[1]
Oliveira, B.L.; Guo, Z.; Bernardes, G.J.L. Inverse electron demand Diels-Alder reactions in chemical biology. Chem. Soc. Rev., 2017, 46(16), 4895-4950. [http://dx.doi.org/10.1039/C7CS00184C]. [PMID: 28660957].
[2]
Azoulay, M.; Tuffin, G.; Sallem, W.; Florent, J.C. A new drug-release method using the Staudinger ligation. Bioorg. Med. Chem. Lett., 2006, 16(12), 3147-3149. [http://dx.doi.org/10.1016/j.bmcl.2006.03.073]. [PMID: 16621529].
[3]
van Brakel, R.; Vulders, R.C.M.; Bokdam, R.J.; Grüll, H.; Robillard, M.S. A doxorubicin prodrug activated by the staudinger reaction. Bioconjug. Chem., 2008, 19(3), 714-718. [http://dx.doi.org/10.1021/bc700394s]. [PMID: 18271515].
[4]
Mahato, R.; Tai, W.; Cheng, K. Prodrugs for improving tumor targetability and efficiency. Adv. Drug Deliv. Rev., 2011, 63(8), 659-670. [http://dx.doi.org/10.1016/j.addr.2011.02.002]. [PMID: 21333700].
[5]
Srinivasarao, M.; Low, P.S. Ligand-targeted drug delivery. Chem. Rev., 2017, 117(19), 12133-12164. [http://dx.doi.org/10.1021/acs.chemrev.7b00013]. [PMID: 28898067].
[6]
Matikonda, S.S.; Orsi, D.L.; Staudacher, V.; Jenkins, I.A.; Fiedler, F.; Chen, J.; Gamble, A.B. Bioorthogonal prodrug activation driven by a strain-promoted 1,3-dipolar cycloaddition. Chem. Sci. (Camb.), 2015, 6(2), 1212-1218. [http://dx.doi.org/10.1039/C4SC02574A]. [PMID: 29560207].
[7]
Versteegen, R.M.; Rossin, R.; ten Hoeve, W.; Janssen, H.M.; Robillard, M.S. Click to release: Instantaneous doxorubicin elimination upon tetrazine ligation. Angew. Chem. Int. Ed. Engl., 2013, 52(52), 14112-14116. [http://dx.doi.org/10.1002/anie.201305969]. [PMID: 24281986].
[8]
Rossin, R.; van Duijnhoven, S.M.; Ten Hoeve, W.; Janssen, H.M.; Kleijn, L.H.; Hoeben, F.J.; Versteegen, R.M.; Robillard, M.S. Triggered drug release from an antibody-drug conjugate using fast “click-to-release” chemistry in mice. Bioconjug. Chem., 2016, 27(7), 1697-1706. [http://dx.doi.org/10.1021/acs.bioconjchem.6b00231]. [PMID: 27306828].
[9]
Rossin, R.; Versteegen, R.M.; Wu, J.; Khasanov, A.; Wessels, H.J.; Steenbergen, E.J.; Ten Hoeve, W.; Janssen, H.M.; van Onzen, A.H.A.M.; Hudson, P.J.; Robillard, M.S. Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nat. Commun., 2018, 9(1), 1484. [http://dx.doi.org/10.1038/s41467-018-03880-y]. [PMID: 29728559].
[10]
Yao, Q.; Lin, F.; Fan, X.; Wang, Y.; Liu, Y.; Liu, Z.; Jiang, X.; Chen, P.R.; Gao, Y. Synergistic enzymatic and bioorthogonal reactions for selective prodrug activation in living systems. Nat. Commun., 2018, 9(1), 5032. [http://dx.doi.org/10.1038/s41467-018-07490-6]. [PMID: 30487642].
[11]
Weiss, J.T.; Dawson, J.C.; Fraser, C.; Rybski, W.; Torres-Sánchez, C.; Bradley, M.; Patton, E.E.; Carragher, N.O.; Unciti-Broceta, A. Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine. J. Med. Chem., 2014, 57(12), 5395-5404. [http://dx.doi.org/10.1021/jm500531z]. [PMID: 24867590].
[12]
Weiss, J.T.; Dawson, J.C.; Macleod, K.G.; Rybski, W.; Fraser, C.; Torres-Sánchez, C.; Patton, E.E.; Bradley, M.; Carragher, N.O.; Unciti-Broceta, A. Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat. Commun., 2014, 5, 3277. [http://dx.doi.org/10.1038/ncomms4277]. [PMID: 24522696].
[13]
Pérez-López, A.M.; Rubio-Ruiz, B.; Sebastián, V.; Hamilton, L.; Adam, C.; Bray, T.L.; Irusta, S.; Brennan, P.M.; Lloyd-Jones, G.C.; Sieger, D.; Santamaría, J.; Unciti-Broceta, A. Gold-triggered uncaging chemistry in living systems. Angew. Chem. Int. Ed. Engl., 2017, 56(41), 12548-12552. [http://dx.doi.org/10.1002/anie.201705609]. [PMID: 28699691].
[14]
Miller, M.A.; Askevold, B.; Mikula, H.; Kohler, R.H.; Pirovich, D.; Weissleder, R. Nano-palladium is a cellular catalyst for in vivo chemistry. Nat. Commun., 2017, 8, 15906. [http://dx.doi.org/10.1038/ncomms15906]. [PMID: 28699627].
[15]
Li, B.; Liu, P.; Wu, H.; Xie, X.; Chen, Z.; Zeng, F.; Wu, S. A bioorthogonal nanosystem for imaging and in vivo tumor inhibition. Biomaterials, 2017, 138, 57-68. [http://dx.doi.org/10.1016/j.biomaterials.2017.05.036]. [PMID: 28554008].
[16]
Khan, I.; Seebald, L.M.; Robertson, N.M.; Yigit, M.V.; Royzen, M. Controlled in-cell activation of RNA therapeutics using bond-cleaving bio-orthogonal chemistry. Chem. Sci. (Camb.), 2017, 8(8), 5705-5712. [http://dx.doi.org/10.1039/C7SC01380A]. [PMID: 28989610].
[17]
Khan, I.; Agris, P.F.; Yigit, M.V.; Royzen, M. In situ activation of a doxorubicin prodrug using imaging-capable nanoparticles. Chem. Commun. (Camb.), 2016, 52(36), 6174-6177. [http://dx.doi.org/10.1039/C6CC01024E]. [PMID: 27076271].
[18]
Mejia Oneto, J.M.; Khan, I.; Seebald, L.; Royzen, M. In Vivo Bioorthogonal chemistry enables local hydrogel and systemic pro-drug to treat soft tissue sarcoma. ACS Cent. Sci., 2016, 2(7), 476-482. [http://dx.doi.org/10.1021/acscentsci.6b00150]. [PMID: 27504494].
[19]
Czuban, M.; Srinivasan, S.; Yee, N.A.; Agustin, E.; Koliszak, A.; Miller, E.; Khan, I.; Quinones, I.; Noory, H.; Motola, C.; Volkmer, R.; Di Luca, M.; Trampuz, A.; Royzen, M.; Mejia Oneto, J.M. Bio-orthogonal chemistry and reloadable biomaterial enable local activation of antibiotic prodrugs and enhance treatments against Staphylococcus aureus infections. ACS Cent. Sci., 2018, 4(12), 1624-1632. [http://dx.doi.org/10.1021/acscentsci.8b00344]. [PMID: 30648146].
[20]
Ji, X.; Pan, Z.; Yu, B.; De La Cruz, L.K.; Zheng, Y.; Ke, B.; Wang, B. Click and release: Bioorthogonal approaches to “on-demand” activation of prodrugs. Chem. Soc. Rev., 2019, 48(4), 1077-1094. [http://dx.doi.org/10.1039/C8CS00395E]. [PMID: 30724944].
[21]
Zheng, Y.; Ji, X.; Yu, B.; Ji, K.; Gallo, D.; Csizmadia, E.; Zhu, M.; Choudhury, M.R.; De La Cruz, L.K.C.; Chittavong, V.; Pan, Z.; Yuan, Z.; Otterbein, L.E.; Wang, B. Enrichment-triggered prodrug activation demonstrated through mitochondria-targeted delivery of doxorubicin and carbon monoxide. Nat. Chem., 2018, 10(7), 787-794. [http://dx.doi.org/10.1038/s41557-018-0055-2]. [PMID: 29760413].
[22]
Wang, P.; Zhou, J. Proteolysis targeting chimera (PROTAC): A paradigm-shifting approach in small molecule drug discovery. Curr. Top. Med. Chem., 2018, 18(16), 1354-1356. [http://dx.doi.org/10.2174/1568026618666181010101922]. [PMID: 30306871].
[23]
Lebraud, H.; Wright, D.J.; Johnson, C.N.; Heightman, T.D. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent. Sci., 2016, 2(12), 927-934. [http://dx.doi.org/10.1021/acscentsci.6b00280]. [PMID: 28058282].
[24]
Fan, X.; Ge, Y.; Lin, F.; Yang, Y.; Zhang, G.; Ngai, W.S.; Lin, Z.; Zheng, S.; Wang, J.; Zhao, J.; Li, J.; Chen, P.R. Optimized tetrazine derivatives for rapid bioorthogonal decaging in living cells. Angew. Chem. Int. Ed. Engl., 2016, 55(45), 14046-14050. [http://dx.doi.org/10.1002/anie.201608009]. [PMID: 27735133].
[25]
Carlson, J.C.T.; Mikula, H.; Weissleder, R. Unraveling tetrazine-triggered bioorthogonal elimination enables chemical tools for ultrafast release and universal cleavage. J. Am. Chem. Soc., 2018, 140(10), 3603-3612. [http://dx.doi.org/10.1021/jacs.7b11217]. [PMID: 29384666].