Research Article

CNT(4,4-8)纳米管吸附Rubraca抗癌药物作为药物输送因子的研究:基于DFT方法的理论研究

卷 19, 期 7, 2019

页: [473 - 486] 页: 14

弟呕挨: 10.2174/1566524019666190506143152

价格: $65

摘要

背景:在本研究中,首次研究了新药Rubraca与CNT(4,4-8)纳米管之间通过密度泛函理论(DFT)计算在水介质中的相互作用。 方法和结果:根据计算,分子间氢键发生在分子Rubraca的活性位置和纳米管的氢原子之间,其在复合物CNT(4,4-8)/ Rubraca的稳定性中起重要作用。还检测到Rubraca与CNT(4,4-8)纳米管分子对电子性质,化学位移张量和自然电荷的非键合相互作用。自然键轨道(NBO)分析表明Rubraca分子作为电子供体和CNT(4,4-8)纳米管在复合CNT(4,4-8)/ Rubraca中起着电子受体的作用。 Rubraca药物和复合CNT(4,4-8)/ Rubraca的电子光谱也通过时间依赖性密度泛函理论(TD-DFT)计算,用于研究Rubraca药物对纳米管的吸附效应。 结论:已建立使用CNT(4,4-8)纳米管将Rubraca递送至患病细胞。

关键词: Rubraca,CNT(4

[1]
Jorio A, Dresselhaus G, Dresselhaus MS. Carbon Nanotubes: Advanced topics in the synthesis, structure, properties and applications. Springer 2008.
[2]
Gruner G. Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem 2006; 384: 322-35.
[3]
Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes--the route toward applications. Science 2002; 297: 787-92.
[4]
Sinnott SB, Andrews R. Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State Mater Sci 2001; 26: 145-249.
[5]
Prasek J, Drbohlavova J, Chomoucka J, et al. Methods for carbon nanotubes synthesis-review. J Mater Chem 2011; 21: 15872-84.
[6]
Collins PG, Arnold MS, Avouris P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001; 292: 706-9.
[7]
Tans S, Verschueren A, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature 1998; 393: 49-52.
[8]
Baughman RH, Cui C, Zakhidov A, et al. Carbon nanotube actuators. Science 1999; 284: 1340-4.
[9]
Kong J, Franklin NR, Zhou C, et al. Nanotube Molecular Wires as Chemical Sensors. Science 2000; 287: 622-5.
[10]
Staii C, Johnson AT. DNA-decorated carbon nanotubes for chemical sensing. Nano Lett 2005; 5: 1774-8.
[11]
Ghosh S, Sood AK, Kumar N. Carbon nanotube flow sensors. Science 2003; 299: 1042-4.
[12]
Mehra NK, Palakurthi S. Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discov Today 2016; 21: 585-97.
[13]
Bertrand N, Leroux JC. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release 2012; 161: 152-63.
[14]
Rashid MH, Ralph SF. Carbon nanotube membranes: synthesis, properties, and future filtration applications. Nanomater 2017; 7: 99-126.
[15]
Chakrabarti M, Kiseleva R, Vertegel A, Ray SK. Carbon nanomaterials for drug delivery and cancer therapy. J Nanosci Nanotechnol 2015; 15: 5501-11.
[16]
Foldvari M. Formulating nanomedicines: focus on carbon nanotubes as novel nanoexcipients In: Key Engineering Materials Trans Tech Publ . 2010; 441: pp. 53-74.
[17]
Chen AJ, Hamon MA, Hui H, Haddon RC. Solution properties of single-walled carbon nanotubes. Science 1998; 282: 95-8.
[18]
Liu H, Bu Y, Mi Y, Wang Y. Interaction site preference between carbon nanotube and nifedipine: A combined density functional theory and classical molecular dynamics study. J Mol Struct THEOCHEM 2009; 901: 163-8.
[19]
Feazell RP, Nakayama-Ratchford N, Dai H, Lippard S. Lippard, soluble single-walled carbon nanotubes as longboat delivery systems for platinum(iv) anticancer drug design. J Am Chem Soc 2007; 129: 8438-9.
[20]
Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ. Targeted single-wall carbon nanotube-mediated pt(iv) prodrug delivery using folate as a homing device. J Am Chem Soc 2008; 130: 11467-76.
[21]
Liu Z, Chen K, Davis C, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 2008; 68: 6652-60.
[22]
Pastorin G, Wu W, Wieckowski S, et al. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem Commun 2006; 11: 1182-4.
[23]
Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K. Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 2008; 4: 459-61.
[24]
Liu Z, Sun X, Nakayama-Ratchford N, Dai H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007; 1: 50-6.
[25]
Sheikhi M, Shahab S, Khaleghian M, Kumar R. Interaction between new anti-cancer drug syndros and CNT(6,6-6) nanotube for medical applications: geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, Excited state), FMO, MEP and HOMO-LUMO investigation. Appl Surf Sci 2018; 434: 504-13.
[26]
Sheikhi M, Shahab S, Khaleghian M, Haji Hajikolaee F, Balakhanava I, Alnajjar R. Adsorption Properties of the Molecule Resveratrol on CNT(8,0-10) Nanotube: Geometry Optimization, Molecular Structure, Spectroscopic (NMR, UV/Vis, Excited State), FMO, MEP and HOMO-LUMO Investigations. J Mol Struct 2018; 1160: 479-87.
[27]
Syed YY. Rucaparib: First Global Approval. Drugs 2017; 77: 585-92.
[28]
Plummer R, Lorigan P, Steven N, et al. A phase II study of the potent PARP inhibitor, rucaparib (PF-01367338, AG014699), with temozolomide in patients with metastatic melanoma 590 Y. Y. Syed demonstrating evidence of chemopotentiation. Cancer Chemother Pharmacol 2013; 71: 1191-9.
[29]
Jenner ZB, Sood AK, Coleman RL. Evaluation of rucaparib and companion diagnostics in the PARP inhibitor landscape for recurrent ovarian cancer therapy. Future Oncol 2016; 12: 1439-56.
[30]
Shahab S, Filippovich L, Sheikhi M, et al. Polarization, excited states, trans-cis properties and anisotropy of thermal and electrical conductivity of the 4-(phenyldiazenyl)aniline in PVA matrix. J Mol Struct 2017; 1141: 703-9.
[31]
Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09 revision A02. Gaussian, Inc., Wallingford CT;. 2009.
[32]
Sheikhi M, Shahab S, Filippovich L, Khaleghian M, Dikusar E, Mashayekhi M. Interaction between new synthesized derivative of (E,E)-azomethines and BN(6,6-7) nanotube for medical applications: Geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigations. J Mol Struct 2017; 1146: 881-8.
[33]
Frisch A, Nielson AB, Holder AJ. GAUSSVIEW User Manual. Gaussian Inc., Pittsburgh, PA;. 2000.
[34]
Sheikhi M, Shahab S, Filippovich L, Yahyaei H, Dikusar E, Khaleghian M. New derivatives of (E,E)-azomethines: Design, quantum chemical modeling, spectroscopic (FT-IR, UV/Vis, polarization) studies, synthesis and their applications: Experimental and theoretical investigations. J Mol Struct 2018; 1152: 368-85.
[35]
Shahab S, Sheikhi M, Filippovich L. DikusarAnatol’evich E, Yahyaei H. Quantum chemical modeling of new derivatives of (E,E)-azomethines: Synthesis, spectroscopic (FT-IR, UV/Vis, polarization) and thermophysical investigations. J Mol Struct 2017; 1137: 335-48.
[36]
Weinhold F, Landis CR. Natural bond orbitals and extensions of localized bonding concepts. Chem Educ Res Pract 2001; 2: 91-104.
[37]
Sheikhi M, Sheikh D. Quantum chemical investigations on phenyl-7,8- dihydro-[1,3]dioxolo[4,5-g]quinolin-6(5h)-one. Rev Roum Chim 2014; 59: 761-7.
[38]
Sheikhi M, Balali E, Lari H. Theoretical investigations on molecular structure, NBO, HOMO-LUMO and MEP analysis of two crystal structures of N-(2-benzoyl-phenyl) oxalyl: A DFT study. J Phys Theor Chem 2016; 13: 155-71.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy