Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Bioinspired Nanocomposites: Applications in Disease Diagnosis and Treatment

Author(s): Supriya Mishra, Shrestha Sharma, Md Noushad Javed, Faheem Hyder Pottoo*, Md Abul Barkat, Harshita, Md Sabir Alam, Md Amir and Md Sarafroz

Volume 7, Issue 3, 2019

Page: [206 - 219] Pages: 14

DOI: 10.2174/2211738507666190425121509

Abstract

Recent advancement in the field of synthesis and application of nanomaterials provided holistic approach for both diagnosis as well as treatment of diseases. Briefly, three-dimensional scaffold and geometry of bioinspired nanocarriers modulate bulk properties of loaded drug at molecular/ atomic structures in a way to conjointly modulate pathological as well as altered metabolic states of diseases, in very predictable and desired manners at a specific site of the target. While, from the pharmacotechnical point of views, the bioinspired nanotechnology processes carriers either favor to enhance the solubility of poorly aqueous soluble drugs or enable well-controlled sustained release profiles, to reduce the frequency of drug regimen. Consequently, from biopharmaceutical point of view, these composite materials, not only minimize first pass metabolism but also significantly enhance in-vivo biodistribution, permeability, bio-adhesion and diffusivity. In lieu of the above arguments, the nano-processed materials exhibit an important role for diagnosis and treatments. In the diagnostic center, recent emergences and advancement in the tools and techniques to diagnose the unrevealed diseases with the help of instruments such as, computed tomography, magnetic resonance imaging etc; heavily depend upon nanotechnology-based materials. In this paper, a brief introduction and recent application of different types of nanomaterials in the field of tissue engineering, cancer treatment, ocular therapy, orthopedics, and wound healing as well as drug delivery system are thoroughly discussed.

Keywords: Biomimetics, bionanocomposites, cancer therapy, drug delivery, metallic nanoparticles, tissue engineering.

Graphical Abstract

[1]
Pottoo FH, Bhowmik M, Vohora D. Raloxifene protects against seizures and neurodegeneration in a mouse model mimicking epilepsy in postmenopausal woman. Eur J Pharm Sci 2014; 65: 167-73.
[2]
Pottoo FH, Tabassum N, Darzi MM. Bromocriptine mesylate protects against status epilepticus and temporal lobe epilepsy: neurobehavioral, histopathological and neurochemical evidences. Int Neuropsychiatr Dis J 2016; 6(4): 1-13.
[3]
Nigar S, Pottoo FH, Tabassum N, Verma SK, Javed MN. Molecular insights into the role of inflammation and oxidative stress in epilepsy. J Adv Med Pharma Sci 2016; 10(1): 1-9.
[4]
Sharma S, Sahni JK, Baboota JA. Patent perspective for potential antioxidant compounds-rutin and quercetin. Recent Pat Nanomed 2013; 3(1): 62-8.
[5]
Faheem HP, Nahida T. Triple drug combination for treatment of status epilepticus and/or partial seizures and/or partial seizures with associated neurological disorders. 2017WO2017130208A1, 2018 Sep 15.
[6]
Novel drug combination for treatment of generalised seizures and/or generalised seizures with associated neurological disorders. Google Patents WO2017130209A1, 2019 March 15.
[7]
Yin N, Ma W, Pei J, Ouyang Q, Tang C, Lai L. Synergistic and antagonistic drug combinations depend on network topology. PLoS One 2014; 9(4): 93960.
[8]
Javed MN, Kohli K, Amin S. Risk Assessment integrated QBD approach for development of optimized bicontinuous mucoadhesive limicubes for oral delivery of rosuvastatin. AAPS PharmSciTech 2018; 19(3): 1377-91.
[9]
Alam MS, Garg A, Pottoo FH, et al. Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: investigation of process-variables impact using Box-Behnken based statistical design. Int J Biol Macromol 2017; 104(Pt A): 758-67.
[10]
Sharma S, Ali A, Ali J, Sahni JK, Baboota S. Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs 2013; 22(8): 1063-79.
[11]
Barkat MA. Harshita, Ahmad I, et al. Nanosuspension-based aloe vera gel of silver sulfadiazine with improved wound healing activity. AAPS PharmSciTech 2017; 18(8): 3274-85.
[12]
Pottoo FH, Tabassum N, Javed MN, et al. The synergistic effect of raloxifene, fluoxetine, and bromocriptine protects against pilocarpine-induced status epilepticus and temporal lobe epilepsy. Mol Neurobiol 2019; 56(2): 1233-47.
[13]
Noushad MJ, Alam MS, Potto FH. Metallic nanoparticle alone and/or in combination as novel agent for the treatment of uncontrolled electric conductance related disorders and/or seizure, epilepsy & convulsions. WO2017060916A1 (2016).
[14]
Okpala CC. Nanocomposites-an overview. Int J Eng Sci Invention Res 2013; 8: 17-23.
[15]
Zhou H, Fan T, Zhang D. Biotemplated materials for sustainable energy and environment: current status and challenges. ChemSusChem 2011; 4(10): 1344-87.
[16]
Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 2014; 111(3): 441-53.
[17]
Iijima M, Moradian-Oldak J. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. Biomaterials 2005; 26(13): 1595-603.
[18]
Ji B, Gao H. Mechanical properties of nanostructure of biological materials. J Mech Phys Solids 2004; 52: 1963-90.
[19]
Zaman MH. The role of engineering approaches in analysing cancer invasion and metastasis. Nat Rev Cancer 2013; 13(8): 596-603.
[20]
Huang Z, Chen H, Yip A, et al. Longitudinal patent analysis for nanoscale science and engineering: Country, institution and technology field. J Nanopart Res 2003; 5(3-4): 333-63.
[21]
Herrick FW, Casebier RL, Hamilton JK, Sandberg KR. Microfibrillated cellulose: morphology and accessibility. InJ. Appl. Polym. Sci.: Appl. Polym. Symp ;(United States) 1983 Jan 1 (Vol. 37, No. CONF-8205234-Vol. 2). ITT Rayonier Inc., Shelton, WA. [cited 2018 Apr 29]
[22]
Chen M, Chen B, Evans JRG. Novel thermoplastic starch-clay nanocomposite foams. Nanotechnology 2005; 16(10): 2334-7.
[23]
Oksman K, Aitomäki Y, Mathew AP, et al. Review of the recent developments in cellulose nanocomposite processing. Compos, Part A Appl Sci Manuf 2016; 83: 2-18.
[24]
Mauter MS, Elimelech M. Environmental applications of carbon-based nanomaterials. Environ Sci Technol 2008; 42(16): 5843-59.
[25]
Lohse SE, Murphy CJ. Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc 2012; 134(38): 15607-20.
[26]
Fisher OZ, Khademhosseini A, Langer R, Peppas NA. Bioinspired materials for controlling stem cell fate. Acc Chem Res 2010; 43(3): 419-28.
[27]
Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater 2009; 21(32-33): 3307-29.
[28]
Kloxin AM, Kloxin CJ, Bowman CN, Anseth KS. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv Mater 2010; 22(31): 3484-94.
[29]
Xia Y. Nanomaterials at work in biomedical research. Nat Mater 2008; 7(10): 758-60.
[30]
Cingolani R. The road ahead. Nat Nanotechnol 2013; 8(11): 792-3.
[31]
Zreiqat H, Howlett CR, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 2002; 62(2): 175-84.
[32]
Gaharwar AK, Dammu SA, Canter JM, Wu C-J, Schmidt G. Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 2011; 12(5): 1641-50.
[33]
Childs A, Hemraz UD, Castro NJ, Fenniri H, Zhang LG. Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stem cell chondrogenic differentiation. Biomed Mater 2013; 8(6)065003
[34]
You M-H, Kwak MK, Kim D-H, et al. Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media. Biomacromolecules 2010; 11(7): 1856-62.
[35]
Xu X-Y, Li X-T, Peng S-W, et al. The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Biomaterials 2010; 31(14): 3967-75.
[36]
Tamerler C, Sarikaya M. Molecular biomimetics: utilizing nature’s molecular ways in practical engineering. Acta Biomater 2007; 3(3): 289-99.
[37]
Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 2009; 61(12): 1033-42.
[38]
Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stabil 2010; 95(11): 2126-46.
[39]
Hou X, Siow KS. Novel interpenetrating polymer network electrolytes. Polymer (Guildf) 2001; 42(9): 4181-8.
[40]
Patel RG, Purwada A, Cerchietti L, et al. Microscale bioadhesive hydrogel arrays for cell engineering applications. Cell Mol Bioeng 2014; 7(3): 394-408.
[41]
Sant S, Hancock MJ, Donnelly JP, Iyer D, Khademhosseini A. Biomimetic gradient hydrogels for tissue engineering. Can J Chem Eng 2010; 88(6): 899-911.
[42]
Lopa S, Madry H. Bioinspired scaffolds for osteochondral regeneration. Tissue Eng Part A 2014; 20(15-16): 2052-76.
[43]
Hancock MJ, He J, Mano JF, Khademhosseini A. Surface-tension-driven gradient generation in a fluid stripe for bench-top and microwell applications. Small 2011; 7(7): 892-901.
[44]
Losi P, Briganti E, Magera A, et al. Tissue response to poly(ether)urethane-polydimethylsiloxane-fibrin composite scaffolds for controlled delivery of pro-angiogenic growth factors. Biomaterials 2010; 31(20): 5336-44.
[45]
Sharma S, Narang JK, Ali J, Baboota S. Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a Parkinson’s disease model. Nanotechnology 2016; 27(37)375101
[46]
Lu ZS, Li CM. Quantum dot-based nanocomposites for biomedical applications. Curr Med Chem 2011; 18(23): 3516-28.
[47]
Liang H, Zhang X-B, Lv Y, et al. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy. Acc Chem Res 2014; 47(6): 1891-901.
[48]
Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells 2011; 31(4): 295-302.
[49]
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70.
[50]
Fan Z, Fu PP, Yu H, Ray PC. Theranostic nanomedicine for cancer detection and treatment. Yao Wu Shi Pin Fen Xi 2014; 22(1): 3-17.
[51]
Henriksen-Lacey M, Carregal-Romero S, Liz-Marzán LM. Current challenges toward in vitro cellular validation of inorganic nanoparticles. Bioconjug Chem 2017; 28(1): 212-21.
[52]
Hao N, Li L, Tang F. Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. Int Mater Rev 2017; 62(2): 57-77.
[53]
Rodrigues CVM, Serricella P, Linhares ABR, et al. Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials 2003; 24(27): 4987-97.
[54]
Shchipunov Y. Bionanocomposites: green sustainable materials for the near future. Pure and Applied Chemistry 2012; 84(12): 2579-607.
[55]
Yin Y, Ye F, Cui J, Zhang F, Li X, Yao K. Preparation and characterization of macroporous chitosan-gelatin/beta-tricalcium phosphate composite scaffolds for bone tissue engineering. J Biomed Mater Res A 2003; 67(3): 844-55.
[56]
Nelson M, Balasundaram G, Webster TJ. Increased osteoblast adhesion on nanoparticulate crystalline hydroxyapatite functionalized with KRSR. Int J Nanomedicine 2006; 1(3): 339-49.
[57]
Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 2009; 12(1): 1-39.
[58]
Yi H, Ur Rehman F, Zhao C, Liu B, He N. Recent advances in nano scaffolds for bone repair. Bone Res 2016; 4: 16050.
[59]
Henkel J, Woodruff MA, Epari DR, et al. Bone regeneration based on tissue engineering conceptions - a 21st century perspective. Bone Res 2013; 1(3): 216-48.
[60]
Gao C, Deng Y, Feng P, et al. Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int J Mol Sci 2014; 15(3): 4714-32.
[61]
Matsuno T, Uchimura E, Ohno T, et al. Hydroxyapatite containing immobilized collagen and fibronectin promotes bone regeneration. Int Congr Ser 2005; 1284: 330-1.
[62]
Kumar P, Sandeep KP, Alavi S, Truong VD, Gorga RE. Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. J Food Eng 2010; 100(3): 480-9.
[63]
Mihaila SM, Gaharwar AK, Reis RL, Khademhosseini A, Marques AP, Gomes ME. The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials 2014; 35(33): 9087-99.
[64]
Fisher JP, Vehof JWM, Dean D, et al. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J Biomed Mater Res 2002; 59(3): 547-56.
[65]
Cherian BM, Leão AL, de Souza SF, et al. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 2011; 86(4): 1790-8.
[66]
Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci 2011; 12(7): 4250-70.
[67]
Richmond NA, Vivas AC, Kirsner RS. Topical and biologic therapies for diabetic foot ulcers. Med Clin North Am 2013; 97(5): 883-98.
[68]
Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomater 2010; 6(5): 1693-7.
[69]
Batmani Y, Khaloozadeh H. Optimal drug regimens in cancer chemotherapy: a multi-objective approach. Comput Biol Med 2013; 43(12): 2089-95.
[70]
Kang J, Demaria S, Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer 2016; 4: 51.
[71]
Prasanna A, Ahmed MM, Mohiuddin M, Coleman CN. Exploiting sensitization windows of opportunity in hyper and hypo-fractionated radiation therapy. J Thorac Dis 2014; 6(4): 287-302.
[72]
Pliarchopoulou K, Pectasides D. Pancreatic cancer: current and future treatment strategies. Cancer Treat Rev 2009; 35(5): 431-6.
[73]
Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm 2011; 8(6): 2101-41.
[74]
Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 2010; 10(9): 3223-30.
[75]
Li R, Jiang S, Liu D, et al. A potential new therapeutic system for glaucoma: solid lipid nanoparticles containing methazolamide. J Microencapsul 2011; 28(2): 134-41.
[76]
Tamilvanan S, Kumar BA. Influence of acetazolamide loading on the (in vitro) performances of nonphospholipid- based cationic nanosized emulsion in comparison with phospholipid-based anionic and neutral- charged nanosized emulsions. Drug Dev Ind Pharm 2011; 37(9): 1003-15.
[77]
Vega E, Egea MA, Calpena AC, Espina M, García ML. Role of hydroxypropyl-β-cyclodextrin on freeze-dried and gamma-irradiated PLGA and PLGA-PEG diblock copolymer nanospheres for ophthalmic flurbiprofen delivery. Int J Nanomedicine 2012; 7: 1357-71.
[78]
Kubik T, Bogunia-Kubik K, Sugisaka M. Nanotechnology on duty in medical applications. Curr Pharm Biotechnol 2005; 6(1): 17-33.
[79]
Shetty NJ, Swati P, David K. Nanorobots: future in dentistry. Saudi Dent J 2013; 25(2): 49-52.
[80]
Jain KK. Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn 2003; 3(2): 153-61.
[81]
Saravana KR, Vijayalakshmi R. Nanotechnology in dentistry. Indian J Dent Res 2006; 17(2): 62-5.
[82]
Dasilva N, Díez P, Matarraz S, et al. Biomarker discovery by novel sensors based on nanoproteomics approaches. Sensors (Basel) 2012; 12(2): 2284-308.
[83]
Patil M, Mehta DS, Guvva S. Future impact of nanotechnology on medicine and dentistry. J Indian Soc Periodontol 2008; 12(2): 34-40.
[84]
Khademhosseini A, Vacanti JP, Langer R. Progress in tissue engineering. Sci Am 2009; 300(5): 64-71.
[85]
Nakanishi J, Takarada T, Yamaguchi K, Maeda M. Recent advances in cell micropatterning techniques for bioanalytical and biomedical sciences. Anal Sci 2008; 24(1): 67-72.
[86]
Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 2007; 18(3): 241-68.
[87]
Freyman TM, Yannas IV, Yokoo R, Gibson LJ. Fibroblast contraction of a collagen-GAG matrix. Biomaterials 2001; 22(21): 2883-91.
[88]
Wang Y, Kim U-J, Blasioli DJ, Kim H-J, Kaplan DL. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 2005; 26(34): 7082-94.
[89]
Nahmias Y, Schwartz RE, Verfaillie CM, Odde DJ. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol Bioeng 2005; 92(2): 129-36.
[90]
Badylak SF, Record R, Lindberg K, Hodde J, Park K. Small intestinal submucosa: a substrate for in vitro cell growth. J Biomater Sci Polym Ed 1998; 9(8): 863-78.
[91]
Mauck RL, Yuan X, Tuan RS. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage 2006; 14(2): 179-89.
[92]
Marijnissen WJCM, van Osch GJVM, Aigner J, et al. Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials 2002; 23(6): 1511-7.
[93]
Ciardelli G, Chiono V. Materials for peripheral nerve regeneration. Macromol Biosci 2006; 6(1): 13-26.
[94]
Wang Y, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat Biotechnol 2002; 20(6): 602-6.
[95]
Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002; 296(5573): 1673-6.
[96]
Lutolf MP, Raeber GP, Zisch AH, Tirelli N, Hubbell JA. Cell-Responsive Synthetic Hydrogels. Adv Mater 2003; 15(11): 888-92.
[97]
Barrera DA, Zylstra E, Lansbury PT, Langer R. Synthesis and RGD peptide modification of a new biodegradable copolymer: poly(lactic acid-co-lysine). J Am Chem Soc 1993; 115(23): 11010-1.
[98]
Cook AD, Hrkach JS, Gao NN, et al. Characterization and development of RGD-peptide-modified poly (lactic acid-co-lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res 1997; 35(4): 513-23.
[99]
Parrish B, Emrick T. Aliphatic Polyesters with pendant cyclopentene groups: controlled synthesis and conversion to polyester-graft-PEG copolymers. Macromolecules 2004; 37(16): 5863-5.
[100]
Ma PX. Scaffolds for tissue fabrication. Mater Today 2004; 7(5): 30-40.
[101]
Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 2004; 36(6): 1031-7.
[102]
Barkat A, Harshita null, Beg S, et al. Current progress in synthesis, characterization and applications of silver nanoparticles: precepts and prospects. Recent Pat Anti infect Drug Discov 2018; 13(1):53-69.
[103]
Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest 2007; 117(5): 1219-22.
[104]
Brem H, Golinko MS, Stojadinovic O, et al. Primary cultured fibroblasts derived from patients with chronic wounds: a methodology to produce human cell lines and test putative growth factor therapy such as GMCSF. J Transl Med 2008; 6: 75.
[105]
Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol 2014; 20(10): 2515-32.
[106]
Giannitrapani L, Soresi M, Bondì ML, Montalto G, Cervello M. Nanotechnology applications for the therapy of liver fibrosis. World J Gastroenterol 2014; 20(23): 7242-51.
[107]
Ismail MH, Pinzani M. Reversal of liver fibrosis. Saudi J Gastroenterol 2009; 15(1): 72-9.
[108]
Nasongkla N, Shuai X, Ai H, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed Engl 2004; 43(46): 6323-7.
[109]
Daniels TR, Delgado T, Helguera G, Penichet ML. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol 2006; 121(2): 159-76.
[110]
Dinauer N, Balthasar S, Weber C, Kreuter J, Langer K, von Briesen H. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials 2005; 26(29): 5898-906.
[111]
Zhang L, Xia J, Zhao Q, Liu L, Zhang Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 2010; 6(4): 537-44.
[112]
Wang C, Li J, Amatore C, Chen Y, Jiang H, Wang X-M. Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew Chem Int Ed Engl 2011; 50(49): 11644-8.
[113]
Yang X, Wang Y, Huang X, et al. Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem 2011; 21(10): 3448-54.
[114]
Kim H, Namgung R, Singha K, Oh I-K, Kim WJ. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug Chem 2011; 22(12): 2558-67.
[115]
Liu J, Guo S, Han L, et al. Synthesis of phospholipid monolayer membrane functionalized graphene for drug delivery. J Mater Chem 2012; 22(38): 20634-40.
[116]
Jing Y, Zhu Y, Yang X, Shen J, Li C. Ultrasound-triggered smart drug release from multifunctional core-shell capsules one-step fabricated by coaxial electrospray method. Langmuir 2011; 27(3): 1175-80.
[117]
Zhou K, Zhu Y, Yang X, Li C. One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction. New J Chem 2010; 34(12): 2950-5.
[118]
Bai H, Li C, Wang X, Shi G. A pH-sensitive graphene oxide composite hydrogel. Chem Commun 2010; 46(14): 2376-8.
[119]
Lu C-H, Yang H-H, Zhu C-L, Chen X, Chen G-N. A graphene platform for sensing biomolecules. Angew Chem Int Ed Engl 2009; 48(26): 4785-7.
[120]
Liu J, Tao L, Yang W, et al. Synthesis, characterization, and multilayer assembly of pH sensitive graphene-polymer nanocomposites. Langmuir 2010; 26(12): 10068-75.
[121]
Liu J, Yang W, Tao L, Li D, Boyer C, Davis TP. Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization. J Polym Sci A Polym Chem 2010; 48(2): 425-33.

© 2025 Bentham Science Publishers | Privacy Policy