.L. Repurposing plant virus nanoparticles. Vaccines., 2018, 6(11), 1-10.
[5]
Denis, J.; Majeau, N.; Acosta-Ramirez, E.; Savard, C.; Bedard, M.C.; Simard, S.; Lecours, K.; Bolduc, M.; Pare, C.; Willems, B.; Shoukry, N.; Tessier, P.; Lacasse, P.; Lamarre, A.; Lapointe, R.; Lopez, M.C.; Leclerc, D. Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: evidence for the critical function of multimerization. Virology, 2007, 363, 59-68.
[6]
Roy, P.; Noad, R. Virus-like particles as a vaccine delivery system: myths and facts. Hum. Vaccin., 2008, 4(1), 5-12.
[7]
Fifis, T.; Gamvrellis, A.; Crimeen-Irwin, B.; Pietersz, G.A.; Li, J.; Mottram, P.L.; McKenzie, I.F.; Plebanski, M. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol., 2004, 173(5), 3148-3154.
[8]
Leclerc, D.; Beauseigle, D.; Denis, J.; Morin, H.; Paré, C.; Lamarre, A.; Lapointe, R. Proteasome-independent major histocompatibility complex class I cross-presentation mediated by papaya mosaic virus-like particles leads to expansion of specific human T cells. J. Virol., 2007, 81(3), 1319-1326.
[9]
Thérien, A.; Bédard, M.; Carignan, D.; Rioux, G.; Gauthier-Landry, L.; Laliberté-Gagné, M.È.; Bolduc, M.; Savard, P.; Leclerc, D. A versatile papaya mosaic virus (PapMV) vaccine platform based on sortase-mediated antigen coupling. J. Nanobiotechnology, 2017, 15(1), 54.
[10]
Saadi, M.; Karkhah, A.; Nouri, H.R. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infect. Genet. Evol., 2017, 51, 227-234.
[11]
Ikegami, R. Papaya mosaic potexvirus as an expression vector for foreign peptides., M.Sc. Thesis, University of Toronto: Canada, 1996.
[12]
Ponomarenko, J.; Bui, H-H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 2008, 9(1), 514.
[13]
Doytchinova, I.A.; Guan, P.; Flower, D.R. EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics, 2006, 7(1), 131.
[14]
Singh, H.; Raghava, G. ProPred: prediction of HLA-DR binding sites. Bioinformatics, 2001, 17(12), 1236-1237.
[15]
McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics, 2000, 16(4), 404-405.
[16]
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9(1), 40.
[17]
Tollin, P.; Bancroft, J.B.; Richardson, J.F.; Payne, N.C.; Beveridge, T.J. Diffraction studies of papaya mosaic virus. Virology, 1979, 98(1), 108-115.
[18]
Rioux, G.; Majeau, N.; Leclerc, D. Mapping the surface-exposed regions of papaya mosaic virus nanoparticles. FEBS J., 2012, 279(11), 2004-2011.
[19]
Dosztányi, Z. Prediction of protein disorder based on IUPred. Protein Sci., 2018, 27(1), 331-340.
[20]
Saha, S.; Raghava, G. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes Nucleic Acids Res., 2006, 34(Suppl_2), W202-W209.
[21]
Soria-Guerra, R.E.; Nieto-Gomez, R.; Govea-Alonso, D.O.; Rosales-Mendoza, S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J. Biomed. Inform., 2015, 53, 405-414.
[22]
Liljeroos, L.; Malito, E.; Ferlenghi, I.; Bottomley, M.J. Structural and computational biology in the design of immunogenic vaccine antigens. J. Immunol. Res., 2015, 2015, 156241.
[23]
Kulp, D.W.; Schief, W.R. Advances in structure-based vaccine design. Curr. Opin. Virol., 2013, 3(3), 322-331.
[24]
Carignan, D.; Thérien, A.; Rioux, G.; Paquet, G.; Gagné, M.È.L.; Bolduc, M.; Savard, P.; Leclerc, D. Engineering of the PapMV vaccine platform with a shortened M2e peptide leads to an effective one dose influenza vaccine. Vaccine, 2015, 33(51), 7245-7253.
[25]
Arcangeli, C.; Circelli, P.; Donini, M.; Aljabali, A.A.; Benvenuto, E.; Lomonossoff, G.P.; Marusic, C. Structure-based design and experimental engineering of a plant virus nanoparticle for the presentation of immunogenic epitopes and as a drug carrier. J. Biomol. Struct. Dyn., 2014, 32(4), 630-647.
[26]
Yang, S.; Wang, T.; Bohon, J.; Gagné, M.È.L.; Bolduc, M.; Leclerc, D.; Li, H. Crystal structure of the coat protein of the flexible filamentous papaya mosaic virus. J. Mol. Biol., 2012, 422(2), 263-273.
[27]
Cozzetto, D.; Jones, D.T. The contribution of intrinsic disorder prediction to the elucidation of protein function. Curr. Opin. Struct. Biol., 2013, 23(3), 467-472.
[28]
De Lalla, C.; Sturniolo, T.; Abbruzzese, L.; Hammer, J.; Sidoli, A.; Sinigaglia, F.; Panina-Bordignon, P. Cutting edge: identification of novel T cell epitopes in Lol p5a by computational prediction. J. Immunol., 1999, 163(4), 1725-1729.
[29]
Koudelka, K.J.; Destito, G.; Plummer, E.M.; Trauger, S.A.; Siuzdak, G.; Manchester, M. Endothelial targeting of cowpea mosaic virus (CPMV) via surface vimentin. PLoS Pathog., 2012, 5(5), e1000417.
[30]
Wang, C.; Steinmetz, N.F. CD47 blockade and cowpea mosaic virus nanoparticle in situ vaccination triggers phagocytosis and tumor killing. Adv. Healthcare Mater., 2019, Available from.https://www.researchgate.net/publication/331551015_CD47_Blockade_and_Cowpea_Mosaic_Virus_Nanoparticle_In_Situ_Vaccination_Triggers_Phagocytosis_and_Tumor_Killing

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy