Review Article

金纳米颗粒在癌症治疗中作为靶向递送系统和治疗剂

卷 26, 期 35, 2019

页: [6493 - 6513] 页: 21

弟呕挨: 10.2174/0929867326666190506123721

价格: $65

摘要

癌症仍然是世界范围内主要的死亡原因,而大多数化学疗法会诱发非选择性毒性和严重的全身性副作用。为了解决这些问题,靶向纳米科学是一个有望使癌症患者受益的新兴领域。金纳米颗粒由于其许多公认的优势而成为当今的关注焦点。通过不断发展的一系列方法,包括化学,物理或生态友好的生物方法,可以轻松合成各种形状和大小的金纳米颗粒。这篇综述介绍了金纳米颗粒作为多功能治疗剂,可发挥多种作用,例如靶向递送系统(抗癌剂,核酸,生物蛋白,疫苗),治疗学和光热疗法中的药物。还概述了它们,以在生物成像领域(例如放射治疗,磁共振血管造影和光声成像)中做出巨大贡献。然而,金纳米颗粒是治疗剂,其证明其对多种细胞系,例如人宫颈,人乳腺,人肺,人前列腺和鼠类黑色素瘤癌细胞具有体外抗血管生成,抗增殖和促凋亡作用。体内研究指出了有关金纳米颗粒的生物蓄积性和细胞毒性的数据,但人们强调,大小,剂量,表面电荷,性别,尤其是给药途径是非常重要的变量。

关键词: 金纳米颗粒,靶向递送,治疗治疗,癌症治疗,磁共振血管造影,光声成像。

« Previous
[1]
World Health Organization; Cancer Research UK. World Cancer Factsheet. World Heal. Organ, 2014. 2012(2012), 4.
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[3]
Penet, M.F.; Chen, Z.; Kakkad, S.; Pomper, M.G.; Bhujwalla, Z.M. Theranostic imaging of cancer. Eur. J. Radiol., 2012, 81(Suppl. 1), S124-S126.
[http://dx.doi.org/10.1016/S0720-048X(12)70051-7] [PMID: 23083557]
[4]
Ren, X.; Chen, H.; Yang, V.; Sun, D. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy. Front. Chem. Sci. Eng., 2014, 8(3), 253-264.
[http://dx.doi.org/10.1007/s11705-014-1425-y]
[5]
Nguyen, K.T. Targeted nanoparticles for cancer therapy: promises and challenges. J. Nanomed. Nanotechnol., 2011, 02(05)
[http://dx.doi.org/10.4172/2157-7439.1000103e]
[6]
Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113.
[http://dx.doi.org/10.1259/bjr/59448833] [PMID: 22010024]
[7]
Kole, C.; Kumar, D. S.; Khodakovskaya, M. V. Plant nanotechnology: principles and practices. lant Nanotechnol. Princ. Pract, 2016. 1-383.
[8]
Deng, J.; Yao, M.; Gao, C. Cytotoxicity of gold nanoparticles with different structures and surface-anchored chiral polymers. Acta Biomater., 2017, 53, 610-618.
[http://dx.doi.org/10.1016/j.actbio.2017.01.082] [PMID: 28213095]
[9]
Malugin, A.; Ghandehari, H. Arnida. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J. Appl. Toxicol., 2010, 30(3), 212-217.
[PMID: 19902477]
[10]
Wang, X.; Chen, H.; Zheng, Y.; Ma, M.; Chen, Y.; Zhang, K.; Zeng, D.; Shi, J. Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials, 2013, 34(8), 2057-2068.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.044] [PMID: 23246067]
[11]
Xie, X.; Liao, J.; Shao, X.; Li, Q.; Lin, Y. The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci. Rep., 2017, 7(1), 3827.
[http://dx.doi.org/10.1038/s41598-017-04229-z] [PMID: 28630477]
[12]
Firdhouse, M.J.; Lalitha, P. flower-shaped gold nanoparticles synthesized using Kedrostis Foetidissima and their antiproliferative activity against bone cancer cell lines. Int. J. Ind. Chem., 2016, 7(4), 347-358.
[http://dx.doi.org/10.1007/s40090-016-0098-4]
[13]
Hu, R.; Zheng, M.; Wu, J.; Li, C.; Shen, D.; Yang, D.; Li, L.; Ge, M.; Chang, Z.; Dong, W. Core-shell magnetic gold nanoparticles for magnetic field-enhanced radio-photothermal therapy in cervical cancer. Nanomaterials, 2017, 7(5)E111
[http://dx.doi.org/10.3390/nano7050111] [PMID: 28492507]
[14]
Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I.H.; Yoo, K.H. Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano, 2009, 3(10), 2919-2926.
[http://dx.doi.org/10.1021/nn900215k] [PMID: 19772302]
[15]
Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 1951, 11, 55-75.
[http://dx.doi.org/10.1039/df9511100055]
[16]
FRENS. G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci (Lond.), 1973, 241(105), 20-22.
[http://dx.doi.org/10.1038/physci241020a0]
[17]
Zarabi, M.F.; Arshadi, N.; Farhangi, A.; Akbarzadeh, A. Preparation and characterization of gold nanoparticles with amino acids, examination of their stability. Indian J. Clin. Biochem., 2014, 29(3), 306-314.
[http://dx.doi.org/10.1007/s12291-013-0358-4] [PMID: 24966478]
[18]
Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun., 1994, 0(7), 801-802.
[http://dx.doi.org/10.1039/C39940000801]
[19]
Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D.J.; Kiely, C. Synthesis and reactions of functionalized gold nanoparticles. J. Chem. Soc. Chem. Commun., 1995, 16, 1655-1656.
[http://dx.doi.org/10.1039/c39950001655]
[20]
Li, W.; Szoka, F.C., Jr Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res., 2007, 24(3), 438-449.
[http://dx.doi.org/10.1007/s11095-006-9180-5] [PMID: 17252188]
[21]
Jain, K.K. The role of nanobiotechnology in drug discovery. Drug Discov. Today, 2005, 10(21), 1435-1442.
[http://dx.doi.org/10.1016/S1359-6446(05)03573-7] [PMID: 16243263]
[22]
Rawat, P.; Rajput, Y.S.; Bharti, M.K.; Sharma, R. A Method for synthesis of gold nanoparticles using 1-amino-2- naphthol-4-sulphonic acid as reducing agent. Curr. Sci., 2016, 110(12), 2297-2300.
[http://dx.doi.org/10.18520/cs/v110/i12/2297-2300]
[23]
Huang, H.; Yang, X. Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromolecules, 2004, 5(6), 2340-2346.
[http://dx.doi.org/10.1021/bm0497116] [PMID: 15530050]
[24]
Sau, T.K.; Murphy, C.J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc., 2004, 126(28), 8648-8649.
[http://dx.doi.org/10.1021/ja047846d] [PMID: 15250706]
[25]
Bridges, C.R.; DiCarmine, P.M.; Fokina, A.; Huesmann, D.; Seferos, D.S. Synthesis of gold nanotubes with variable wall thicknesses. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(4), 1127-1133.
[http://dx.doi.org/10.1039/C2TA00729K]
[26]
Chen, Y.; Gu, X.; Nie, C-G.; Jiang, Z-Y.; Xie, Z-X.; Lin, C-J. Shape controlled growth of gold nanoparticles by a solution synthesis. Chem. Commun. (Camb.), 2005, 1(33), 4181-4183.
[http://dx.doi.org/10.1039/b504911c] [PMID: 16100596]
[27]
Xu, Z-C.; Shen, C-M.; Xiao, C-W.; Yang, T-Z.; Zhang, H-R.; Li, J-Q.; Li, H-L.; Gao, H-J. Wet Chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles. Nanotechnology, 2007, 18(11)115608
[http://dx.doi.org/10.1088/0957-4484/18/11/115608]
[28]
Yong, K.T.; Sahoo, Y.; Swihart, M.T.; Prasad, P.N. Synthesis and Plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold-silver core-shell nanostructures. Colloids Surf. A Physicochem. Eng. Asp., 2006, 290(1-3), 89-105.
[http://dx.doi.org/10.1016/j.colsurfa.2006.05.004]
[29]
Xing, L.; Chen, B.; Li, D.; Wu, W.; Ying, Z. Gold nanospheres enhanced photothermal therapy in a rat model. Lasers Surg. Med., 2018.
[http://dx.doi.org/10.1002/lsm.22793] [PMID: 29356033]
[30]
Liang, Y.; Liu, J.; Liu, T.; Yang, X. Anti-c-Met antibody bioconjugated with hollow gold nanospheres as a novel nanomaterial for targeted radiation ablation of human cervical cancer cell. Oncol. Lett., 2017, 14(2), 2254-2260.
[http://dx.doi.org/10.3892/ol.2017.6383] [PMID: 28789447]
[31]
Zhang, Y.; Zhang, Y.; Yin, L.; Xia, X.; Hu, F.; Liu, Q.; Qin, C.; Lan, X. Synthesis and bioevaluation of iodine-131 directly labeled cyclic RGD-PEGylated gold nanorods for tumor-targeted imaging. Contrast Media Mol. Imaging, 2017, 20176081724
[http://dx.doi.org/10.1155/2017/6081724] [PMID: 29434531]
[32]
Zhao, X.; Lu, D.; Liu, Q.S.; Li, Y.; Feng, R.; Hao, F.; Qu, G.; Zhou, Q.; Jiang, G. Hematological effects of gold nanorods on erythrocytes: hemolysis and hemoglobin conformational and functional changes. Adv. Sci. (Weinh.), 2017, 4(12)1700296
[http://dx.doi.org/10.1002/advs.201700296] [PMID: 29270341]
[33]
Zhang, Z.; Xu, S.; Wang, Y.; Yu, Y.; Li, F.; Zhu, H.; Shen, Y.; Huang, S.; Guo, S. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J. Colloid Interface Sci., 2018, 509, 47-57.
[http://dx.doi.org/10.1016/j.jcis.2017.08.097] [PMID: 28881205]
[34]
Huang, S.; Li, C.; Wang, W.; Li, H.; Sun, Z.; Song, C.; Li, B.; Duan, S.; Hu, Y. A54 peptide-mediated functionalized gold nanocages for targeted delivery of DOX as a combinational photothermal-chemotherapy for liver cancer. Int. J. Nanomedicine, 2017, 12, 5163-5176.
[http://dx.doi.org/10.2147/IJN.S131089] [PMID: 28790823]
[35]
Bibikova, O.; Haas, J.; López-Lorente, Á.I.; Popov, A.; Kinnunen, M.; Ryabchikov, Y.; Kabashin, A.; Meglinski, I.; Mizaikoff, B. Surface enhanced infrared absorption spectroscopy based on gold nanostars and spherical nanoparticles. Anal. Chim. Acta, 2017, 990, 141-149.
[http://dx.doi.org/10.1016/j.aca.2017.07.045] [PMID: 29029737]
[36]
Zhu, H.; Liu, W.; Cheng, Z.; Yao, K.; Yang, Y.; Xu, B.; Su, G. Targeted delivery of siRNA with ph-responsive hybrid gold nanostars for cancer treatment. Int. J. Mol. Sci., 2017, 18(10)E2029
[http://dx.doi.org/10.3390/ijms18102029] [PMID: 28937584]
[37]
Bhattarai, S.R.; Derry, P.J.; Aziz, K.; Singh, P.K.; Khoo, A.M.; Chadha, A.S.; Liopo, A.; Zubarev, E.R.; Krishnan, S. Gold nanotriangles: scale up and X-ray radiosensitization effects in mice. Nanoscale, 2017, 9(16), 5085-5093.
[http://dx.doi.org/10.1039/C6NR08172J] [PMID: 28134383]
[38]
Tangeysh, B.; Tibbetts, K.M.; Odhner, J.H.; Wayland, B.B.; Levis, R.J. Gold nanotriangle formation through strong-field laser processing of aqueous Kaucl4 and postirradiation reduction by hydrogen peroxide. Langmuir, 2017, 33(1), 243-252.
[http://dx.doi.org/10.1021/acs.langmuir.6b03812] [PMID: 27983860]
[39]
Liebig, F.; Henning, R.; Sarhan, R.M.; Prietzel, C.; Bargheer, M.; Koetz, J. A new route to gold nanoflowers. Nanotechnology, 2018, 29(18)185603
[http://dx.doi.org/10.1088/1361-6528/aaaffd] [PMID: 29451134]
[40]
Ahn, S.; Singh, P.; Jang, M.; Kim, Y-J.; Castro-Aceituno, V.; Simu, S.Y.; Kim, Y.J.; Yang, D-C. Gold nanoflowers synthesized using Acanthopanacis cortex extract inhibit inflammatory mediators in LPS-induced RAW264.7 macrophages via NF-κB and AP-1 pathways. Colloids Surf. B Biointerfaces, 2018, 162, 398-404.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.037] [PMID: 29245117]
[41]
Poudel, B.K.; Gupta, B.; Ramasamy, T.; Thapa, R.K.; Pathak, S.; Oh, K.T.; Jeong, J-H.; Choi, H-G.; Yong, C.S.; Kim, J.O. PEGylated thermosensitive lipid-coated hollow gold nanoshells for effective combinational chemo-photothermal therapy of pancreatic cancer. Colloids Surf. B Biointerfaces, 2017, 160, 73-83.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.010] [PMID: 28917152]
[42]
Xing, T.Y.; Zhao, J.; Weng, G.J.; Zhu, J.; Li, J.J.; Zhao, J.W. Specific detection of carcinoembryonic antigen based on fluorescence quenching of hollow porous gold nanoshells with roughened surface. ACS Appl. Mater. Interfaces, 2017, 9(42), 36632-36641.
[http://dx.doi.org/10.1021/acsami.7b11310] [PMID: 29023105]
[43]
Hien, N.Q.; Van Phu, D.; Duy, N.N.; Quoc, A. Radiation synthesis and characterization of hyaluronan capped gold nanoparticles. Carbohydr. Polym., 2012, 89(2), 537-541.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.041] [PMID: 24750755]
[44]
Hanžić, N.; Jurkin, T.; Maksimović, A.; Gotić, M. The synthesis of gold nanoparticles by a citrate-radiolytical method. Radiat. Phys. Chem., 2015, 106, 77-82.
[http://dx.doi.org/10.1016/j.radphyschem.2014.07.006]
[45]
Phan, H.N.D.; Doan, T.T.T.; Van Phu, D.; Duy, N.N.; Quy, H.T.D.; Hoa, T.T.; Hien, N.Q. Synthesis of gold nanoparticles stabilized in dextran solution by gamma Co-60 ray irradiation and preparation of gold nanoparticles/dextran powder. J. Chem., 2017.6836375
[http://dx.doi.org/10.1155/2017/6836375]
[46]
Ngo, V.K.T.; Nguyen, H.P.U.; Huynh, T.P.; Tran, N.N.P.; Lam, Q.V.; Huynh, T.D. Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. Coli O157:H7. Adv. Nat. Sci. Nanosci. Nanotechnol., 2015, 6(3)035015
[http://dx.doi.org/10.1088/2043-6262/6/3/035015]
[47]
Aqil, A.; Serwas, H.; Delplancke, J.L.; Jérôme, R.; Jérôme, C.; Canet, L. Preparation of stable suspensions of gold nanoparticles in water by sonoelectrochemistry. Ultrason. Sonochem., 2008, 15(6), 1055-1061.
[http://dx.doi.org/10.1016/j.ultsonch.2008.04.004] [PMID: 18519170]
[48]
Huang, W.C.; Chen, Y.C. Photochemical synthesis of polygonal gold nanoparticles. J. Nanopart. Res., 2008, 10(4), 697-702.
[http://dx.doi.org/10.1007/s11051-007-9293-8]
[49]
Dong, S.; Tang, C.; Zhou, H.; Zhao, H. Photochemical synthesis of gold nanoparticles by the sunlight radiation using a seeding approach. Gold Bull., 2004, 37(3–4), 187-195.
[http://dx.doi.org/10.1007/BF03215212]
[50]
Huang, C-J.; Chiu, P-H.; Wang, Y-H.; Chen, K-L.; Linn, J-J.; Yang, C-F. Electrochemically controlling the size of gold nanoparticles. J. Electrochem. Soc., 2006, 153, D193.
[http://dx.doi.org/10.1149/1.2358103]
[51]
Correard, F.; Maximova, K.; Estève, M.A.; Villard, C.; Roy, M.; Al-Kattan, A.; Sentis, M.; Gingras, M.; Kabashin, A.V.; Braguer, D. Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications. Int. J. Nanomedicine, 2014, 9(1), 5415-5430.
[PMID: 25473280]
[52]
Bayazit, M.K.; Yue, J.; Cao, E.; Gavriilidis, A.; Tang, J. Controllable synthesis of gold nanoparticles in aqueous solution by microwave assisted flow chemistry. ACS Sustain. Chem.& Eng., 2016, 4(12), 6435-6442.
[http://dx.doi.org/10.1021/acssuschemeng.6b01149]
[53]
Reddy, A.S.; Chen, C-Y.; Chen, C-C.; Jean, J-S.; Chen, H-R.; Tseng, M-J.; Fan, C-W.; Wang, J-C. Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J. Nanosci. Nanotechnol., 2010, 10(10), 6567-6574.
[http://dx.doi.org/10.1166/jnn.2010.2519] [PMID: 21137763]
[54]
Malarkodi, C.; Rajeshkumar, S.; Vanaja, M.; Paulkumar, K.; Gnanajobitha, G.; Annadurai, G. Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella Pneumoniae. J. Nanostructure Chem., 2013, 3(1), 30.
[http://dx.doi.org/10.1186/2193-8865-3-30]
[55]
Mukherjee, P.; Senapati, S.; Mandal, D.; Ahmad, A.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem, 2002, 3(5), 461-463.
[http://dx.doi.org/10.1002/1439-7633(20020503)3:5<461:AID-CBIC461>3.0.CO;2-X] [PMID: 12007181]
[56]
Ahmad, A.; Senapati, S.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular Biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora Sp. Langmuir, 2003, 19(8), 3550-3553.
[http://dx.doi.org/10.1021/la026772l]
[57]
Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I.; Ramani, R.; Parischa, R.; Ajayakumar, P.V.; Alam, M. Bioreduction of AuCl4- ions by the fungus, Verticillium Sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed., 2001, 40(19), 3585-3588.
[http://dx.doi.org/10.1002/1521-3773(20011001)40:19<3585:AID-ANIE3585>3.0.CO;2-K]
[58]
Chauhan, A.; Zubair, S.; Tufail, S.; Sherwani, A.; Sajid, M.; Raman, S.C.; Azam, A.; Owais, M. Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int. J. Nanomedicine, 2011, 6, 2305-2319.
[http://dx.doi.org/10.2147/IJN.S23195] [PMID: 22072868]
[59]
Ahmad, a; Senapati, S.; Khan, M. I.; Kumar, R.; Ramani, R.; Srinivas, V.; Sastry, M. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, rhodococcus species. Nanotechnology, 2016, 2003(14), 824-828.
[60]
He, S.; Guo, Z.; Zhang, Y.; Zhang, S.; Wang, J.; Gu, N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas Capsulata. Mater. Lett., 2007, 61(18), 3984-3987.
[http://dx.doi.org/10.1016/j.matlet.2007.01.018]
[61]
Baptista, P.V. Cancer nanotechnology - prospects for cancer diagnostics and therapy. Curr. Cancer Ther. Rev., 2009, 5(2), 80-88.
[http://dx.doi.org/10.2174/157339409788166733]
[62]
Sanna, V.; Pala, N.; Sechi, M. Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomedicine, 2014, 9, 467-483.
[PMID: 24531078]
[63]
Duncan, B.; Kim, C.; Rotello, V.M. Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J. Control. Release, 2010, 148(1), 122-127.
[http://dx.doi.org/10.1016/j.jconrel.2010.06.004] [PMID: 20547192]
[64]
Jiang, W.; Kim, B.Y.S.; Rutka, J.T.; Chan, W.C.W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol., 2008, 3(3), 145-150.
[http://dx.doi.org/10.1038/nnano.2008.30] [PMID: 18654486]
[65]
Park, C.; Youn, H.; Kim, H.; Noh, T.; Kook, Y.H.; Oh, E.T.; Park, H.J.; Kim, C. Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. J. Mater. Chem., 2009, 19(16), 2310.
[http://dx.doi.org/10.1039/b816209c]
[66]
Lee, C.S.; Kim, H.; Yu, J.; Yu, S.H.; Ban, S.; Oh, S.; Jeong, D. Im, J.; Baek, M. J.; Kim, T.H. Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: a promising in vivo drug delivery system for colorectal cancer therapy. Eur. J. Med. Chem., 2017, 142, 416-423.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.063] [PMID: 28870452]
[67]
Gibson, J.D.; Khanal, B.P.; Zubarev, E.R. Paclitaxel-functionalized gold nanoparticles. J. Am. Chem. Soc., 2007, 129(37), 11653-11661.
[http://dx.doi.org/10.1021/ja075181k] [PMID: 17718495]
[68]
Dhar, S.; Daniel, W.L.; Giljohann, D.A.; Mirkin, C.A.; Lippard, S.J. Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV) warheads. J. Am. Chem. Soc., 2009, 131(41), 14652-14653.
[http://dx.doi.org/10.1021/ja9071282] [PMID: 19778015]
[69]
Brown, S.D.; Nativo, P.; Smith, J-A.; Stirling, D.; Edwards, P.R.; Venugopal, B.; Flint, D.J.; Plumb, J.A.; Graham, D.; Wheate, N.J. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc., 2010, 132(13), 4678-4684.
[http://dx.doi.org/10.1021/ja908117a] [PMID: 20225865]
[70]
Lee, S.H.; Bae, K.H.; Kim, S.H.; Lee, K.R.; Park, T.G. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int. J. Pharm., 2008, 364(1), 94-101.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.027] [PMID: 18723087]
[71]
Rastogi, L.; Kora, A.J. J, A. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics. Mater. Sci. Eng. C, 2012, 32(6), 1571-1577.
[http://dx.doi.org/10.1016/j.msec.2012.04.044] [PMID: 24364962]
[72]
Misra, S. Human gene therapy: a brief overview of the genetic revolution. J. Assoc. Physicians India, 2013, 61(2), 127-133.
[PMID: 24471251]
[73]
Zhao, N.; Fogg, J.M.; Zechiedrich, L.; Zu, Y. Transfection of shRNA-encoding Minivector DNA of a few hundred base pairs to regulate gene expression in lymphoma cells. Gene Ther., 2011, 18(3), 220-224.
[http://dx.doi.org/10.1038/gt.2010.123] [PMID: 20962872]
[74]
Mansoori, B. RNA Interference and Its Role in Cancer Therapy, December. 2014, 313-321.
[75]
Bonadio, J.; Smiley, E.; Patil, P.; Goldstein, S. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat. Med., 1999, 5(7), 753-759.
[http://dx.doi.org/10.1038/10473] [PMID: 10395319]
[76]
Thomas, C.E.; Ehrhardt, A.; Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet., 2003, 4(5), 346-358.
[http://dx.doi.org/10.1038/nrg1066] [PMID: 12728277]
[77]
Balasubramanian, S.K.; Yang, L.; Yung, L.Y.L.; Ong, C.N.; Ong, W.Y.; Yu, L.E. Characterization, purification, and stability of gold nanoparticles. Biomaterials, 2010, 31(34), 9023-9030.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.012] [PMID: 20801502]
[78]
Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601), 2176-2179.
[http://dx.doi.org/10.1126/science.1077229] [PMID: 12481134]
[79]
Giljohann, D.A.; Seferos, D.S.; Prigodich, A.E.; Patel, P.C.; Mirkin, C.A. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc., 2009, 131(6), 2072-2073.
[http://dx.doi.org/10.1021/ja808719p] [PMID: 19170493]
[80]
Zhu, Z-J.; Carboni, R.; Quercio, M.; Yan, B.; Miranda, O.R.; Anderton, D.L.; Arcaro, K.F.; Rotello, V.M.; Vachet, R.W. Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish. Small, 6(20), 2261-2265.
[http://dx.doi.org/10.1002/smll.201000989] [PMID: 20842664]
[81]
Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.), 2008, 3(5), 703-717.
[http://dx.doi.org/10.2217/17435889.3.5.703] [PMID: 18817471]
[82]
Handy, R.D.; Henry, T.B.; Scown, T.M.; Johnston, B.D.; Tyler, C.R. Manufactured nanoparticles: their uptake and effects on fish-a mechanistic analysis. Ecotoxicology, 2008, 17(5), 396-409.
[http://dx.doi.org/10.1007/s10646-008-0205-1]
[83]
Seferos, D.S.; Prigodich, A.E.; Giljohann, D.A.; Patel, P.C.; Mirkin, C.A. Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett., 2009, 9(1), 308-311.
[http://dx.doi.org/10.1021/nl802958f] [PMID: 19099465]
[84]
Rosi, N.L.; Giljohann, D.A.; Thaxton, C.S.; Lytton-Jean, A.K.R.; Han, M.S.; Mirkin, C.A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science, 2006, 312(5776), 1027-1030.
[http://dx.doi.org/10.1126/science.1125559]
[85]
Lee, J.S.; Green, J.J.; Love, K.T.; Sunshine, J.; Langer, R.; Anderson, D.G. Gold, poly(beta-amino ester) nanoparticles for small interfering RNA delivery. Nano Lett., 2009, 9(6), 2402-2406.
[http://dx.doi.org/10.1021/nl9009793] [PMID: 19422265]
[86]
Thomas, M.; Klibanov, A.M. Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. USA, 2003, 100(16), 9138-9143.
[http://dx.doi.org/10.1073/pnas.1233634100] [PMID: 12886020]
[87]
Ghosh, P.S.; Han, G.; Erdogan, B.; Rosado, O.; Krovi, S.A.; Rotello, V.M. Nanoparticles featuring amino acid-functionalized side chains as DNA receptors. Chem. Biol. Drug Des., 2007, 70(1), 13-18.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00534.x] [PMID: 17630990]
[88]
Sandhu, K.K.; McIntosh, C.M.; Simard, J.M.; Smith, S.W.; Rotello, V.M. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug. Chem., 2002, 13(1), 3-6.
[http://dx.doi.org/10.1021/bc015545c] [PMID: 11792172]
[89]
Schäffler, M.; Sousa, F.; Wenk, A.; Sitia, L.; Hirn, S.; Schleh, C.; Haberl, N.; Violatto, M.; Canovi, M.; Andreozzi, P.; Salmona, M.; Bigini, P.; Kreyling, W.G.; Krol, S. Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials, 2014, 35(10), 3455-3466.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.100] [PMID: 24461938]
[90]
Visaria, R.K.; Griffin, R.J.; Williams, B.W.; Ebbini, E.S.; Paciotti, G.F.; Song, C.W.; Bischof, J.C. Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery. Mol. Cancer Ther., 2006, 5(4), 1014-1020.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0381] [PMID: 16648573]
[91]
Sharma, A.; Matharu, Z.; Sumana, G.; Solanki, P.R.; Kim, C.G.; Malhotra, B.D. Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection. Thin Solid Films, 2010, 519, 1213-1218.
[http://dx.doi.org/10.1016/j.tsf.2010.08.071]
[92]
Bhumkar, D.R.; Joshi, H.M.; Sastry, M.; Pokharkar, V.B. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res., 2007, 24(8), 1415-1426.
[http://dx.doi.org/10.1007/s11095-007-9257-9] [PMID: 17380266]
[93]
Comber, J.D.; Gold Nanoparticles, B.A. (AuNPs): a new frontier in vaccine delivery. J. Nanomed. Biother. Discov., 2015, 5e139
[94]
Shiang, Y-C.; Ou, C-M.; Chen, S-J.; Ou, T-Y.; Lin, H-J.; Huang, C-C.; Chang, H-T. Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles. Nanoscale, 2013, 5(7), 2756-2764.
[http://dx.doi.org/10.1039/c3nr33403a] [PMID: 23429884]
[95]
Marradi, M.; Di Gianvincenzo, P.; Enríquez-Navas, P.M.; Martínez-Ávila, O.M.; Chiodo, F.; Yuste, E.; Angulo, J.; Penadés, S. Gold nanoparticles coated with oligomannosides of HIV-1 glycoprotein gp120 mimic the carbohydrate epitope of antibody 2G12. J. Mol. Biol., 2011, 410(5), 798-810.
[http://dx.doi.org/10.1016/j.jmb.2011.03.042] [PMID: 21440555]
[96]
Di Gianvincenzo, P.; Chiodo, F.; Marradi, M.; Penadés, S. Gold manno-glyconanoparticles for intervening in HIV gp120 carbohydrate-mediated processes. Methods Enzymol., 2012, 509, 21-40.
[http://dx.doi.org/10.1016/B978-0-12-391858-1.00002-2] [PMID: 22568899]
[97]
Rosemary Bastian, A.; Nangarlia, A.; Bailey, L.D.; Holmes, A.; Kalyana Sundaram, R.V.; Ang, C.; Moreira, D.R.M.; Freedman, K.; Duffy, C.; Contarino, M.; Abrams, C.; Root, M.; Chaiken, I. Mechanism of multivalent nanoparticle encounter with HIV-1 for potency enhancement of peptide triazole virus inactivation. J. Biol. Chem., 2015, 290(1), 529-543.
[http://dx.doi.org/10.1074/jbc.M114.608315] [PMID: 25371202]
[98]
Lim, Z.Z.; Li, J.E.; Ng, C.T.; Yung, L.Y.; Bay, B.H. Gold nanoparticles in cancer therapy. Acta Pharmacol. Sin., 2011, 32(8), 983-990.
[http://dx.doi.org/10.1038/aps.2011.82] [PMID: 21743485]
[99]
Kodiha, M.; Wang, Y.M.; Hutter, E.; Maysinger, D.; Stochaj, U. Off to the organelles - killing cancer cells with targeted gold nanoparticles. Theranostics, 2015, 5(4), 357-370.
[http://dx.doi.org/10.7150/thno.10657] [PMID: 25699096]
[100]
Mateo, D.; Morales, P.; Ávalos, A.; Haza, A.I. Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells. Toxicol. Mech. Methods, 2014, 24(3), 161-172.
[http://dx.doi.org/10.3109/15376516.2013.869783] [PMID: 24274460]
[101]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci., 2008, 23(3), 217-228.
[http://dx.doi.org/10.1007/s10103-007-0470-x] [PMID: 17674122]
[102]
Dayanc, B.E.; Beachy, S.H.; Ostberg, J.R.; Repasky, E.A. Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses. Int. J. Hyperthermia, 2008, 24(1), 41-56.
[http://dx.doi.org/10.1080/02656730701858297] [PMID: 18214768]
[103]
You, J.; Zhang, R.; Zhang, G.; Zhong, M.; Liu, Y.; Van Pelt, C.S.; Liang, D.; Wei, W.; Sood, A.K.; Li, C. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J. Control. Release, 2012, 158(2), 319-328.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.028] [PMID: 22063003]
[104]
Kampinga, H.H. Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int. J. Hyperthermia, 2006, 22(3), 191-196.
[http://dx.doi.org/10.1080/02656730500532028] [PMID: 16754338]
[105]
Kennedy, L.C.; Bickford, L.R.; Lewinski, N.A.; Coughlin, A.J.; Hu, Y.; Day, E.S.; West, J.L.; Drezek, R.A. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small, 2011, 7(2), 169-183.
[http://dx.doi.org/10.1002/smll.201000134] [PMID: 21213377]
[106]
Chatterjee, D.K.; Diagaradjane, P.; Krishnan, S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv., 2011, 2(8), 1001-1014.
[http://dx.doi.org/10.4155/tde.11.72] [PMID: 22506095]
[107]
Cherukuri, P.; Glazer, E.S.; Curley, S.A. Targeted hyperthermia using metal nanoparticles. Adv. Drug Deliv. Rev., 2010, 62(3), 339-345.
[http://dx.doi.org/10.1016/j.addr.2009.11.006] [PMID: 19909777]
[108]
Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol., 2002, 43(1), 33-56.
[http://dx.doi.org/10.1016/S1040-8428(01)00179-2] [PMID: 12098606]
[109]
Lee, S.M.; Park, H.; Choi, J.W.; Park, Y.N.; Yun, C.O.; Yoo, K.H. Multifunctional nanoparticles for targeted chemophotothermal treatment of cancer cells. Angew. Chem. Int. Ed. Engl., 2011, 50(33), 7581-7586.
[http://dx.doi.org/10.1002/anie.201101783] [PMID: 21721086]
[110]
Liu, H.; Chen, D.; Li, L.; Liu, T.; Tan, L.; Wu, X.; Tang, F. Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem. Int. Ed. Engl., 2011, 50(4), 891-895.
[http://dx.doi.org/10.1002/anie.201002820] [PMID: 21246685]
[111]
Delaney, G.P.; Barton, M.B. Evidence-based estimates of the demand for radiotherapy. Clin. Oncol. (R. Coll. Radiol.), 2015, 27(2), 70-76.
[http://dx.doi.org/10.1016/j.clon.2014.10.005] [PMID: 25455408]
[112]
Greish, K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J. Drug Target., 2007, 15(7-8), 457-464.
[http://dx.doi.org/10.1080/10611860701539584] [PMID: 17671892]
[113]
Zhang, S.X.; Gao, J.; Buchholz, T.A.; Wang, Z.; Salehpour, M.R.; Drezek, R.A.; Yu, T.K. Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study. Biomed. Microdevices, 2009, 11(4), 925-933.
[http://dx.doi.org/10.1007/s10544-009-9309-5] [PMID: 19381816]
[114]
Hainfeld, J.M.; Smilowitz, H.M.; O’Connor, M.J.; Dilmanian, F.A.; Slatkin, D.N. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine (Lond.), 2013, 8(10), 1601-1609.
[http://dx.doi.org/10.2217/nnm.12.165] [PMID: 23265347]
[115]
Song, K.; Xu, P.; Meng, Y.; Geng, F.; Li, J.; Li, Z.; Xing, J.; Chen, J.; Kong, B. Smart gold nanoparticles enhance killing effect on cancer cells. Int. J. Oncol., 2013, 42(2), 597-608.
[http://dx.doi.org/10.3892/ijo.2012.1721] [PMID: 23229536]
[116]
Zhang, X.; Xing, J. Z.; Chen, J.; Ko, L.; Amanie, J.; Gulavita, S.; Pervez, N.; Yee, D.; Moore, R.; Roa, W. Enhanced radiation sensitivity in prostate cancer by goldnanoparticles. Clin. Investig. Med, 2008, 31(3)
[http://dx.doi.org/10.25011/cim.v31i3.3473]
[117]
Antosh, M.P.; Wijesinghe, D.D.; Shrestha, S.; Lanou, R.; Huang, Y.H.; Hasselbacher, T.; Fox, D.; Neretti, N.; Sun, S.; Katenka, N.; Cooper, L.N.; Andreev, O.A.; Reshetnyak, Y.K. Enhancement of radiation effect on cancer cells by gold-pHLIP. Proc. Natl. Acad. Sci. USA, 2015, 112(17), 5372-5376.
[http://dx.doi.org/10.1073/pnas.1501628112] [PMID: 25870296]
[118]
Xi, J.; Qian, X.; Qian, K.; Zhang, W.; He, W.; Chen, Y.; Han, J.; Zhang, Y.; Yang, X.; Fan, L. Au nanoparticle-coated, plga-based hybrid capsules for combined ultrasound imaging and HIFU Therapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(20), 4213-4220.
[http://dx.doi.org/10.1039/C5TB00200A]
[119]
Su, C-H.; Sheu, H-S.; Lin, C-Y.; Huang, C-C.; Lo, Y-W.; Pu, Y-C.; Weng, J-C.; Shieh, D-B.; Chen, J-H.; Yeh, C-S. Nanoshell magnetic resonance imaging contrast agents. J. Am. Chem. Soc., 2007, 129(7), 2139-2146.
[http://dx.doi.org/10.1021/ja0672066] [PMID: 17263533]
[120]
Moon, G.D.; Choi, S.W.; Cai, X.; Li, W.; Cho, E.C.; Jeong, U.; Wang, L.V.; Xia, Y. A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J. Am. Chem. Soc., 2011, 133(13), 4762-4765.
[http://dx.doi.org/10.1021/ja200894u] [PMID: 21401092]
[121]
Olafsson, R.; Bauer, D.R.; Montilla, L.G.; Witte, R.S. Real-time, contrast enhanced photoacoustic imaging of cancer in a mouse window chamber. Opt. Express, 2010, 18(18), 18625-18632.
[http://dx.doi.org/10.1364/OE.18.018625] [PMID: 20940754]
[122]
Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett., 2007, 7(6), 1591-1597.
[http://dx.doi.org/10.1021/nl070472c] [PMID: 17474783]
[123]
Lyandres, O.; Yuen, J. M.; Shah, N. C.; VanDuyne, R. P.; Walsh, J. T.; Glucksberg, M. R. Progress Toward an In Vivo Surface-Enhanced Raman Spectroscopy Glucose Sensor. Diabetes Technology & Therapeutics;, 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801USA August. 2008, 257-265.
[http://dx.doi.org/10.1089/dia.2007.0288]
[124]
Herizchi, R.; Abbasi, E.; Milani, M.; Akbarzadeh, A. Current methods for synthesis of gold nanoparticles. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 596-602.
[http://dx.doi.org/10.3109/21691401.2014.971807] [PMID: 25365243]
[125]
Eustis, S.; el-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev., 2006, 35(3), 209-217.
[http://dx.doi.org/10.1039/B514191E] [PMID: 16505915]
[126]
Cao, J.; Sun, T.; Grattan, K.T.V. Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens. Actuators B Chem., 2014, 195, 332-351.
[http://dx.doi.org/10.1016/j.snb.2014.01.056]
[127]
Pan, Y.; Leifert, A.; Ruau, D.; Neuss, S.; Bornemann, J.; Schmid, G.; Brandau, W.; Simon, U.; Jahnen-Dechent, W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 2009, 5(18), 2067-2076.
[http://dx.doi.org/10.1002/smll.200900466] [PMID: 19642089]
[128]
Alkilany, A.M.; Murphy, C.J. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res., 2010, 12(7), 2313-2333.
[http://dx.doi.org/10.1007/s11051-010-9911-8] [PMID: 21170131]
[129]
Chithrani, D.B.; Jelveh, S.; Jalali, F.; van Prooijen, M.; Allen, C.; Bristow, R.G.; Hill, R.P.; Jaffray, D.A. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat. Res., 2010, 173(6), 719-728.
[http://dx.doi.org/10.1667/RR1984.1] [PMID: 20518651]
[130]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[131]
Haume, K.; Rosa, S.; Grellet, S.; Śmiałek, M.A.; Butterworth, K.T.; Solov’yov, A.V.; Prise, K.M.; Golding, J.; Mason, N.J. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol., 2016, 7(1), 8.
[http://dx.doi.org/10.1186/s12645-016-0021-x] [PMID: 27867425]
[132]
Muddineti, O.S.; Ghosh, B.; Biswas, S. Current trends in using polymer coated gold nanoparticles for cancer therapy. Int. J. Pharm., 2015, 484(1-2), 252-267.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.038] [PMID: 25701627]
[133]
Butterworth, K.T.; McMahon, S.J.; Currell, F.J.; Prise, K.M. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 2012, 4(16), 4830-4838.
[http://dx.doi.org/10.1039/c2nr31227a] [PMID: 22767423]
[134]
Siddiqui, E.A.; Ahmad, A.; Julius, A.; Syed, A.; Khan, S.; Kharat, M.; Pai, K.; Kadoo, N.; Gupta, V. Biosynthesis of anti-proliferative gold nanoparticles using endophytic Fusarium oxysporum strain isolated from neem (a. indica) leaves. Curr. Top. Med. Chem., 2016, 16(18), 2036-2042.
[http://dx.doi.org/10.2174/1568026616666160215160644] [PMID: 26876519]
[135]
Loutfy, S.A.; Al-Ansary, N.A.; Abdel-Ghani, N.T.; Hamed, A.R.; Mohamed, M.B.; Craik, J.D.; Eldin, T.A.; Abdellah, A.M.; Hussein, Y.; Hasanin, M.T.M.; Elbehairi, S.E. Anti-proliferative activities of metallic nanoparticles in an in vitro breast cancer model. Asian Pac. J. Cancer Prev., 2015, 16(14), 6039-6046.
[http://dx.doi.org/10.7314/APJCP.2015.16.14.6039] [PMID: 26320493]
[136]
Suganya, U.S.U.; Govindaraju, K.; Kumar, G.G.; Prabhu, D.; Arulvasu, C.; Dhas, S.S.; Karthick, V.; Changmai, N. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7). Appl. Surf. Sci., 2016, 371, 415-424.
[http://dx.doi.org/10.1016/j.apsusc.2016.03.004]
[137]
Tan, G.; Onur, M.A. Anti-proliferative effects of gold nanoparticles functionalized with semaphorin 3F. J. Nanopart. Res., 2017, 19(8), 283.
[http://dx.doi.org/10.1007/s11051-017-3967-7]
[138]
Wójcik, M.; Lewandowski, W.; Król, M.; Pawłowski, K.; Mieczkowski, J.; Lechowski, R.; Zabielska, K. Enhancing anti-tumor efficacy of doxorubicin by non-covalent conjugation to gold nanoparticles - in vitro studies on feline fibrosarcoma cell lines. PLoS One, 2015, 10(4)e0124955
[http://dx.doi.org/10.1371/journal.pone.0124955] [PMID: 25928423]
[139]
Nirmala, J.G.; Akila, S.; Nadar, M.S.A.M.; Narendhirakannan, R.T.; Chatterjee, S. Biosynthesized Vitis vinifera seed gold nanoparticles induce apoptotic cell death in A431 skin cancer Cells. RSC Advances, 2016, 6(85), 82205-82218.
[http://dx.doi.org/10.1039/C6RA16310F]
[140]
Kumar, C.G.; Poornachandra, Y.; Chandrasekhar, C. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway). Nanoscale, 2015, 7(44), 18738-18750.
[http://dx.doi.org/10.1039/C5NR04577K] [PMID: 26503300]
[141]
Selvi, S.K.; Kumar, J.M.; Sashidhar, R.B. Anti-proliferative activity of gum kondagogu (Cochlospermum gossypium)-gold nanoparticle constructs on b16f10 melanoma cells: an in vitro model. Bioact. Carbohydrates Diet. Fibre, 2017, 11(Suppl. C), 38-47.
[http://dx.doi.org/10.1016/j.bcdf.2017.07.002]
[142]
Ashokkumar, T.; Arockiaraj, J.; Vijayaraghavan, K. Biosynthesis of gold nanoparticles using green roof species Portulaca grandiflora and their cytotoxic effects against c6 glioma human cancer cells. Environ. Prog. Sustain. Energy, 2016, 35(6), 1732-1740.
[http://dx.doi.org/10.1002/ep.12385]
[143]
Balasubramani, G.; Ramkumar, R.; Krishnaveni, N.; Pazhanimuthu, A.; Natarajan, T.; Sowmiya, R.; Perumal, P. Structural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract(decoction)of Antigonon leptopus Hook. &Arn. J. Trace Elem. Med. Biol., 2015, 30(Suppl. C), 83-89.
[http://dx.doi.org/10.1016/j.jtemb.2014.11.001] [PMID: 25432487]
[144]
Abel, E.E.; Preetam, R.J.P.S.G.P. Characterization and in vitro studies on anticancer, antioxidant activity against colon cancer cell line of gold nanoparticles capped with Cassia tora SM leaf extract. Appl. Nanosci., 2016, 6(1), 121-129.
[http://dx.doi.org/10.1007/s13204-015-0422-x]
[145]
Anand, K.; Gengan, R.M.; Phulukdaree, A.; Chuturgoon, A. Agroforestry Waste moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J. Ind. Eng. Chem., 2015, 21(Suppl. C), 1105-1111.
[http://dx.doi.org/10.1016/j.jiec.2014.05.021]
[146]
Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. Engl., 2010, 49(19), 3280-3294.
[http://dx.doi.org/10.1002/anie.200904359] [PMID: 20401880]
[147]
Johnston, H.J.; Hutchison, G.; Christensen, F.M.; Peters, S.; Hankin, S.; Stone, V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit. Rev. Toxicol., 2010, 40(4), 328-346.
[http://dx.doi.org/10.3109/10408440903453074] [PMID: 20128631]
[148]
De Jong, W.H.; Hagens, W.I.; Krystek, P.; Burger, M.C.; Sips, A.J.A.M.; Geertsma, R.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 2008, 29(12), 1912-1919.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.037] [PMID: 18242692]
[149]
Gromnicova, R.; Davies, H.A.; Sreekanthreddy, P.; Romero, I.A.; Lund, T.; Roitt, I.M.; Phillips, J.B.; Male, D.K. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro. PLoS One, 2013, 8(12)e81043
[http://dx.doi.org/10.1371/journal.pone.0081043] [PMID: 24339894]
[150]
Zhang, X-D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y-M.; Liu, P-X.; Liang, X-J. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials, 2012, 33(27), 6408-6419.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.047] [PMID: 22681980]
[151]
Chen, N.; Yang, W.; Bao, Y.; Xu, H.; Qin, S.; Tu, Y. BSA Capped Au nanoparticle as an efficient sensitizer for glioblastoma tumor radiation therapy. RSC Advances, 2015, 5(51), 40514-40520.
[http://dx.doi.org/10.1039/C5RA04013B]
[152]
Bobyk, L.; Edouard, M.; Deman, P.; Vautrin, M.; Pernet-Gallay, K.; Delaroche, J.; Adam, J-F.; Estève, F.; Ravanat, J-L.; Elleaume, H. Photoactivation of gold nanoparticles for glioma treatment. Nanomedicine (Lond.), 2013, 9(7), 1089-1097.
[http://dx.doi.org/10.1016/j.nano.2013.04.007] [PMID: 23643529]
[153]
Huang, K.; Ma, H.; Liu, J.; Huo, S.; Kumar, A.; Wei, T.; Zhang, X.; Jin, S.; Gan, Y.; Wang, P.C.; He, S.; Zhang, X.; Liang, X.J. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano, 2012, 6(5), 4483-4493.
[http://dx.doi.org/10.1021/nn301282m] [PMID: 22540892]
[154]
Abdelhalim, M.A.K.; Mady, M.M. Liver uptake of gold nanoparticles after intraperitoneal administration in vivo: a fluorescence study. Lipids Health Dis., 2011, 10(1), 195.
[http://dx.doi.org/10.1186/1476-511X-10-195] [PMID: 22040092]
[155]
Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. How toxic are gold nanoparticles? The state-of-the-art. Nano Res., 2015, 8(6), 1771-1799.
[http://dx.doi.org/10.1007/s12274-014-0697-3]
[156]
Arvizo, R.R.; Rana, S.; Miranda, O.R.; Bhattacharya, R.; Rotello, V.M.; Mukherjee, P. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine (Lond.), 2011, 7(5), 580-587.
[http://dx.doi.org/10.1016/j.nano.2011.01.011] [PMID: 21333757]
[157]
Guo, M.; Sun, Y.; Zhang, X-D. Enhanced radiation therapy of gold nanoparticles in liver Cancer. Appl. Sci. (Basel), 2017, 7, 232.
[http://dx.doi.org/10.3390/app7030232]
[158]
Trono, J.D.; Mizuno, K.; Yusa, N.; Matsukawa, T.; Yokoyama, K.; Uesaka, M. Size, concentration and incubation time dependence of gold nanoparticle uptake into pancreas cancer cells and its future application to X-Ray drug delivery system. J. Radiat. Res. (Tokyo), 2011, 52(1), 103-109.
[http://dx.doi.org/10.1269/jrr.10068] [PMID: 21187668]
[159]
Zhang, Q.; Iwakuma, N.; Sharma, P.; Moudgil, B.M.; Wu, C.; McNeill, J.; Jiang, H.; Grobmyer, S.R. Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology, 2009, 20(39)395102
[http://dx.doi.org/10.1088/0957-4484/20/39/395102] [PMID: 19726840]
[160]
Hainfeld, J.F.; Slatkin, D.N.; Smilowitz, H.M. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol., 2004, 49(18), N309-N315.
[http://dx.doi.org/10.1088/0031-9155/49/18/N03] [PMID: 15509078]
[161]
Huo, S.; Ma, H.; Huang, K.; Liu, J.; Wei, T.; Jin, S.; Zhang, J.; He, S.; Liang, X.J. Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res., 2013, 73(1), 319-330.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2071] [PMID: 23074284]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy