Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Role of Natural Product in Modulation of Drug Transporters and New Delhi Metallo-β Lactamases

Author(s): Brinda Chandar* and Debdutta Bhattacharya*

Volume 19, Issue 10, 2019

Page: [874 - 885] Pages: 12

DOI: 10.2174/1871529X19666190415110724

Price: $65

Abstract

A rapid growth in drug resistance has brought options for treating antimicrobial resistance to a halt. Bacteria have evolved to accumulate a multitude of genes that encode resistance for a single drug within a single cell. Alternations of drug transporters are one of the causes for the development of resistance in drug interactions. Conversely, the production of enzymes also inactivates most antibiotics. The discovery of newer classes of antibiotics and drugs from natural products is urgently needed. Alternative medicines play an integral role in countries across the globe but many require validation for treatment strategies. It is essential to explore this chemical diversity in order to find novel drugs with specific activities which can be used as alternative drug targets. This review describes the interaction of drugs with resistant pathogens with a special focus on natural product-derived efflux pump and carbapenemase inhibitors.

Keywords: Multi-drug resistance, β-lactamases, NDM-1, Efflux pump, Herbal drug, Drug transporters.

« Previous
[1]
Vetting, M.W.; Magnet, S.; Nieves, E.; Roderick, S.L.; Blanchard, J.S. A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones. Chem. Biol., 2004, 11(4), 565-573.
[http://dx.doi.org/10.1016/j.chembiol.2004.03.017] [PMID: 15123251]
[2]
Schwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev., 2004, 28(5), 519-542.
[http://dx.doi.org/10.1016/j.femsre.2004.04.001] [PMID: 15539072]
[3]
Matsuoka, M.; Sasaki, T. Inactivation of macrolides by producers and pathogens. Curr. Drug Targets Infect. Disord., 2004, 4(3), 217-240.
[http://dx.doi.org/10.2174/1568005043340696] [PMID: 15379733]
[4]
Opperman, T.J.; Nguyen, S.T. Recent advances toward a molecular mechanism of efflux pump inhibition. Front. Microbiol., 2015, 6, 421.
[http://dx.doi.org/10.3389/fmicb.2015.00421] [PMID: 25999939]
[5]
Centres for Disease Control and Prevention, US Department of Health and Human Services. Antibiotic resistance threats in the United States; CDC: Atlanta, 2013.
[6]
Gould, I.M.; Bal, A.M. New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence, 2013, 4(2), 185-191.
[http://dx.doi.org/10.4161/viru.22507] [PMID: 23302792]
[7]
Byarugaba, D.K. Antimicrobial Resistance in Developing Countries; Springer, 2010, pp. 15-27.
[http://dx.doi.org/10.1007/978-0-387-89370-9_2]
[8]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[9]
Forssten, S. Genetic basis and diagnostics of extended-spectrum β- lactamases among Enterobacteriaceae in Finland. 2009.
[10]
Patzer, J.A.; Walsh, T.R.; Weeks, J.; Dzierz˙anowska, D.; Toleman, M.A. Emergence and persistence of integron structures harbouring VIM genes in the Children’s Memorial Health Institute, Warsaw, Poland, 1998-2006. J. Antimicrob. Chemother., 2009, 63(2), 269-273.
[http://dx.doi.org/10.1093/jac/dkn512] [PMID: 19095681]
[11]
Nordmann, P.; Cuzon, G.; Naas, T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis., 2009, 9(4), 228-236.
[http://dx.doi.org/10.1016/S1473-3099(09)70054-4] [PMID: 19324295]
[12]
Read, A.F.; Woods, R.J. Antibiotic resistance management. Evolution, Medicine, and Public Health, 2014, 1-147.
[http://dx.doi.org/10.1093/emph/eou024]
[13]
O’Connor, S.; Rifkin, D.; Yang, Y.H.; Wang, J.F.; Levine, O.S.; Dowell, S.F. Physician control of pediatric antimicrobial use in Beijing, China, and its rural environs. Pediatr. Infect. Dis. J., 2001, 20(7), 679-684.
[http://dx.doi.org/10.1097/00006454-200107000-00008] [PMID: 11465840]
[14]
Reardon, S. Antibiotic resistance sweeping developing world. Nature, 2014, 509(7499), 141-142.
[http://dx.doi.org/10.1038/509141a] [PMID: 24805322]
[15]
Campbell, P. The antibiotic alarm. Nature, 2013, 495(7440), 141.
[http://dx.doi.org/10.1038/495141a] [PMID: 23495392]
[16]
Ventola, C.L. The antibiotic resistance crisis: part 1: causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[17]
Ventola, C.L. The antibiotic resistance crisis: part 2: management strategies and new agents. P&T, 2015, 40(5), 344-352.
[PMID: 25987823]
[18]
Pagès, J.M.; James, C.E.; Winterhalter, M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol., 2008, 6(12), 893-903.
[http://dx.doi.org/10.1038/nrmicro1994] [PMID: 18997824]
[19]
Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev., 2003, 67(4), 593-656.
[http://dx.doi.org/10.1128/MMBR.67.4.593-656.2003] [PMID: 14665678]
[20]
Piddock, L.J.V. The crisis of no new antibiotics--what is the way forward? Lancet Infect. Dis., 2012, 12(3), 249-253.
[http://dx.doi.org/10.1016/S1473-3099(11)70316-4] [PMID: 22101066]
[21]
Poole, K. Resistance to beta-lactam antibiotics. Cell. Mol. Life Sci., 2004, 61(17), 2200-2223.
[http://dx.doi.org/10.1007/s00018-004-4060-9] [PMID: 15338052]
[22]
Miller, E. L. C. N. M. The penicillins: a review and update Jounrnal of midwidery and women’s health., 2002. 47(6), 426-434.
[23]
Ambler, R.P.; Coulson, A.F.; Frère, J.M.; Ghuysen, J.M.; Joris, B.; Forsman, M.; Levesque, R.C.; Tiraby, G.; Waley, S.G. A standard numbering scheme for the class A beta-lactamases. Biochem. J., 1991, 276(Pt 1), 269-270.
[http://dx.doi.org/10.1042/bj2760269] [PMID: 2039479]
[24]
Bebrone, C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem. Pharmacol., 2007, 74(12), 1686-1701.
[http://dx.doi.org/10.1016/j.bcp.2007.05.021] [PMID: 17597585]
[25]
Toleman, M.A.; Walsh, T.R. Evolution of the ISCR3 group of ISCR elements. Antimicrob. Agents Chemother., 2008, 52(10), 3789-3791.
[http://dx.doi.org/10.1128/AAC.00479-08] [PMID: 18663029]
[26]
Young, K.T.; Davis, L.M. Campylobacter jejuni: Molecular biology and pathogenesis. Nat. Rev. Microbiol., 2007, 5(9), 665-679.
[http://dx.doi.org/10.1088/nmicro1718] [PMID: 17703225]
[27]
Peach, K.C.; Bray, W.M.; Winslow, D.; Linington, P.F.; Linington, R.G. Mechanism of action-based classification of antibiotics using high-content bacterial image analysis. Mol. Biosyst., 2013, 9(7), 1837-1848.
[http://dx.doi.org/10.1039/c3mb70027e] [PMID: 23609915]
[28]
Laxminarayan, R.; Chaudhury, R.R. Antibiotic Resistance in India: Drivers and Opportunities for Action. PLoS Med.,2016, 13(3)e, 1001974. [http://dx.doi.org/10.1371/journal.pmed.1001974] [PMID: 26934098]
[29]
Kumar, S.G.; Adithan, C.; Harish, B.N.; Sujatha, S.; Roy, G.; Malini, A. Antimicrobial resistance in India: A review. J. Nat. Sci. Biol. Med., 2013, 4(2), 286-291.
[http://dx.doi.org/10.4103/0976-9668.116970] [PMID: 24082718]
[30]
Walsh, T.R.; Toleman, M.A. The new medical challenge: why NDM-1? Why Indian? Expert Rev. Anti Infect. Ther., 2011, 9(2), 137-141.
[http://dx.doi.org/10.1586/eri.10.159] [PMID: 21342058]
[31]
Wise, R. Antimicrobial resistance: priorities for action. J. Antimicrob. Chemother., 2002, 49(4), 585-586.
[http://dx.doi.org/10.1093/jac/49.4.585] [PMID: 11909829]
[32]
Ambler, R.P.; Coulson, A.F.; Frère, J.M.; Ghuysen, J.M.; Joris, B.; Forsman, M.; Levesque, R.C.; Tiraby, G.; Waley, S.G. A standard numbering scheme for the class A beta-lactamases. Biochem. J., 1991, 276(Pt 1), 269-270.
[http://dx.doi.org/10.1042/bj2760269] [PMID: 2039479]
[33]
Bebrone, C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem. Pharmacol., 2007, 74(12), 1686-1701.
[http://dx.doi.org/10.1016/j.bcp.2007.05.021] [PMID: 17597585]
[34]
Shlaes, D.M.; Spellberg, B. Overcoming the challenges to developing new antibiotics. Curr. Opin. Pharmacol., 2012, 12(5), 522-526.
[http://dx.doi.org/10.1016/j.coph.2012.06.010] [PMID: 22832234]
[35]
Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov., 2007, 6(1), 29-40.
[http://dx.doi.org/10.1038/nrd2201] [PMID: 17159923]
[36]
Wright, G.D. Something old, something new: revisiting natural products in antibiotic drug discovery. Can. J. Microbiol., 2014, 60(3), 147-154.
[http://dx.doi.org/10.1139/cjm-2014-0063] [PMID: 24588388]
[37]
Stone, L.K.; Baym, M.; Lieberman, T.D.; Chait, R.; Clardy, J.; Kishony, R. Compounds that select against the tetracycline-resistance efflux pump. Nat. Chem. Biol., 2016, 12(11), 902-904.
[http://dx.doi.org/10.1038/nchembio.2176] [PMID: 27642863]
[38]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[39]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[40]
Grover, J.K.; Yadav, S.; Vats, V. Medicinal plants of India with anti-diabetic potential. J. Ethnopharmacol., 2002, 81(1), 81-100.
[http://dx.doi.org/10.1016/S0378-8741(02)00059-4] [PMID: 12020931]
[41]
Gajera, H.P.; Patel, S.V.; Golakiya, B.A. Antioxidant properties of some therapeutically active medicinal plants- an overview. J. Maps, 2005, 27, 91-100.
[42]
Balandrin, M.F.; Klocke, J.A.; Wurtele, E.S.; Bollinger, W.H. Natural plant chemicals: sources of industrial and medicinal materials. Science, 1985, 228(4704), 1154-1160.
[http://dx.doi.org/10.1126/science.3890182] [PMID: 3890182]
[43]
Kurup, P.N.V. Ayurveda- A potential Global Medical system. Scientific Basis for Ayurvedic Therapies; Mishra, L.C., Ed.; CRC Press: New York, 2004, pp. 1-15.
[44]
Ravishankar., and Shukla., “Indian systems of medicine: a brief profile. Afr. J. Trad., 2007, 4(3), 319-337.
[45]
Goswami, A.; Barooah, P.K.; Sandhu, J.S. Prospect of herbal drugs in the age of globalization- Indian scenario. J. Sci. Ind. Res. (India), 2002, 61, 423-431.
[46]
Tambekar, D. H.; Dahikar, S. B. Antibacterial activity of some Indian ayurvedic preparations against enteric bacterial pathogens. 2011. 2(1), 24-29. [http://dx.doi.org/10.4103/2231-4040.79801]
[47]
Ahmad, T.; Mateen, A.; Waheed, M.A.; Rasheed, M.A.N.; Ahmad, S.G.; Alam, M.I.; Saher, N.; Ahmed, M.W.; Yadav, P.K.; Siddiqui, Z.A.; Ali, S. Antimicrobial activity of some herbal drugs used in unani system of medicine. Int. J. Herbal. Med., 2015, 2(5), 27-30.
[48]
Brantner, A.; Males, Z.; Pepeljnjak, S.; Antolić, A. Antimicrobial activity of Paliurus spina-christi Mill. (Christ’s thorn). J. Ethnopharmacol., 1996, 52(2), 119-122.
[http://dx.doi.org/10.1016/0378-8741(96)01408-0] [PMID: 8735457]
[49]
Krishnaraju, A.V.; Rao, T.V.N.; Sundararaju, D. Assessment of bioactivity of Indian medicinal plants using Brine shrimp (Artemiasalina) lethality assay. Int. J. ApplSci. Eng., 2005, 2, 125-134.
[50]
Kuete, V. Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Med., 2010, 76(14), 1479-1491.
[http://dx.doi.org/10.1055/s-0030-1250027] [PMID: 20533165]
[51]
Araujo, M.G.; Hilario, F.; Nogueira, L.G.; Vilegas, W.; Santos, L.C.; Bauab, T.M. Chemical constituents of the methanolic extract of leaves of Leiothrix spiralis Ruhland and their antimicrobial activity. Molecules, 2011, 16, 10479-10490.
[http://dx.doi.org/10.3390/molecules161210479]
[52]
Limaa, B.; Sanchez, M.; Agüeroa, M.B.; Tapiaa, A.; Palermo, J.A.; Feresin, G.E. Antibacterial activity of extracts and compounds isolated from the Andean medicinal plant Azorella cryptantha (Clos) Reiche, Apiaceae. Ind. Crops Prod., 2015, 64, 152-157.
[53]
Chew, Y.L.; Chan, E.W.L.E.W.C.; Tan, P.L.; Lim, Y.Y.; Stanslas, J.; Goh, J.K.; Linn, S. Assessment of phytochemical content, polyphenolic composition, antioxidant and antibacterial activities of Leguminosae medicinal plants in Peninsular Malaysia. BMC Complement. Altern. Med., 2011, 11(1), 12.
[http://dx.doi.org/10.1186/1472-6882-11-12] [PMID: 21306653]
[54]
Saklani, A.; Kutty, S.K. Plant-derived compounds in clinical trials. Drug Discov. Today, 2008, 13(3-4), 161-171.
[http://dx.doi.org/10.1016/j.drudis.2007.10.010] [PMID: 18275914]
[55]
Savoia, D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol., 2012, 7(8), 979-990.
[http://dx.doi.org/10.2217/fmb.12.68] [PMID: 22913356]
[56]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[57]
Katiyar, C.; Gupta, A.; Kanjilal, S.; Katiyar, S. Plant-derived compounds in clinical trials. Drug Discov. Today, 2008, 13(3-4), 161-171.
[http://dx.doi.org/10.4103/0974-8520.100295]
[58]
Ehrman, T.M.; Barlow, D.J.; Hylands, P.J. Phytochemical databases of Chinese herbal constituents and bioactive plant compounds with known target specificities. J. Chem. Inf. Model., 2007, 47(2), 254-263.
[http://dx.doi.org/10.1021/ci600288m] [PMID: 17381164]
[59]
Kong, K.F.; Schneper, L.; Mathee, K. Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS, 2010, 118(1), 1-36.
[http://dx.doi.org/10.1111/j.1600-0463.2009.02563.x] [PMID: 20041868]
[60]
Tsuchiya, H. Membrane interactions of phytochemicals as their molecular mechanism applicable to the discovery of drug leads from plants. Molecules, 2015, 20(10), 18923-18966.
[http://dx.doi.org/10.3390/molecules201018923] [PMID: 26501254]
[61]
Al-Mariri, A.; Safi, M. In Vitro Antibacterial Activity of Several Plant Extracts and Oils against Some Gram-Negative Bacteria. Iran. J. Med. Sci., 2014, 39(1), 36-43.
[PMID: 24453392]
[62]
Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front. Microbiol., 2018, 9, 1639.
[http://dx.doi.org/10.3389/fmicb.2018.01639] [PMID: 30087662]
[63]
Sivaperumal, R.; Ramya, S.; Ravi, A.V.; Rajasekaran, C.; Jayakumararaj, R. Ethnopharmacological studies on the medicinal plants used by tribal inhabitants of Kottur hills, Dharmapuri, Tamilnadu, India. Environ. We Int. J. Sci. Tech., 2010, 5, 57-64.
[64]
Lamers, R.P.; Cavallari, J.F.; Burrows, L.L. The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PLoS One, 2013, 8(3), e60666.
[http://dx.doi.org/10.1371/journal.pone.0060666] [PMID: 23544160]
[65]
Dufour, V.; Stahl, M.; Baysse, C. The antibacterial properties of isothiocyanates. Microbiology, 2015, 161(Pt 2), 229-243.
[http://dx.doi.org/10.1099/mic.0.082362-0] [PMID: 25378563]
[66]
Kamel, A. Abd-Elsalam, Prasad R, Nanobiotechnology Applications in Plant Protection; Springer, 2018.
[67]
Pérez-Conesa, D.; McLandsborough, L.; Weiss, J. Inhibition and inactivation of Listeria monocytogenes and Escherichia coli O157:H7 colony biofilms by micellar-encapsulated eugenol and carvacrol. J. Food Prot., 2006, 69(12), 2947-2954.
[http://dx.doi.org/10.4315/0362-028X-69.12.2947] [PMID: 17186663]
[68]
Gomes, C.; Moreira, R.G.; Castell-Perez, E. Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J. Food Sci., 2011, 76(2), N16-N24.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01985.x] [PMID: 21535781]
[69]
Sanna, V.; Roggio, A.M.; Siliani, S.; Piccinini, M.; Marceddu, S.; Mariani, A.; Sechi, M. Development of novel cationic chitosan-and anionic alginate-coated poly(D,L-lactide-co-glycolide) nanoparticles for controlled release and light protection of resveratrol. Int. J. Nanomedicine, 2012, 7, 5501-5516.
[PMID: 23093904]
[70]
Iannitelli, A.; Grande, R.; Di Stefano, A.; Di Giulio, M.; Sozio, P.; Bessa, L.J.; Laserra, S.; Paolini, C.; Protasi, F.; Cellini, L. Potential antibacterial activity of carvacrol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm. Int. J. Mol. Sci., 2011, 12(8), 5039-5051.
[http://dx.doi.org/10.3390/ijms12085039] [PMID: 21954343]
[71]
Maddox, C.E.; Laur, L.M.; Tian, L. Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Curr. Microbiol., 2010, 60(1), 53-58.
[http://dx.doi.org/10.1007/s00284-009-9501-0] [PMID: 19813054]
[72]
Mathabe, M.C.; Hussein, A.A.; Nikolova, R.V.; Basson, A.E.; Meyer, J.J.M.; Lall, N. Antibacterial activities and cytotoxicity of terpenoids isolated from Spirostachys africana. J. Ethnopharmacol., 2008, 116(1), 194-197.
[http://dx.doi.org/10.1016/j.jep.2007.11.017] [PMID: 18191928]
[73]
Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother., 2005, 49(6), 2474-2478.
[http://dx.doi.org/10.1128/AAC.49.6.2474-2478.2005] [PMID: 15917549]
[74]
Fessenden, R.J.; Fessenden, J.S. Organic chemistry, 2nd ed; Willard Grant Press: Boston, Mass., 1982.
[75]
Sánchez Riera, A.; Daud, A.; Gallo, A.; Genta, S.; Aybar, M.; Sánchez, S. Antibacterial activity of lactose-binding lectins from Bufo arenarum skin. Biocell, 2003, 27(1), 37-46.
[PMID: 12847913]
[76]
Charungchitrak, C.; Petsom, A.; Sangvanich, P.; Karnchanatat, A. Antifungal and antibacterial activities of lectin from the seeds of Archidendron jiringa Nielsen. Food Chem., 2011, 126, 1025-1032.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.114]
[77]
Croft, K.D. The chemistry and biological effects of flavonoids and phenolic acids. Ann. N. Y. Acad. Sci., 1998, 854, 435-442.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb09922.x] [PMID: 9928450]
[78]
Rosa, M. Raybaudi-Massilia., Mosqueda-Melgar,J., Soliva-Fortuny,R., Mart’ın-BellosoO.,“Control of Pathogenic and Spoilage Microorganisms in Fresh-cut Fruits and Fruit Juices by Traditional and Alternative Natural Antimicrobials. Compr. Rev. Food Sci. Food Saf., 2009, 8, 157-180.
[http://dx.doi.org/10.1111/j.1541-4337.2009.00076.x]
[79]
Ricke, S.C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci., 2003, 82(4), 632-639.
[http://dx.doi.org/10.1093/ps/82.4.632] [PMID: 12710485]
[80]
Davidson, P.M.; Taylor, M.T. Chemical preservatives and natural antimicrobial compounds.Food Microbiology: Fundamentals and Frontiers; American Society for Microbiology Press: Washington, DC, 2007, pp. 713-734.
[81]
Lucera, A.; Costa, C.; Conte, A.; Del Nobile, M.A. Food applications of natural antimicrobial compounds. Front. Microbiol., 2012, 3, 287.
[http://dx.doi.org/10.3389/fmicb.2012.00287] [PMID: 23060862]
[82]
In, Y.; Kim, J.; Kim, H.; Oh, S. Antimicrobial activities of acetic acid, citric acid and lactic acid against shigella species. J. Food Saf., 2013, 33, 79-85.
[http://dx.doi.org/10.1111/jfs.12025]
[83]
Mohamed, F.G.; Abdel-Mageed, M.H.; Hafez, M.A.; Soltan, H.H.; Rashid, I.A.; Abdel-Rahman, F.A. Effect of some organic acids on anatomical, physiological changes and post-harvest diseases of snap bean pods. J. Biol. Chem. Environ. Sci., 2015, 10(3), 287-311.
[84]
Upadhyay, A.; Upadhyaya, I.; Kollanoor-Johny, A.; Venkitanarayanan, K. Combating pathogenic microorganisms using plant-derived antimicrobials: a minireview of the mechanistic basis. BioMed Res. Int., 2014, 2014, 761741.
[http://dx.doi.org/10.1155/2014/761741] [PMID: 25298964]
[85]
Amalaradjou, M.A.R.; Narayanan, A.; Baskaran, S.A.; Venkitanarayanan, K. Antibiofilm effect of trans-cinnamaldehyde on uropathogenic Escherichia coli. J. Urol., 2010, 184(1), 358-363.
[http://dx.doi.org/10.1016/j.juro.2010.03.006] [PMID: 20488489]
[86]
Khan, M.S.; Ahmad, I. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J. Ethnopharmacol., 2012, 140(2), 416-423.
[http://dx.doi.org/10.1016/j.jep.2012.01.045] [PMID: 22326355]
[87]
Brackman, G; Defoirdt, T; Miyamoto, C Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiology,2008, 8(1, article 149)
[88]
Jakobsen, T.H.; van Gennip, M.; Phipps, R.K.; Shanmugham, M.S.; Christensen, L.D.; Alhede, M.; Skindersoe, M.E.; Rasmussen, T.B.; Friedrich, K.; Uthe, F.; Jensen, P.Ø.; Moser, C.; Nielsen, K.F.; Eberl, L.; Larsen, T.O.; Tanner, D.; Høiby, N.; Bjarnsholt, T.; Givskov, M. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob. Agents Chemother., 2012, 56(5), 2314-2325.
[http://dx.doi.org/10.1128/AAC.05919-11] [PMID: 22314537]
[89]
Brehm-Stecher, B.F.; Johnson, E.A. Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob. Agents Chemother., 2003, 47(10), 3357-3360.
[http://dx.doi.org/10.1128/AAC.47.10.3357-3360.2003] [PMID: 14506058]
[90]
Lorenzi, V.; Muselli, A.; Bernardini, A.F.; Berti, L.; Pagès, J.M.; Amaral, L.; Bolla, J.M. Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species. Antimicrob. Agents Chemother., 2009, 53(5), 2209-2211.
[http://dx.doi.org/10.1128/AAC.00919-08] [PMID: 19258278]
[91]
Saito, T.; Miyake, M.; Toba, M.; Okamatsu, H.; Shimizu, S.; Noda, M. Inhibition by apple polyphenols of ADP-ribosyltransferase activity of cholera toxin and toxin-induced fluid accumulation in mice. Microbiol. Immunol., 2002, 46(4), 249-255.
[http://dx.doi.org/10.1111/j.1348-0421.2002.tb02693.x] [PMID: 12061627]
[92]
Qiu, J.; Feng, H.; Lu, J.; Xiang, H.; Wang, D.; Dong, J.; Wang, J.; Wang, X.; Liu, J.; Deng, X. Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus. Appl. Environ. Microbiol., 2010, 76(17), 5846-5851.
[http://dx.doi.org/10.1128/AEM.00704-10] [PMID: 20639367]
[93]
Friedman, M.; Rasooly, R.; Do, P.M.; Henika, P.R. The olive compound 4-hydroxytyrosol inactivates Staphylococcus aureus bacteria and Staphylococcal Enterotoxin A (SEA). J. Food Sci., 2011, 76(8), M558-M563.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02365.x] [PMID: 22417596]
[94]
Doughari, J.H.; Ndakidemi, P.A.; Human, I.S.; Benade, S. Antioxidant, antimicrobial and antiverotoxic potentials of extracts of Curtisia dentata. J. Ethnopharmacol., 2012, 141(3), 1041-1050.
[http://dx.doi.org/10.1016/j.jep.2012.03.051] [PMID: 22504170]
[95]
Piddock, L.J. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev., 2006, 19(2), 382-402.
[http://dx.doi.org/10.1128/CMR.19.2.382-402.2006] [PMID: 16614254]
[96]
Masuda, N.; Sakagawa, E.; Ohya, S.; Gotoh, N.; Tsujimoto, H.; Nishino, T. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2000, 44(12), 3322-3327.
[http://dx.doi.org/10.1128/AAC.44.12.3322-3327.2000] [PMID: 11083635]
[97]
Van Bambeke, F.; Balzi, E.; Tulkens, P.M. Antibiotic efflux pumps. Biochem. Pharmacol., 2000, 60(4), 457-470.
[http://dx.doi.org/10.1016/S0006-2952(00)00291-4] [PMID: 10874120]
[98]
Aparna, V.; Dineshkumar, K.; Mohanalakshmi, N.; Velmurugan, D.; Hopper, W. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One, 2014, 9(7), e101840.
[http://dx.doi.org/10.1371/journal.pone.0101840] [PMID: 25025665]
[99]
Lewis, K.; Ausubel, F.M. Prospects for plant-derived antibacterials. Nat. Biotechnol., 2006, 24(12), 1504-1507.
[http://dx.doi.org/10.1038/nbt1206-1504] [PMID: 17160050]
[100]
Lewis, K. In search of natural substrates and inhibitors of MDR pumps. J. Mol. Microbiol. Biotechnol., 2001, 3(2), 247-254.
[PMID: 11321580]
[101]
Savage, P.B. Multidrug-resistant bacteria: overcoming antibiotic permeability barriers of gram-negative bacteria. Ann. Med., 2001, 33(3), 167-171.
[http://dx.doi.org/10.3109/07853890109002073] [PMID: 11370769]
[102]
Gibbons, S. Anti-staphylococcal plant natural products. Nat. Prod. Rep., 2004, 21(2), 263-277.
[http://dx.doi.org/10.1039/b212695h] [PMID: 15042149]
[103]
Ananda Baskaran, S.; Kazmer, G.W.; Hinckley, L.; Andrew, S.M.; Venkitanarayanan, K. Antibacterial effect of plant-derived antimicrobials on major bacterial mastitis pathogens in vitro. J. Dairy Sci., 2009, 92(4), 1423-1429.
[http://dx.doi.org/10.3168/jds.2008-1384] [PMID: 19307623]
[104]
Chusri, S.; Villanueva, I.; Voravuthikunchai, S.P.; Davies, J. Enhancing antibiotic activity: a strategy to control Acinetobacter infections. J. Antimicrob. Chemother., 2009, 64(6), 1203-1211.
[http://dx.doi.org/10.1093/jac/dkp381] [PMID: 19861335]
[105]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Singh, V.; Khan, F.; Gupta, M.K.; Singh, M.; Darokar, M.P.; Srivastava, S.K. Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant E. coli. J. Biomol. Struct. Dyn., 2019, 37(5), 1307-1325.
[http://dx.doi.org/10.1080/07391102.2018.1458654] [PMID: 29595093]
[106]
Stermitz, F.R.; Lorenz, P.; Tawara, J.N.; Zenewicz, L.A.; Lewis, K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci. USA, 2000, 97(4), 1433-1437.
[http://dx.doi.org/10.1073/pnas.030540597] [PMID: 10677479]
[107]
Chan, B.C.; Ip, M.; Lau, C.B.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Litaudon, M.; Reiner, N.E.; Gong, H.; See, R.H.; Fung, K.P.; Leung, P.C. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol., 2011, 137(1), 767-773.
[http://dx.doi.org/10.1016/j.jep.2011.06.039] [PMID: 21782012]
[108]
Dwivedi, G.R.; Upadhyay, H.C.; Yadav, D.K.; Singh, V.; Srivastava, S.K.; Khan, F.; Darmwal, N.S.; Darokar, M.P. 4-Hydroxy-α-tetralone and its derivative as drug resistance reversal agents in multi drug resistant Escherichia coli. Chem. Biol. Drug Des., 2014, 83(4), 482-492.
[http://dx.doi.org/10.1111/cbdd.12263] [PMID: 24267788]
[109]
Morel, C.; Stermitz, F.R.; Tegos, G.; Lewis, K. Isoflavones as potentiators of antibacterial activity. J. Agric. Food Chem., 2003, 51(19), 5677-5679.
[http://dx.doi.org/10.1021/jf0302714] [PMID: 12952418]
[110]
Abreu, A.C.; McBain, A.J.; Simões, M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat. Prod. Rep., 2012, 29(9), 1007-1021.
[http://dx.doi.org/10.1039/c2np20035j] [PMID: 22786554]
[111]
Gangoué-Piéboji, J.; Baurin, S.; Frère, J-M.; Ngassam, P.; Ngameni, B.; Azebaze, A.; Pegnyemb, D.E.; Watchueng, J.; Goffin, C.; Galleni, M. Screening of some medicinal plants from cameroon for β-lactamase inhibitory activity. Phytother. Res., 2007, 21(3), 284-287.
[http://dx.doi.org/10.1002/ptr.2001] [PMID: 17221939]
[112]
Sakagami, Y.; Iinuma, M.; Piyasena, K.G.; Dharmaratne, H.R. Antibacterial activity of alpha-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine, 2005, 12(3), 203-208.
[http://dx.doi.org/10.1016/j.phymed.2003.09.012] [PMID: 15830842]
[113]
Phitaktim, S.; Chomnawang, M.; Sirichaiwetchakoon, K.; Dunkhunthod, B.; Hobbs, G.; Eumkeb, G. Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus. BMC Microbiol., 2016, 16(1), 195.
[http://dx.doi.org/10.1186/s12866-016-0814-4] [PMID: 27566110]
[114]
Siriwong, S.; Teethaisong, Y.; Thumanu, K.; Dunkhunthod, B.; Eumkeb, G. The synergy and mode of action of quercetin plus amoxicillin against amoxicillin-resistant Staphylococcus epidermidis. BMC Pharmacol. Toxicol., 2016, 17(1), 39.
[http://dx.doi.org/10.1186/s40360-016-0083-8] [PMID: 27491399]
[115]
Vinod, N.V.; Shijina, R.; Dileep, K.V.; Sadasivan, C. Inhibition of beta-lactamase by 1,4-naphthalenedione from the plant Holoptelea integrifolia. Appl. Biochem. Biotechnol., 2010, 160(6), 1752-1759.
[http://dx.doi.org/10.1007/s12010-009-8656-2] [PMID: 19424669]
[116]
Zhao, W.H.; Hu, Z.Q.; Hara, Y.; Shimamura, T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob. Agents Chemother., 2002, 46(7), 2266-2268.
[http://dx.doi.org/10.1128/AAC.46.7.2266-2268.2002] [PMID: 12069986]
[117]
Mikulášová, M.; Chovanová, R.; Vaverková, Š. Synergism between antibiotics and plant extracts or essential oils with efflux pump inhibitory activity in coping with multidrug-resistant staphylococci. Phytochem. Rev., 2016, 15, 651-662.
[http://dx.doi.org/10.1007/s11101-016-9458-0]
[118]
Fujita, M.; Shiota, S.; Kuroda, T.; Hatano, T.; Yoshida, T.; Mizushima, T.; Tsuchiya, T. Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol., 2005, 49(4), 391-396.
[http://dx.doi.org/10.1111/j.1348-0421.2005.tb03732.x] [PMID: 15840965]
[119]
Cheesman, M.J.; Ilanko, A.; Blonk, B.; Cock, I.E. Developing new antimicrobial therapies: Are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn. Rev., 2017, 11(22), 57-72.
[http://dx.doi.org/10.4103/phrev.phrev_21_17] [PMID: 28989242]
[120]
Johny, A.K.; Hoagland, T.; Venkitanarayanan, K. Effect of subinhibitory concentrations of plant-derived molecules in increasing the sensitivity of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 to antibiotics. Foodborne Pathog. Dis., 2010, 7(10), 1165-1170.
[http://dx.doi.org/10.1089/fpd.2009.0527] [PMID: 20618084]
[121]
Natasha, M L.; de Mariana, B; de Leandro, O L.; Silvia, C A.; dos Marcelo, S H.; Fabio, P A. Synergism of plant compound with traditional antimicrobials against streptococcus spp. isolated from bovine mastitis. 2018, 9, 1203.
[122]
King, D.T.; Worrall, L.J.; Gruninger, R.; Strynadka, N.C.J. New Delhi metallo-β-lactamase: structural insights into β-lactam recognition and inhibition. J. Am. Chem. Soc., 2012, 134(28), 11362-11365.
[http://dx.doi.org/10.1021/ja303579d] [PMID: 22713171]
[123]
Chandar, B.; Poovitha, S.; Ilango, K. MohanKumar, R.; Parani, M. MohanKumar R, Parani M. Inhibition of New Delhi metallo-β-lactamase 1 (NDM-1) producing Escherichia coli IR-6 by selected plant extracts and their synergistic actions with antibiotics. Front. Microbiol., 2017, 8, 1580.
[http://dx.doi.org/10.3389/fmicb.2017.01580] [PMID: 28878746]
[124]
Ortwine, J.K.; Sutton, J.D.; Kaye, K.S.; Pogue, J.M. Strategies for the safe use of colistin. Expert Rev. Anti Infect. Ther., 2015, 13(10), 1237-1247.
[http://dx.doi.org/10.1586/14787210.2015.1070097] [PMID: 26182825]
[125]
Kumarasamy, K.K.; Toleman, M.A.; Walsh, T.R.; Bagaria, J.; Butt, F.; Balakrishnan, R.; Chaudhary, U.; Doumith, M.; Giske, C.G.; Irfan, S.; Krishnan, P.; Kumar, A.V.; Maharjan, S.; Mushtaq, S.; Noorie, T.; Paterson, D.L.; Pearson, A.; Perry, C.; Pike, R.; Rao, B.; Ray, U.; Sarma, J.B.; Sharma, M.; Sheridan, E.; Thirunarayan, M.A.; Turton, J.; Upadhyay, S.; Warner, M.; Welfare, W.; Livermore, D.M.; Woodford, N. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis., 2010, 10(9), 597-602.
[http://dx.doi.org/10.1016/S1473-3099(10)70143-2] [PMID: 20705517]
[126]
Elnahriry, S.S.; Khalifa, H.O.; Soliman, A.M.; Ahmed, A.M.; Hussein, A.M.; Shimamoto, T.; Shimamoto, T. Emergence of plasmid-mediated colistin resistance gene mcr-1 in a clinical Escherichia coli isolate from Egypt. Antimicrob. Agents Chemother., 2016, 60(5), 3249-3250.
[http://dx.doi.org/10.1128/AAC.00269-16] [PMID: 26953204]
[127]
Linciano, P.; Cendron, L.; Gianquinto, E.; Spyrakis, F.; Tondi, D. Ten Years with New Delhi Metallo-β-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design. ACS Infect. Dis., 2019, 5(1), 9-34, 9-34.
[128]
Khan, A.; Faheem, M.; Danishuddin, M.; Khan, A.U. Evaluation of inhibitory action of novel non β-lactam inhibitor against Klebsiella pneumoniae carbapenemase (KPC-2). PLoS One, 2014, 9(9), e108246.
[http://dx.doi.org/10.1371/journal.pone.0108246] [PMID: 25265157]
[129]
Kaase, M.; Nordmann, P.; Wichelhaus, T.A.; Gatermann, S.G.; Bonnin, R.A.; Poirel, L. NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. J. Antimicrob. Chemother., 2011, 66(6), 1260-1262.
[http://dx.doi.org/10.1093/jac/dkr135] [PMID: 21427107]
[130]
Khan, A.U.; Nordmann, P. Spread of carbapenemase NDM-1 producers: the situation in India and what may be proposed. Scand. J. Infect. Dis., 2012, 44(7), 531-535.
[http://dx.doi.org/10.3109/00365548.2012.669046] [PMID: 22497308]
[131]
Rahman, M.; Shukla, S.K.; Prasad, K.N.; Ovejero, C.M.; Pati, B.K.; Tripathi, A.; Singh, A.; Srivastava, A.K.; Gonzalez-Zorn, B. Prevalence and molecular characterisation of New Delhi metallo-β-lactamases NDM-1, NDM-5, NDM-6 and NDM-7 in multidrug-resistant Enterobacteriaceae from India. Int. J. Antimicrob. Agents, 2014, 44(1), 30-37.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.03.003] [PMID: 24831713]
[132]
Liu, Z.; Li, J.; Wang, X.; Liu, D.; Ke, Y.; Wang, Y.; Shen, J. Novel Variant of New Delhi Metallo-β-lactamase, NDM-20, in Escherichia coli. Front. Microbiol., 2018, 9, 248.
[http://dx.doi.org/10.3389/fmicb.2018.00248] [PMID: 29515538]
[133]
Thakur, P.K.; Kumar, J.; Ray, D.; Anjum, F.; Hassan, M.I. Search of potential inhibitor against New Delhi metallo-beta-lactamase 1 from a series of antibacterial natural compounds. J. Nat. Sci. Biol. Med., 2013, 4(1), 51-56.
[http://dx.doi.org/10.4103/0976-9668.107260] [PMID: 23633835]
[134]
Palzkill, T. Metallo-β-lactamase structure and function. Ann. N. Y. Acad. Sci., 2013, 1277(1), 91-104.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06796.x] [PMID: 23163348]
[135]
Kumar, R.; Chandar, B.; Parani, M. Use of succinic & oxalic acid in reducing the dosage of colistin against New Delhi metallo-β-lactamase-1 bacteria. Indian J. Med. Res., 2018, 147(1), 97-101.
[http://dx.doi.org/10.4103/ijmr.IJMR_1407_16] [PMID: 29749367]
[136]
Liu, S.; Zhou, Y.; Niu, X.; Wang, T.; Li, J.; Liu, Z.; Wang, J.; Tang, S.; Wang, Y.; Deng, X. Magnolol restores the activity of meropenem against NDM-1-producing Escherichia coli by inhibiting the activity of metallo-beta-lactamase. Cell Death Discov., 2018, 4(4), 28.
[http://dx.doi.org/10.1038/s41420-018-0029-6] [PMID: 29531825]
[137]
Embelin Restores Carbapenem Efficacy against NDM-1-Positive Pathogens. Front. Microbiol., 2018, 9, 71.
[138]
Horie, H.; Chiba, A.; Wada, S. Inhibitory effect of soy saponins on the activity of β-lactamases, including New Delhi metallo-β-lactamase 1. J. Food Sci. Technol., 2018, 55(5), 1948-1952.
[http://dx.doi.org/10.1007/s13197-018-3091-4] [PMID: 29666548]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy