Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Design and Biological Evaluation of Novel Imidazolyl Flavonoids as Potent and Selective Protein Tyrosine Phosphatase Inhibitors

Author(s): Rong Y. Han, Yu Ge, Ling Zhang* and Qing M. Wang

Volume 16, Issue 4, 2020

Page: [563 - 574] Pages: 12

DOI: 10.2174/1573406415666190430125547

Price: $65

Abstract

Background: Protein tyrosine phosphatases 1B are considered to be a desirable validated target for therapeutic development of type II diabetes and obesity.

Methods: A new series of imidazolyl flavonoids as potential protein tyrosine phosphatase inhibitors were synthesized and evaluated.

Results: Bioactive results indicated that some synthesized compounds exhibited potent protein phosphatase 1B (PTP1B) inhibitory activities at the micromolar range. Especially, compound 8b showed the best inhibitory activity (IC50=1.0 µM) with 15-fold selectivity for PTP1B over the closely related T-cell protein tyrosine phosphatase (TCPTP). Cell viability assays indicated that 8b is cell permeable with lower cytotoxicity. Molecular modeling and dynamics studies revealed the reason for selectivity of PTP1B over TCPTP. Quantum chemical studies were carried out on these compounds to understand the structural features essential for activity.

Conclusion: Compound 8b should be a potential selective PTP1B inhibitor.

Keywords: Flavonoid, imidazole, protein tyrosine phosphatase, selectivity, cell viability, molecular modeling.

Graphical Abstract

[1]
(a) Punthasee, P.; Laciak, A.R.; Cummings, A.H.; Ruddraraju, K.V.; Lewis, S.M.; Hillebrand, R.; Singh, H.; Tanner, J.J.; Gates, K.S. Covalent allosteric inactivation of protein tyrosine phosphatase 1B (PTP1B) by an inhibitor-electrophile conjugate. Biochemistry, 2017, 56(14), 2051-2060.
(b) Zhang, R.; Yu, R.; Xu, Q.; Li, X.; Luo, J.; Jiang, B.; Wang, L.; Guo, S.; Wu, N.; Shi, D. Discovery and evaluation of the hybrid of bromophenol and saccharide as potent and selective protein tyrosine phosphatase 1B inhibitors. Eur. J. Med. Chem., 2017, 134, 24-33.
[2]
(a) Ottanà, R.; Adornato, I.; Paoli, P.; Lori, G. Nass, A.; Wolber, G.; Cardile, V.; Graziano, A.C.E.; Rotondo, A.; Maccari, R.. Discovery of 4-[(5-arylidene-4-oxothiazolidin-3-yl)methyl]benzoic acid derivatives active as novel potent allosteric inhibitors of protein tyrosine phosphatase 1B: In silico studies and in vitro evaluation as insulinomimetic and anti-inflammatory agents. Eur. J. Med. Chem., 2017, 127, 840-858.
(b) Jia, Y.; Yuan, C.; Lu, L.; Zhu, M.; Xing, S.; Fu, X. A dioxidovanadium (V) complex of NNO-donor Schiff base as a selective inhibitor of protein tyrosine phosphatase 1B: Synthesis, characterization, and biological activities. Eur. J. Med. Chem., 2017, 128, 287-292.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.063]
[3]
(a) Owen, C.; Lees, E.K.; Mody, N.; Delibegović, M. Regulation of growth hormone induced JAK2 and mTOR signalling by hepatic protein tyrosine phosphatase 1B. Diabetes Metab., 2015, 41(1), 95-101.
(b) Saltiel, C.A.R.; Kahn, R.; Kahn, R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 2001, 414, 799-806.
(c) Heneberg, P. Use of protein tyrosine phosphatase inhibitors as promising targeted therapeutic drugs. Curr. Med. Chem., 2009, 16(6), 706-733.
[PMID: 19199933]
[4]
(a) Palmer, N.D.; Bento, J.L.; Mychaleckyj, J.C.; Langefeld, C.D.; Campbell, J.K.; Norris, J.M.; Haffner, S.M.; Bergman, R.N.; Bowden, D.W. Association of protein tyrosine phosphatase 1B gene polymorphisms with measures of glucose homeostasis in Hispanic Americans: the insulin resistance atherosclerosis study (IRAS) family study. Diabetes, 2004, 53(11), 3013-3019.
(b) Spencer-Jones, N.J.; Wang, X.L.; Snieder, H.; Spector, T.D.; Carter, N.D.; O’Dell, S.D. Protein tyrosine phosphatase-1B gene PTPN1: selection of tagging single nucleotide polymorphisms and association with body fat, insulin sensitivity, and the metabolic syndrome in a normal female population. Diabetes, 2005, 54(11), 3296-3304.
[PMID: 16249458]
[5]
(a) Barford, D.; Flint, A.J.; Tonks, N.K. Crystal structure of human protein tyrosine phosphatase 1B. Science, 1994, 263, 1397-1404.
(b) Salmeen, A.; Andersen, J.N.; Myers, M.P.; Tonks, N.K.; Barford, D. Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol. Cell, 2000, 6(6), 1401-1412.
[PMID: 11163213]
[6]
Huang, Z.; Zhu, L.; Cao, Y.; Wu, G.; Liu, X.; Chen, Y.; Wang, Q.; Shi, T.; Zhao, Y.; Wang, Y.; Li, W.; Li, Y.; Chen, H.; Chen, G.; Zhang, J. ASD: a comprehensive database of allosteric proteins and modulators. Nucleic Acids Res., 2011, 39(Database issue), D663-D669.
[http://dx.doi.org/10.1093/nar/gkq1022] [PMID: 21051350]
[7]
(a) Huang, Z.; Mou, L.; Shen, Q.; Lu, S.; Li, C.; Liu, X.; Wang, G.; Li, S.; Geng, L.; Liu, Y.; Wu, J.; Chen, G.; Zhang, J. ASD v2.0: updated content and novel features focusing on allosteric regulation. Nucleic Acids Res., 2014, 42(Database issue), D510-D516.
[http://dx.doi.org/10.1093/nar/gkt1247] [PMID: 24293647]
(b) Wiesmann, C.; Barr, K.J.; Kung, J.; Zhu, J.; Erlanson, D.A.; Shen, W.; Fahr, B.J.; Zhong, M.; Taylor, L.; Randal, M.; McDowell, R.S.; Hansen, S.K. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat. Struct. Mol. Biol., 2004, 11(8), 730-737.
[http://dx.doi.org/10.1038/nsmb803] [PMID: 15258570]
[8]
Cui, W.; Cheng, Y.H.; Geng, L.L.; Liang, D.S.; Hou, T.J.; Ji, M.J. Unraveling the allosteric inhibition mechanism of PTP1B by free energy calculation based on umbrella sampling. J. Chem. Inf. Model., 2013, 53(5), 1157-1167.
[http://dx.doi.org/10.1021/ci300526u] [PMID: 23621621]
[9]
Di Paola, R.; Frittitta, L.; Miscio, G.; Bozzali, M.; Baratta, R.; Centra, M.; Spampinato, D.; Santagati, M.G.; Ercolino, T.; Cisternino, C.; Soccio, T.; Mastroianno, S.; Tassi, V.; Almgren, P.; Pizzuti, A.; Vigneri, R.; Trischitta, V. A variation in 3′ UTR of hPTP1B increases specific gene expression and associates with insulin resistance. Am. J. Hum. Genet., 2002, 70(3), 806-812.
[http://dx.doi.org/10.1086/339270] [PMID: 11833006]
[10]
Klupa, T.; Malecki, M.T.; Pezzolesi, M.; Ji, L.; Curtis, S.; Langefeld, C.D.; Rich, S.S.; Warram, J.H.; Krolewski, A.S. Further evidence for a susceptibility locus for type 2 diabetes on chromosome 20q13.1-q13.2. Diabetes, 2000, 49(12), 2212-2216.
[http://dx.doi.org/10.2337/diabetes.49.12.2212] [PMID: 11118028]
[11]
Jung, H.A.; Ali, M.Y.; Bhakta, H.K.; Min, B.S.; Choi, J.S. Prunin is a highly potent flavonoid from Prunus davidiana stems that inhibits protein tyrosine phosphatase 1B and stimulates glucose uptake in insulin-resistant HepG2 cells. Arch. Pharm. Res., 2017, 40(1), 37-48.
[http://dx.doi.org/10.1007/s12272-016-0852-3] [PMID: 27798765]
[12]
Zargari, F.; Lotfi, M.; Shahraki, O.; Nikfarjam, Z.; Shahraki, J. Flavonoids as potent allosteric inhibitors of protein tyrosine phosphatase 1B: molecular dynamics simulation and free energy calculation. J. Biomol. Struct. Dyn., 2018, 36(15), 4126-4142.
[http://dx.doi.org/10.1080/07391102.2017.1409651] [PMID: 29216799]
[13]
Song, Y.H.; Uddin, Z.; Jin, Y.M.; Li, Z.; Curtis-Long, M.J.; Kim, K.D.; Cho, J.K.; Park, K.H. Inhibition of protein tyrosine phosphatase (PTP1B) and α-glucosidase by geranylated flavonoids from Paulownia tomentosa. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1195-1202.
[http://dx.doi.org/10.1080/14756366.2017.1368502] [PMID: 28933230]
[14]
Jung, H.A.; Paudel, P.; Seong, S.H.; Min, B-S.; Choi, J.S. Structure-related protein tyrosine phosphatase 1B inhibition by naringenin derivatives. Bioorg. Med. Chem. Lett., 2017, 27(11), 2274-2280.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.054] [PMID: 28454670]
[15]
(a) Zhang, L.; Peng, X.M.; Damu, G.L.V.; Geng, R.X.; Zhou, C.H. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med. Res. Rev., 2014, 34(2), 340-437.
[http://dx.doi.org/10.1002/med.21290] [PMID: 23740514]
(b) Peng, X.M.; Cai, G.X.; Zhou, C.H. Recent developments in azole compounds as antibacterial and antifungal agents. Curr. Top. Med. Chem., 2013, 13(16), 1963-2010.
[http://dx.doi.org/10.2174/15680266113139990125] [PMID: 23895097]
[16]
(a) Cui, S.F.; Peng, L.P.; Zhang, H.Z.; Rasheed, S.; Vijaya Kumar, K.; Zhou, C.H. Novel hybrids of metronidazole and quinolones: synthesis, bioactive evaluation, cytotoxicity, preliminary antimicrobial mechanism and effect of metal ions on their transportation by human serum albumin. Eur. J. Med. Chem., 2014, 86, 318-334.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.063] [PMID: 25173851]
(b) Damu, G.L.V.; Cui, S.F.; Peng, X.M.; Wen, Q.M.; Cai, G.X.; Zhou, C.H. Synthesis and bioactive evaluation of a novel series of coumarinazoles. Bioorg. Med. Chem. Lett., 2014, 24(15), 3605-3608.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.029] [PMID: 24930836]
[17]
Liu, J.; Jiang, F.; Jin, Y.; Zhang, Y.; Liu, J.; Liu, W.; Fu, L. Design, synthesis, and evaluation of 2-substituted ethenesulfonic acid ester derivatives as protein tyrosine phosphatase 1B inhibitors. Eur. J. Med. Chem., 2012, 57, 10-20.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.015] [PMID: 23043764]
[18]
Ong, J.X.; Yap, C.W.; Ang, W.H. Rational design of selective organoruthenium inhibitors of protein tyrosine phosphatase 1B. Inorg. Chem., 2012, 51(22), 12483-12492.
[http://dx.doi.org/10.1021/ic301884j] [PMID: 23121648]
[19]
Maurya, R.; Gupta, P.; Ahmad, G.; Yadav, D.K.; Chand, K.; Singh, A.B.; Tamrakar, A.K.; Srivastava, A.K. Synthesis of 3, 5-disubstituted isoxazolines as protein tyrosine phosphatase 1B inhibitors. Med. Chem. Res., 2008, 17, 123-136.
[http://dx.doi.org/10.1007/s00044-007-9043-6]
[20]
Gundhla, I.Z.; Walmsley, R.S.; Ugirinema, V.; Mnonopi, N.O.; Hosten, E.; Betz, R.; Frost, C.L.; Tshentu, Z.R. pH-metric chemical speciation modeling and studies of in vitro antidiabetic effects of bis[(imidazolyl)carboxylato]oxidovanadium(IV) complexes. J. Inorg. Biochem., 2015, 145, 11-18.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.12.019] [PMID: 25594947]
[21]
Mao, S.W.; Shuai, L.; He, H.B.; Pan, N.; Gao, L.X.; Yu, L.F.; Li, J.; Li, J.Y.; Yang, F. Synthesis and biological evaluation of novel 2, 3-pyrazole ring-substituted-4, 4-dimethyl lithocholic acid derivatives as selective protein tyrosine phosphatase 1B (PTP1B) inhibitors with cellular efficacy. RSC Advances, 2015, 5(129), 106551-106560.
[http://dx.doi.org/10.1039/C5RA20238H]
[22]
Helgren, T.R.; Sciotti, R.J.; Lee, P.; Duffy, S.; Avery, V.M.; Igbinoba, O.; Akoto, M.; Hagen, T.J. The synthesis, antimalarial activity and CoMFA analysis of novel aminoalkylated quercetin analogs. Bioorg. Med. Chem. Lett., 2015, 25(2), 327-332.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.039] [PMID: 25488841]
[23]
Li, B.W.; Zhang, F.H.; Serrao, E.; Chen, H.; Sanchez, T.W.; Yang, L.M.; Neamati, N.; Zheng, Y.T.; Wang, H.; Long, Y.Q. Design and discovery of flavonoid-based HIV-1 integrase inhibitors targeting both the active site and the interaction with LEDGF/p75. Bioorg. Med. Chem., 2014, 22(12), 3146-3158.
[http://dx.doi.org/10.1016/j.bmc.2014.04.016] [PMID: 24794743]
[24]
Li, Y.; Yu, Y.; Jin, K.; Gao, L.; Luo, T.; Sheng, L.; Shao, X.; Li, J. Synthesis and biological evaluation of novel thiadiazole amides as potent Cdc25B and PTP1B inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(17), 4125-4128.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.055] [PMID: 25124112]
[25]
Luo, W.; Chen, Y.; Wang, T.; Hong, C.; Chang, L.P.; Chang, C.C.; Yang, Y.C.; Xie, S.Q.; Wang, C.J. Design, synthesis and evaluation of novel 7-aminoalkyl-substituted flavonoid derivatives with improved cholinesterase inhibitory activities. Bioorg. Med. Chem., 2016, 24(4), 672-680.
[http://dx.doi.org/10.1016/j.bmc.2015.12.031] [PMID: 26752094]
[26]
Ma, L.; Lu, L.; Zhu, M.; Wang, Q.; Li, Y.; Xing, S.; Fu, X.; Gao, Z.; Dong, Y. Mononuclear copper(II) complexes with 3,5-substituted-4-salicylidene-amino-3,5-dimethyl-1,2,4-triazole: synthesis, structure and potent inhibition of protein tyrosine phosphatases. Dalton Trans., 2011, 40(24), 6532-6540.
[http://dx.doi.org/10.1039/c1dt10169b] [PMID: 21607272]
[27]
Wang, Q.; Zhu, M.; Lu, L.; Yuan, C.; Xing, S.; Fu, X. Potent inhibition of protein tyrosine phosphatases by quinquedentate binuclear copper complexes: synthesis, characterization and biological activities. Dalton Trans., 2011, 40(48), 12926-12934.
[http://dx.doi.org/10.1039/c1dt11006c] [PMID: 22027948]
[28]
Frith, J.E.; Menzies, D.J.; Cameron, A.R.; Ghosh, P.; Whitehead, D.L.; Gronthos, S.; Zannettino, A.C.W.; Cooper-White, J.J. Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration. Biomaterials, 2014, 35(4), 1150-1162.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.056] [PMID: 24215733]
[29]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[30]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[31]
Gorelik, B.; Goldblum, A. High quality binding modes in docking ligands to proteins. Proteins, 2008, 71(3), 1373-1386.
[http://dx.doi.org/10.1002/prot.21847] [PMID: 18058908]
[32]
Goodford, P.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem., 1985, 28(7), 849-857.
[http://dx.doi.org/10.1021/jm00145a002] [PMID: 3892003]
[33]
Hetényi, C.; van der Spoel, D. Blind docking of drug-sized compounds to proteins with up to a thousand residues. FEBS Lett., 2006, 580(5), 1447-1450.
[http://dx.doi.org/10.1016/j.febslet.2006.01.074] [PMID: 16460734]
[34]
Lindahl, E.; Hess, B.; Van Der Spoel, D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. Mol. Model. Annu., 2001, 7(8), 306-317.
[http://dx.doi.org/10.1007/s008940100045]
[35]
Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91, 43-56.
[http://dx.doi.org/10.1016/0010-4655(95)00042-E]
[36]
Scott, W.R. Hu ̈nenberger, P.H.; Tironi, I.G.; Mark, A.E.; Billeter, S.R.; Fennen, J.; Torda, A.E.; Huber, T.; Krüger, P.; van Gunsteren, W.F. The GROMOS biomolecular simulation program package. J. Phys. Chem. A, 1999, 103(19), 3596-3607.
[http://dx.doi.org/10.1021/jp984217f]
[37]
Schuler, L.D.; Daura, X.; Van Gunsteren, W.F. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem., 2001, 22(11), 1205-1218.
[http://dx.doi.org/10.1002/jcc.1078]
[38]
Schüttelkopf, A.W.; van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[39]
Jana, S.; Dalapati, S.; Ghosh, S.; Guchhait, N. Potential charge transfer probe induced conformational changes of model plasma protein human serum albumin: Spectroscopic, molecular docking, and molecular dynamics simulation study. Biopolymers, 2012, 97(10), 766-777.
[http://dx.doi.org/10.1002/bip.22057] [PMID: 22806496]
[40]
Szczepankiewicz, B.G.; Liu, G.; Hajduk, P.J.; Abad-Zapatero, C.; Pei, Z.; Xin, Z.; Lubben, T.H.; Trevillyan, J.M.; Stashko, M.A.; Ballaron, S.J.; Liang, H.; Huang, F.; Hutchins, C.W.; Fesik, S.W.; Jirousek, M.R. Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy. J. Am. Chem. Soc., 2003, 125(14), 4087-4096.
[http://dx.doi.org/10.1021/ja0296733] [PMID: 12670229]
[41]
Zheng, Y.; Zheng, M.; Ling, X.; Liu, Y.; Xue, Y.; An, L.; Gu, N.; Ji, M. Design, synthesis, quantum chemical studies and biological activity evaluation of pyrazole-benzimidazole derivatives as potent Aurora A/B kinase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(12), 3523-3530.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.039] [PMID: 23664099]
[42]
Jesudason, E.P.; Sridhar, S.K.; Malar, E.J.; Shanmugapandiyan, P.; Inayathullah, M.; Arul, V.; Selvaraj, D.; Jayakumar, R. Synthesis, pharmacological screening, quantum chemical and in vitro permeability studies of N-Mannich bases of benzimidazoles through bovine cornea. Eur. J. Med. Chem., 2009, 44(5), 2307-2312.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.043] [PMID: 18486995]
[43]
Wen, S.Q.; Jeyakkumar, P.; Avula, S.R.; Zhang, L.; Zhou, C.H. Discovery of novel berberine imidazoles as safe antimicrobial agents by down regulating ROS generation. Bioorg. Med. Chem. Lett., 2016, 26(12), 2768-2773.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.070] [PMID: 27156777]
[44]
Zhang, L.; Ge, Y.; Song, H.M.; Wang, Q.M.; Zhou, C.H. Design, synthesis of novel azolyl flavonoids and their protein tyrosine Phosphatase-1B inhibitory activities. Bioorg. Chem., 2018, 80, 195-203.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.008] [PMID: 29940341]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy