[1]
Priyadarshini E, Rawat K. Quantum dots as nanoreporters in biomedicines: a view point. JSM Nanotechnol Nanomed 2017; 5(2): 1053.
[2]
Jahangir MA, Imam SS, Kazmi I. Type 2 diabetes current and future medications: a short review. Int J Pharm Pharmacol 2017; 1: 101.
[3]
Tuncer-Degim I, Kadioglu D. Cheap, suitable, predict- able and manageable nanoparticles for drug delivery: quantum dots. Curr Drug Deliv 2013; 10(1): 32-8.
[4]
Probst CE, Zrazhevskiy P, Bagalkot V, Gao X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev 2013; 65(5): 703-18.
[5]
Jin Y, Gao X. Plasmonic fluorescent quantum dots. Nat Nanotechnol 2009; 4(9): 571-6.
[6]
Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med 2011; 63: 185-98.
[7]
Ghaderi S, Ramesh B, Seifalian AM. Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: a review. J Drug Target 2011; 19(7): 475-86.
[8]
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30: 592-9.
[9]
Obonyo O, Fisher E, Edwards M, Douroumis D. Quantum dots synthesis and biological applications as imaging and drug delivery systems. Crit Rev Biotechnol 2010; 30(4): 283-301.
[10]
Bruchez MJ, Moronne M, Gin P, et al. Semiconductor nano crystals as fluorescent biological labels. Science 1998; 281: 2013-6.
[11]
Chan WC, Nie S. Quantum dot bio conjugates for ultrasensitive non-isotopic detection. Science 1998; 281: 2016-8.
[12]
Chan WC, Maxwell DJ, Gao XH, et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 2002; 13: 4046.
[13]
Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, et al. (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nano crystallites. J Phys Chem 1997; 101: 9463-75.
[14]
Lim YT, Kim S, Nakayama A, et al. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2003; 2: 5064.
[15]
Mattoussi H, Kuno MK, Goldman ER, et al. Colloidal semiconductor quantum dot conjugates in biosensing. In Optical Biosensors: Present and Future; Elsevier: Amsterdam, Netherlands 2002; pp. 537-69.
[16]
Peng ZA, Peng X. Formation of high-quality CdTe, CdSe, and CdSnanocrystals using CdO as precursor. J Am Chem Soc 2001; 123: 183-4.
[17]
Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperseCdE (E = sul- fur, selenium, tellurium) semiconductor nanocrystal- lites. J Am Chem Soc 1993; 115: 8706-15.
[18]
Yin Y, Xu X, Ge X, et al. Synthesis and characterization of ZnS colloidal particles via gamma-radiation. Radiat Phys Chem 1999; 55: 353-6.
[19]
Dunstan DE, Hagfeld A, Almgren M, et al. Importance of surface reactions in the photochemistry of zinc sulphide colloids. Phys Chem 1990; 94: 6797-804.
[20]
Yadong Y, Xiangling X, Xuewa G, et al. Synthesis and characterization of ZnS colloidal particles via γ- radiation. Radiat Phys Chem 1999; 55: 353-6.
[21]
Tu W, Liu H. Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation. Mater Chem 2000; 10: 2207-11.
[22]
Tsuji M, Hashimoto M, Nishizawa Y, et al. Micro- wave assisted synthesis of metallic nanostructures in solution. Chem Eur J 2005; 11: 440-52.
[23]
Liu LZ, Ling YX, Lee YJ, et al. Physical and electro- chemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Lamgmuir 2004; 20: 181-7.
[24]
Grieser F, Furlong N, Scoberg D, et al. Size quantised semiconductor cadmium chalcogenide particles in Langmuir- Blodgett films. Chem Soc Faraday Trans 1992; 88: 2207-14.
[25]
Corkery RW. Langmuir-Blodgett multilayer films. Langmuir 1997; 13: 3591-4.
[26]
Feldmann C, Metzmacher C. Polyol mediated synthesis of nanoscale MS particles (M=Zn, Cd, Hg). Mater Chem 2001; 11: 2603-6.
[27]
Feldmann C. Polyol-mediated synthesis of nanoscale functional materials. Solid State Sci 2005; 7: 868-73.
[28]
Lifshitz E, Dag I, Litvin I, et al. Optical properties of CdSe nanoparicels films prepared by chemical deposi- tion and sol-gel methods. Science 1998; 288: 188-96.
[29]
Harris DC. 1991. Quantitative Chemical Analysis, 3rd edition (p. 86). New York: W.H. Freeman and Company. Hench LL, West JK. 1990.
[30]
Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22: 969-76.
[31]
Peng X, Schlamp MC, Kadavanich AV, et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 1997; 119: 7019-29.
[32]
Chan WCW, Nie SM. Quantum dot bio conjugates for ultrasensitive non isotopic detection. Science 1998; 281: 2016-8.
[33]
Wu XY, Liu H, Liu J, et al. Immuno fluorescent labelling of cancer marker Her2 and other cellular targets with semiconductor QDs. Nat Biotechnol 2003; 21: 41-6.
[34]
Lee SW, Mao C, Flynn EC, Belcher MA. Ordering of quantum dots using genetically engineered viruses. Science 2002; 296: 892-5.
[35]
Koshman YE, Waters SB, Walker LA, et al. Delivery and visualization of proteins conjugated to quantum dots in cardiac myocytes. J Mol Cell Cardiol 2008; 45: 853-6.
[36]
Patil SD, Rhodes DG, Burgess DJ. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 2005; 7: 61-77.
[37]
Rizk T, Montero-Menei C, Jollivet C, et al. Pitfalls in the detection of lipid vectors in neural cell culture and in brain tissue. J Biomed Mater Res A 2004; 68: 360-4.
[38]
Kang EC, Kataoka OK, Nagasaki Y. Preparation of water-soluble PEGylated semiconductor nanocrystals. Chem Lett 2004; 33: 840-1.
[39]
Uyeda HT, Medintz IL, Jaiswal JK, et al. Synthesis of compact multidentate ligands to prepare stable hydro- philic quantum dot fluorophores. J Am Chem Soc 2005; 127: 3870-8.
[40]
Dey NS, Rao MB. Quantum dot: novel carrier for drug delivery. Int J Res Pharm Biomed Sci 2011; 2: 448-58.
[41]
Sonvico F, Dubernet C, Colombo P, Couvreur P. Metallic colloid nano- technology applications in diagnosis and therapeutics. Curr Pharm Des 2005; 11: 2091-105.
[42]
Jamiesona T, Bakhshi R, Petrovaa D, et al. Biological applications of quantum dots. Biomaterials 2007; 28: 4717-32.
[43]
Muthusankar G, Sangili A, Chen SM, et al. In situ assembly of sulfur-doped carbon quantum dots surrounded iron(III) oxide nanocompo- site; a novel electrocatalyst for highly sensitive detection of antipsychotic drug olanzapine. J Mol Liq 2018; 268: 471-80.
[44]
Modani SH, Kharwade ME, Nijhawan MO. Quantum dots: a novelty of medical field with multiple applica- tions. Int J Curr Pharm Res 2013; 5(4): 55-9.
[45]
Oliveira E, Santos HM, Jorge S, et al. Sustainable synthesis of luminescent CdTe quantum dots coated with modified silica mesoporous nanoparticles: towards new protein scavengers and smart drug delivery carriers. Dyes Pigm 2019; 161: 360-9.
[46]
Kim MW, Jeong HY, Kang SJ, et al. Cancer-targeted nucleic acid delivery and quantum dot imaging using EGF receptor aptamer-conjugated lipid nanoparticles. Sci Rep 2017; 7(1): 9474.
[47]
Akerman ME, Chan WCW, Laak KP. Nano crystal targeting in vivo. Proc Natl Acad Sci 2002; 2: 198-210.
[48]
Baoquan S, Xie W, Guangshun Y. Micro miniaturied immunoassays using quantum dots as fluorescent la- bel by laser confocal scanning fluorescence detection. J of Immunol Methods 2001; 249: 85-9.
[49]
Dey NS, Rao MEB. Quantum Dot: novel carrier for drug delivery. IJRPBS 2011; 2: 448-58.
[50]
Pathak S, Cao E, Davidson MC, et al. Quantum dot applications to neuroscience: new tools for probing neurons and glia. J Neurosci 2006; 26(7): 1893-5.
[51]
Walters R, Medintz IL, Delehanty JB, et al. The role of negative charge in the delivery of quantum dots to neurons. ASN Neuro 2015; 7(4): 1-12.
[52]
Cheki M, Moslehi M, Assadi M. Marvellous applications of quantum dots. Eur Rev Med Pharmacol Sci 2013; 17: 1141-8.
[53]
Zhao MX, Zhu BJ. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nano scale Res Let 2016; 11(1): 207.
[54]
Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 2010; 39: 4326-54.
[55]
Zrazhevskiy P, Gao X. Multifunctional quantum dots for personalized medicine. Nano Today 2009; 4: 414-28.
[56]
Zhu HY, Zhu JP, Xie AM, et al. Visible quantum-dot- based targeted siRNA delivery for HIF-1α gene silencing. J Drug Deliv Sci Technol 2014; 24(5): 445-51.
[57]
Zhang H, Yee D, Wang C. Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicin 2008; 3: 83-91.
[58]
Hoshino A, Hanaki K, Suzuki K, Yamamoto K. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem Biophys Res Commun 2004; 314: 46-53.
[59]
Hoshino A, Fujioka K, Oku T, et al. Physiochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 2004; 4: 2163-9.
[60]
Lovric J, Bazzi HS, Cuie Y, et al. Differences in sub- cellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 2005; 83: 377-85.
[61]
Zhang LW, Yu WW, Colvin VL, et al. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol 2008; 228: 200-11.
[62]
Zhang H, Yee D, Wang C. Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine 2008; 3: 83-91.
[63]
Juzenas P, Chen W, Sun YP, et al. Quantum dots and nanoparticles for photodynamic and radiation thera- pies of cancer. Adv Drug Deliv Rev 2008; 60: 1600-14.
[64]
Bardajee GR, Bayat M, Nasri S, et al. pH-Responsive fluorescent dye-labeled metal-chelating polymer with embedded cadmium telluride quantum dots for controlled drug release of doxorubicin. React Funct Polym 2018; 133: 45-56.