Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Bisphosphonates and Cancer: A Relationship Beyond the Antiresorptive Effects

Author(s): Sonia Teixeira, Luis Branco, Maria H. Fernandes and João Costa-Rodrigues*

Volume 19, Issue 12, 2019

Page: [988 - 998] Pages: 11

DOI: 10.2174/1389557519666190424163044

Price: $65

Abstract

Bisphosphonates (BPs) are stable analogues of the Inorganic Pyrophosphate (PPi), an endogenous regulator of bone mineralization, which can resist the hydrolysis in the gastrointestinal tract. Their conformation allows targeting the bone as a result of their three-dimensional structure, which makes them primary agents against osteoclast-mediated bone loss. They are used in many bone pathological conditions, like bone metastasis, because of its ability to modulate bone metabolism into a less favorable place to cancer cell growth, through the inhibition of osteoclastogenesis and bone resorption. This review is focused on the mechanisms of action through which BPs affect the cellular activity and survival, mainly on their antitumoral effects. In conclusion, BPs are considered the primary therapy for skeletal disorders due to its high affinity for bone, but now they are also considered as potential antitumor agents due to its ability to induce tumor cell apoptosis, inhibition of cell adhesion, invasion and proliferation, modulation of the immune system to target and eliminate cancer cells as well as affect the angiogenic mechanisms. Like any other drug, they also have some adverse effects, but the most common, the acute phase reaction, can be minimized with the intake of calcium and vitamin D.

Keywords: Bisphosphonates, osteoclasts, cancer, vitamin D, Inorganic Pyrophosphate (PPi), osteoclastogenesis.

« Previous
Graphical Abstract

[1]
Fleisch, H. Development of bisphosphonates. Breast Cancer Res., 2002, 4, 30-34.
[2]
Papapoulos, S.E. Bisphosphonate actions: Physical chemistry revisited. Bone, 2006, 38, 613-616.
[3]
Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of action and role in clinical practice. Mayo Clin. Proc., 2008, 83, 1032-1045.
[4]
Widler, L.; Jahnke, W.; Green, J.R. The chemistry of bisphosphonates: From antiscaling agents to clinical therapeutics. Anticancer. Agents Med. Chem., 2012, 12, 95-101.
[5]
Russell, R.G. Bisphosphonates: Mode of action and pharmacology. Pediatrics, 2007, 119, S150-S162.
[6]
Lehenkari, P.P.; Kellinsalmi, M.; Näpänkangas, J.P.; Ylitalo, K.V.; Mönkkönen, J.; Rogers, M.J.; Azhayev, A.; Väänänen, H.K.; Hassinen, I.E. Further insight into mechanism of action of clodronate: Inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol. Pharmacol., 2002, 61, 1255-1262.
[7]
Russell, R.G.; Watts, N.B.; Ebetino, F.H.; Rogers, M.J. Mechanisms of action of bisphosphonates: Similarities and differences and their potential influence on clinical efficacy. Osteoporos. Int., 2008, 19, 733-759.
[8]
Rogers, M.J.; Gordon, S.; Benford, H.L.; Coxon, F.P.; Luckman, S.P.; Monkkonen, J.; Frith, J.C. Cellular and molecular mechanisms of action of bisphosphonates. Cancer, 2000, 88, 2961-2978.
[9]
Nancollas, G.H.; Tang, R.; Phipps, R.J.; Henneman, Z.; Gulde, S.; Wu, W.; Mangood, A.; Russell, R.G.; Ebetino, F.H. Novel insights into actions of bisphosphonates on bone: Differences in interactions with hydroxyapatite. Bone, 2006, 38, 617-627.
[10]
Benford, H.L.; Frith, J.C.; Auriola, S.; Monkkonen, J.; Rogers, M.J. Farnesol and geranylgeraniol prevent activation of caspases by aminobisphosphonates: Biochemical evidence for two distinct pharmacological classes of bisphosphonate drugs. Mol. Pharmacol., 1999, 56, 131-140.
[11]
Roelofs, A.J.; Stewart, C.A.; Sun, S.; Błażewska, K.M.; Kashemirov, B.A.; McKenna, C.E.; Russell, R.G.; Rogers, M.J.; Lundy, M.W.; Ebetino, F.H.; Coxon, F.P. Influence of bone affinity on the skeletal distribution of fluorescently labeled bisphosphonates in vivo. J. Bone Miner. Res., 2012, 27, 835-847.
[12]
Rogers, M.J.; Frith, J.C.; Luckman, S.P.; Coxon, F.P.; Benford, H.L.; Monkkonen, J.; Auriola, S.; Chilton, K.M.; Russell, R.G. Molecular mechanisms of action of bisphosphonates. Bone, 1999, 24, S73S-S79.
[13]
Sims, N.A.; Martin, T.J. Coupling the activities of bone formation and resorption: A multitude of signals within the basic multicellular unit. Bonekey Rep., 2014, 3, 481.
[14]
Tolia, M.; Zygogianni, A.; Kouvaris, J.R.; Meristoudis, C.; Margari, N.; Karakitsos, P.; Kokakis, I.; Kardamakis, D.; Papadimitriou, C.; Mystakidou, K.; Tsoukalas, N.; Kyrgias, G.; Armonis, B.; Filippiadis, D.K.; Kelekis, A.D.; Kelekis, N.; Kouloulias, V. The key role of bisphosphonates in the supportive care of cancer patients. Anticancer Res., 2014, 34, 23-37.
[15]
Fontana, A.; Delmas, P.D. Markers of bone turnover in bone metastases. Cancer, 2000, 88, 2952-2960.
[16]
Datta, H.K.; Ng, W.F.; Walker, J.A.; Tuck, S.P.; Varanasi, S.S. The cell biology of bone metabolism. J. Clin. Pathol., 2008, 61, 577-587.
[17]
Bhatt, R.N.; Hibbert, S.A.; Munns, C.F. The use of bisphosphonates in children: Review of the literature and guidelines for dental management. Aust. Dent. J., 2014, 59, 9-19.
[18]
Karlic, H.; Thaler, R.; Gerner, C.; Grunt, T.; Proestling, K.; Haider, F.; Varga, F. Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells. Cancer Genet., 2015, 208, 241-252.
[19]
Cremers, S.C.; Pillai, G.; Papapoulos, S.E. Pharmacokinetics/ pharmacodynamics of bisphosphonates: Use for optimisation of intermittent therapy for osteoporosis. Clin. Pharmacokinet., 2005, 44, 551-570.
[20]
Fogelman, I.; Smith, L.; Mazess, R.; Wilson, M.A.; Bevan, J.A. Absorption of oral diphosphonate in normal subjects. Clin. Endocrinol. (Oxf.), 1986, 24, 57-62.
[21]
Pazianas, M.; Abrahamsen, B.; Ferrari, S.; Russell, R.G. Eliminating the need for fasting with oral administration of bisphosphonates. Ther. Clin. Risk Manag., 2013, 9, 395-402.
[22]
Russell, R.G. Bisphosphonates: The first 40 years. Bone, 2011, 49, 2-19.
[23]
Mariotti, A. Bisphosphonates and osteonecrosis of the jaws. J. Dent. Educ., 2008, 72, 919-929.
[24]
Smith, H.S. Painful Osseous Metastases. Pain Physician, 2011, 14, 373-403.
[25]
Tolia, M.; Zygogianni, A.; Kouvaris, J.R.; Meristoudis, C.; Margari, N.; Karakitsos, P.; Kokakis, I.; Kardamakis, D.; Papadimitriou, C.; Mystakidou, K.; Tsoukalas, N.; Kyrgias, G.; Armonis, B.; Filippiadis, D.K.; Kelekis, A.D.; Kelekis, N.; Kouloulias, V. The key role of bisphosphonates in the supportive care of cancer patients. Anticancer Res., 2014, 34, 23-37.
[26]
Vepsalainen, J.J. Bisphosphonate prodrugs. Curr. Med. Chem., 2002, 9, 1201-1208.
[27]
Mönkkönen, H.; Auriola, S.; Lehenkari, P.; Kellinsalmi, M.; Hassinen, I.E.; Vepsäläinen, J.; Mönkkönen, J. A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonates. Br. J. Pharmacol., 2006, 147, 437-445.
[28]
Thompson, K.; Rogers, M.J.; Coxon, F.P.; Crockett, J.C. Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid-phase endocytosis. Mol. Pharmacol., 2006, 69, 1624-1632.
[29]
Rogers, M.J.; Crockett, J.C.; Coxon, F.P.; Mönkkönen, J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone, 2011, 49, 34-41.
[30]
Roelofs, A.J.; Thompson, K.; Gordon, S.; Rogers, M.J. Molecular mechanisms of action of bisphosphonates: Current status. Clin. Cancer Res., 2006, 12, 6222s-6230s.
[31]
Green, J.R. Bisphosphonates: Preclinical review. Oncologist, 2004, 9, 3-13.
[32]
Benford, H.L.; McGowan, N.W.; Helfrich, M.H.; Nuttall, M.E.; Rogers, M.J. Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro. Bone, 2001, 28, 465-473.
[33]
Fournier, P.G.; Stresing, V.; Ebetino, F.H.; Clézardin, P. How do bisphosphonates inhibit bone metastasis in vivo? Neoplasia, 2010, 12, 571-578.
[34]
Marra, M.; Santini, D.; Tonini, G.; Meo, G.; Zappavigna, S.; Facchini, G.; Morabito, A.; Abbruzzese, A.; Cartenì, G.; Budillon, A.; Caraglia, M. Molecular and preclinical models enhancing anti-tumour activity of zoledronic acid. EJC Suppl., 2008, 6, 79-85.
[35]
Knight, L.A.; Kurbacher, C.M.; Glaysher, S.; Fernando, A.; Reichelt, R.; Dexel, S.; Reinhold, U.; Cree, I.A. Activity of mevalonate pathway inhibitors against breast and ovarian cancers in the ATP-based tumour chemosensitivity assay. BMC Cancer, 2009, 9, 38.
[36]
Xu, X.L.; Gou, W.L.; Wang, A.Y.; Wang, Y.; Guo, Q.Y.; Lu, Q.; Lu, S.B.; Peng, J. Basic research and clinical applications of bisphosphonates in bone disease: What have we learned over the last 40 years? J. Transl. Med., 2013, 11, 303.
[37]
Clezardin, P. Bisphosphonates’ antitumor activity: An unravelled side of a multifaceted drug class. Bone, 2011, 48, 71-79.
[38]
Koopmans, S.J.; van der Wee-Pals, L.; Lowik, C.W.; Papapoulos, S.E. Use of a rat model for the simultaneous assessment of pharmacokinetic and pharmacodynamic aspects of bisphosphonate treatment: Application to the study of intravenous 14C-labeled 1-hydroxy-3-(1-pyrrolidinyl)-propylidene-1,1-bisphosphonate. J. Bone Miner. Res., 1994, 9, 241-246.
[39]
Israel, O.; Front, D.; Hardoff, R.; Ish-Shalom, S.; Jerushalmi, J.; Kolodny, G.M. In vivo SPECT quantitation of bone metabolism in hyperparathyroidism and thyrotoxicosis. J. Nucl. Med., 1991, 32, 1157-1161.
[40]
Carnevale, V.; Dicembrino, F.; Frusciante, V.; Chiodini, I.; Minisola, S.; Scillitani, A. Different patterns of global and regional skeletal uptake of 99mTc-methylene diphosphonate with age: Relevance to the pathogenesis of bone loss. J. Nucl. Med., 2000, 41, 1478-1483.
[41]
Porras, A.G.; Holland, S.D.; Gertz, B.J. Pharmacokinetics of alendronate. Clin. Pharmacokinet., 1999, 36, 315-328.
[42]
Boskey, A.L.; Coleman, R. Aging and bone. J. Dent. Res., 2010, 89, 1333-1348.
[43]
Sato, M.; Grasser, W.; Endo, N.; Akins, R.; Simmons, H.; Thompson, D.D.; Golub, E.; Rodan, G.A. Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J. Clin. Invest., 1991, 88, 2095-2105.
[44]
Allen, M.R.; Burr, D.B. Bisphosphonate effects on bone turnover, microdamage, and mechanical properties: What we think we know and what we know that we don’t know. Bone, 2011, 49, 56-65.
[45]
Plotkin, L.I.; Bivi, N.; Bellido, T. A bisphosphonate that does not affect osteoclasts prevents osteoblast and osteocyte apoptosis and the loss of bone strength induced by glucocorticoids in mice. Bone, 2011, 49, 122-127.
[46]
Bellido, T.; Plotkin, L.I. Novel actions of bisphosphonates in bone: Preservation of osteoblast and osteocyte viability. Bone, 2011, 49, 50-55.
[47]
Boland, R.L.; Morelli, S.; Santillan, G.; Scodelaro, P.; Colicheo, A.; de Boland, A.R.; Vyas, K.; Plotkin, L.I.; Bellido, T. Connexin 43 Is required for bisphosphonate-induced survival of osteoblastic cells but not for bisphosphonate binding. J. Bone Miner. Res., 2006, 21, S339.
[48]
Escudero, N.D.; Mandalunis, P.M. Influence of bisphosphonate treatment on medullary macrophages and osteoclasts: An experimental study. Bone Marrow Res., 2012, 2012526236
[49]
Weivoda, M.M.; Oursler, M.J. The roles of small GTPases in osteoclast biology. Orthop. Muscular Syst., 2014, 31000161
[50]
Taylor, A.; Mules, E.H.; Seabra, M.C.; Helfrich, M.H.; Rogers, M.J.; Coxon, F.P. Impaired prenylation of rab GTPases in the gunmetal mouse causes defects in bone cell function. Small GTPases, 2011, 2, 131-142.
[51]
Zekri, J.; Mansour, M.; Karim, S.M. The anti-tumour effects of zoledronic acid. J. Bone Oncol., 2003, 1, 25-35.
[52]
Einav, S.; Glenn, J.S. Prenylation inhibitors: A novel class of antiviral agents. J. Antimicrob. Chemother., 2003, 52, 883-886.
[53]
Jordão, F.M.; Saito, A.Y.; Miguel, D.C.; de Jesus Peres, V.; Kimura, E.A.; Katzin, A.M. In vitro and in vivo antiplasmodial activities of risedronate and its interference with protein prenylation in Plasmodium falciparum. Antimicrob. Agents Chemother., 2011, 55, 2026-2031.
[54]
Roelofs, A.J.; Thompson, K.; Ebetino, F.H.; Rogers, M.J.; Coxon, F.P. Bisphosphonates: Molecular mechanisms of action and effects on bone cells, monocytes and macrophages. Curr. Pharm. Des., 2010, 16, 2950-2960.
[55]
Sanders, J.M.; Song, Y.; Chan, J.M.W.; Zhang, Y.; Jennings, S.; Kosztowski, T.; Odeh, S.; Flessner, R.; Schwerdtfeger, C.; Kotsikorou, E.; Meints, G.A.; Gómez, A.O.; González-Pacanowska, F.; Raker, A.M.; Wang, H.; van Beek, E.R.; Papapoulos, S.E.; Morita, C.T.; Oldfield, E. Pyridinium-1-yl bisphosphonates are potent inhibitors of farnesyl diphosphate synthase and bone resorption. J. Med. Chem., 2005, 48, 2957-2963.
[56]
Liu, J.; Huang, W.; Zhou, R.; Jia, S.; Tang, W.; Luo, Y.; Zhang, J. Bisphosphonates in the treatment of patients with metastatic breast, lung, and prostate cancer - A meta-analysis. Medicine (Baltimore), 2015, 94e2014
[57]
Santini, D.; Stumbo, L.; Spoto, C.; D’Onofrio, L.; Pantano, F.; Iuliani, M.; Fioramonti, M.; Zoccoli, A.; Ribelli, G.; Virzì, V.; Vincenzi, B.; Tonini, G. Bisphosphonates as anticancer agents in early breast cancer: Preclinical and clinical evidence. Breast Cancer Res., 2015, 17, 121.
[58]
Costa-Rodrigues, J.; Moniz, K.A.; Teixeira, M.R.; Fernandes, M.H. Variability of the paracrine-induced osteoclastogenesis by human breast cancer cell lines. J. Cell. Biochem., 2012, 113, 1069-1079.
[59]
Costa-Rodrigues, J.; Teixeira, C.A.; Fernandes, M.H. Paracrine-mediated osteoclastogenesis by the osteosarcoma MG63 cell line: Is RANKL/RANK signalling really important? Clin. Exp. Metastasis, 2011, 28, 505-514.
[60]
Costa-Rodrigues, J.; Fernandes, A.; Fernandes, M.H. Reciprocal osteoblastic and osteoclastic modulation in co-cultured MG63 osteosarcoma cells and human osteoclast precursors. J. Cell. Biochem., 2011, 112, 3704-3713.
[61]
Guise, T.A. Molecular mechanisms of osteolytic bone metastases. Cancer, 2000, 88, 2892-2898.
[62]
Mathew, A.; Brufsky, A.M. The use of adjuvant bisphosphonates in the treatment of early-stage breast cancer. Clin. Adv. Hematol. Oncol., 2014, 12, 749-756.
[63]
Paterson, A.H. The potential role of bisphosphonates as adjuvant therapy in the prevention of bone metastases. Cancer, 2000, 88, 3038-3046.
[64]
Brufsky, A.; Mathew, A. Bisphosphonates, bone, and breast cancer recurrence. Lancet, 2015, 386, 1319-1320.
[65]
Wood, J.; Bonjean, K.; Ruetz, S.; Bellahcène, A.; Devy, L.; Foidart, J.M.; Castronovo, V.; Green, J.R. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J. Pharmacol. Exp. Ther., 2002, 302, 1055-1061.
[66]
Coxon, J.P.; Oades, G.M.; Kirby, R.S.; Colston, K.W. Zoledronic acid induces apoptosis and inhibits adhesion to mineralized matrix in prostate cancer cells via inhibition of protein prenylation. BJU Int., 2004, 94, 164-170.
[67]
Dedes, P.G.; Gialeli, C.H.; Tsonis, A.I.; Kanakis, I.; Theocharis, A.D.; Kletsas, D.; Tzanakakis, G.N.; Karamanos, N.K. Expression of matrix macromolecules and functional properties of breast cancer cells are modulated by the bisphosphonate zoledronic acid. Biochim. Biophys. Acta, 2012, 1820, 1926-1939.
[68]
Insalaco, L.; Di Gaudio, F.; Terrasi, M.; Amodeo, V.; Caruso, S.; Corsini, L.R.; Fanale, D.; Margarese, N.; Santini, D.; Bazan, V.; Russo, A. Analysis of molecular mechanisms and anti-tumoural effects of zoledronic acid in breast cancer cells. J. Cell. Mol. Med., 2012, 16, 2186-2195.
[69]
Senaratne, S.G.; Mansi, J.L.; Colston, K.W. The bisphosphonate zoledronic acid impairs membrane localisation and induces cytochrome c release in breast cancer cells. Br. J. Cancer, 2002, 86, 1479-1486.
[70]
Yuen, T.; Stachnik, A.; Iqbal, J.; Sgobba, M.; Gupta, Y.; Lu, P.; Colaianni, G.; Ji, Y.; Zhu, L.; Kim, S.; Li, J.; Liu, P.; Izadmehr, S.; Sangodkar, J.; Bailey, J.; Latif, Y.; Mujtaba, S.; Epstein, S.; Davies, T.F.; Bian, Z.; Zallone, A.; Aggarwal, A.K.; Haider, S.; New, M.I.; Sun, L.; Narla, G.; Zaidi, M. Bisphosphonates inactivate human EGFRs to exert antitumor actions. Proc. Natl. Acad. Sci. USA, 2014, 111, 17989-17994.
[71]
Gober, H.J.; Kistowska, M.; Angman, L.; Jenö, P.; Mori, L.; De Libero, G. Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J. Exp. Med., 2003, 197, 163-168.
[72]
Rogers, T.L.; Holen, I. Tumour macrophages as potential targets of bisphosphonates. J. Transl. Med., 2011, 9, 177.
[73]
Rüegg, C.; Mariotti, A. Vascular integrins: Pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cell. Mol. Life Sci., 2003, 60, 1135-1157.
[74]
Scavelli, C.; Di Pietro, G.; Cirulli, T.; Coluccia, M.; Boccarelli, A.; Giannini, T.; Mangialardi, G.; Bertieri, R.; Coluccia, A.M.L.; Ribatti, D.; Dammacco, F.; Vacca, A. Zoledronic acid affects over-angiogenic phenotype of endothelial cells in patients with multiple myeloma. Mol. Cancer Ther., 2007, 6, 3256-3262.
[75]
Bezzi, M.; Hasmim, M.; Bieler, G.; Dormond, O.; Rüegg, C. Zoledronate sensitizes endothelial cells to tumor necrosis factor-induced programmed cell death. J. Biol. Chem., 2003, 278, 43603-43614.
[76]
Pécheur, I.; Peyruchaud, O.; Serre, C.M.; Guglielmi, J.; Voland, C.; Bourre, F.; Margue, C.; Cohen-Solal, M.; Buffet, A.; Kieffer, N.; Clézardin, P. Integrin αvβ3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J., 2002, 16, 1266-1268.
[77]
Jagdev, S.P.; Coleman, R.E.; Shipman, C.M.; Rostami, H.A.; Croucher, P.I. The bisphosphonate, zoledronic acid, induces apoptosis of breast cancer cells: Evidence for synergy with paclitaxel. Br. J. Cancer, 2001, 84, 1126-1134.
[78]
Terpos, E.; Kleber, M.; Engelhardt, M.; Zweegman, S.; Gay, F.; Kastritis, E.; van de Donk, N.W.; Bruno, B.; Sezer, O.; Broijl, A.; Bringhen, S.; Beksac, M.; Larocca, A.; Hajek, R.; Musto, P.; Johnsen, H.E.; Morabito, F.; Ludwig, H.; Cavo, M.; Einsele, H.; Sonneveld, P.; Dimopoulos, M.A.; Palumbo, A. European myeloma network guidelines for the management of multiple myeloma-related complications. Haematologica, 2015, 100, 1254-1266.
[79]
Qian, Y.; Bhowmik, D.; Kachru, N.; Hernandez, R.K. Longitudinal patterns of bone-targeted agent use among patients with solid tumors and bone metastases in the United States. Support. Care Cancer, 2017, 25, 1845-1851.
[80]
Trémollieres, F.A.; Ceausu, I.; Depypere, H.; Lambrinoudaki, I.; Mueck, A.; Pérez-López, F.R.; van der Schouw, Y.T.; Senturk, L.M.; Simoncini, T.; Stevenson, J.C.; Stute, P.; Rees, M. Osteoporosis management in patients with breast cancer: EMAS position statement. Maturitas, 2017, 95, 65-71.
[81]
Miller, P.D.; Jamal, S.A.; Evenepoel, P.; Eastell, R.; Boonen, S. Renal safety in patients treated with bisphosphonates for osteoporosis: A review. J. Bone Miner. Res., 2013, 28, 2049-2059.
[82]
Saita, Y.; Ishijima, M.; Kaneko, K. Atypical femoral fractures and bisphosphonate use: Current evidence and clinical implications. Ther. Adv. Chronic Dis., 2015, 6, 185-193.
[83]
Maalouf, N.M.; Heller, H.J.; Odvina, C.V.; Kim, P.J.; Sakhaee, K. Bisphosphonate-induced hypocalcemia: Report of 3 cases and review of literature. Endocr. Pract., 2006, 12, 48-53.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy