[1]
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting Organ-Level Lung Functions on a Chip. Science 2010; 328: 1662-8.
[2]
Benam KH, Villenave R, Lucchesi C, et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 2016; 13: 151.
[3]
Kodzius R, Schulze F, Gao XH, Schneider MR. Organ-on-Chip Technology: Current State and Future Developments. Genes 2017; 8.
[4]
Kimura H, Sakai Y, Fujii T. Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab Pharmacokinet 2018; 33: 43-8.
[5]
Ronaldson-Bouchard K, Vunjak-Novakovic G. Organs-on-a-Chip: A Fast Track for Engineered Human Tissues in Drug Development. Cell Stem Cell 2018; 22: 310-24.
[6]
Kankala RK, Wang S, Chen A. Microengineered organ-on-a-chip platforms towards personalized medicine. Curr Pharm Des 2018; 24(45): 5354-66.
[7]
Li X, Moosavi-Basric SM, Shethd R, Wang X, Zhang YS. Bioengineered in vitro vascular models for applications in interventional radiology. Curr Pharm Des 2018; 24(45): 5367-74.
[8]
Wan H, Gu C, Gan Y, et al. Sensor-free and sensor-based heart-on-a-chip platform: a review of design and applications. Curr Pharm Des 2018; 24(45): 5375-85.
[9]
Kızılkurtlu AA, Polat T, Aydın GB, Akpek A. Lung on a chip for drug screening and design. Curr Pharm Des 2018; 24(45): 5386-96.
[10]
Wang L, Jiang D, Wang Q, Wang Q, Hu H, Jia W. The application of microfluidic techniques on tissue engineering in orthopaedics. Curr Pharm Des 2018; 24(45): 5397-406.
[12]
Miccoli B, Braeken D, Li Y-CE. Brain-on-a-chip devices for drug screening and disease modeling applications. Curr Pharm Des 2018; 24(45): 5419-36.
[13]
Öztürk AB, Miccoli B, Avci-Adalie M, et al. Current strategies and future perspectives of skin-on-a-chip platforms: innovations, technical challenges and commercial outlook. Curr Pharm Des 2018; 24(45): 5437-57.