Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

ABC Transporters in Neurological Disorders: An Important Gateway for Botanical Compounds Mediated Neuro-Therapeutics

Author(s): Niraj Kumar Jha, Rohan Kar and Rituraj Niranjan*

Volume 19, Issue 10, 2019

Page: [795 - 811] Pages: 17

DOI: 10.2174/1568026619666190412121811

Price: $65

Abstract

Neurodegeneration is a distinguishing feature of many age related disorders and other vector borne neuroinflammatory diseases. There are a number of factors that can modulate the pathology of these disorders. ATP-binding cassette (ABC) transporters are primarily involved in the maintenance of normal brain homeostasis by eliminating toxic peptides and compounds from the brain. Also, ABC transporters protect the brain from the unwanted effects of endogenous and exogenous toxins that can enter the brain parenchyma. Therefore, these transporters have the ability to determine the pathological outcomes of several neurological disorders. For instance, ABC transporters like P-glycoprotein (ABCB1), and BCRP (ABCG2) have been reported to facilitate the clearance of peptides such as amyloid-β (Aβ) that accumulate in the brain during Alzheimer’s disease (AD) progression. Other members such as ABCA1, ABCA2, ABCC8, ABCC9, ABCG1 and ABCG4 also have been reported to be involved in the progression of various brain disorders such as HIV-associated dementia, Multiple sclerosis (MS), Ischemic stroke, Japanese encephalitis (JE) and Epilepsy. However, these defective transporters can be targeted by numerous botanical compounds such as Verapamil, Berberine and Fascalpsyn as a therapeutic target to treat these neurological outcomes. These compounds are already reported to modulate ABC transporter activity in the CNS. Nonetheless, the exact mechanisms involving the ABC transporters role in normal brain functioning, their role in neuronal dysfunction and how these botanical compounds ensure and facilitate their therapeutic action in association with defective transporters still remain elusive. This review therefore, summarizes the role of ABC transporters in neurological disorders, with a special emphasis on its role in AD brains. The prospect of using botanical/natural compounds as modulators of ABC transporters in neurological disorders is discussed in the latter half of the article.

Keywords: ABC transporter, Neuroinflammation, Neurodegeneration, Alzheimer’s disease, Botanical compounds, Neurotherapeutics.

Graphical Abstract

[1]
Niranjan, R. Recent advances in the mechanisms of neuroinflammation and their roles in neurodegeneration. Neurochem. Int., 2018, 120, 13-20. [http://dx.doi.org/10.1016/j.neuint.2018.07.003] [PMID: 30016687]
[2]
Niranjan, R.; Mishra, K.P.; Thakur, A.K. Inhibition of cyclooxygenase-2 (COX-2) initiates autophagy and potentiates MPTP-Induced autophagic cell death of human neuroblastoma Cells, SH-SY5Y: an Inside in the Pathology of Parkinson’s Disease. Mol. Neurobiol., 2018, 55(10), 8038-8050. [http://dx.doi.org/10.1007/s12035-018-0950-y] [PMID: 29498006]
[3]
Abuznait, A.H.; Kaddoumi, A. Role of ABC transporters in the pathogenesis of Alzheimer’s disease. ACS Chem. Neurosci., 2012, 3(11), 820-831. [http://dx.doi.org/10.1021/cn300077c] [PMID: 23181169]
[4]
Niranjan, R. Molecular basis of etiological implications in Alzheimer’s disease: focus on neuroinflammation. Mol. Neurobiol., 2013, 48(3), 412-428. [http://dx.doi.org/10.1007/s12035-013-8428-4] [PMID: 23420079]
[5]
Niranjan, R. The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes. Mol. Neurobiol., 2014, 49(1), 28-38. [http://dx.doi.org/10.1007/s12035-013-8483-x] [PMID: 23783559]
[6]
Ballerini, P.; Di Iorio, P.; Ciccarelli, R.; Nargi, E.; D’Alimonte, I.; Traversa, U.; Rathbone, M.P.; Caciagli, F. Glial cells express multiple ATP binding cassette proteins which are involved in ATP release. Neuroreport, 2002, 13(14), 1789-1792. [http://dx.doi.org/10.1097/00001756-200210070-00019] [PMID: 12395124]
[7]
Niranjan, R.; Nath, C.; Shukla, R. The mechanism of action of MPTP-induced neuroinflammation and its modulation by melatonin in rat astrocytoma cells, C6. Free Radic. Res., 2010, 44(11), 1304-1316. [http://dx.doi.org/10.3109/10715762.2010.501080] [PMID: 20815783]
[8]
Trowitzsch, S.; Tampé, R. ABC Transporters in Dynamic Macromolecular Assemblies. J. Mol. Biol., 2018, 430(22), 4481-4495. [http://dx.doi.org/10.1016/j.jmb.2018.07.028] [PMID: 30089236]
[9]
Tsybovsky, Y.; Orban, T.; Molday, R.S.; Taylor, D.; Palczewski, K. Molecular organization and ATP-induced conformational changes of ABCA4, the photoreceptor-specific ABC transporter. Structure, 2013, 21(5), 854-860. [http://dx.doi.org/10.1016/j.str.2013.03.001] [PMID: 23562398]
[10]
Pereira, C.D.; Martins, F.; Wiltfang, J.; da Cruz, E. Silva, O.A.B.; Rebelo, S.; Rebelo, S. ABC transporters are key players in Alzheimer’s disease. J. Alzheimers Dis., 2018, 61(2), 463-485. [http://dx.doi.org/10.3233/JAD-170639] [PMID: 29171999]
[11]
Kooij, G.; van Horssen, J.; de Lange, E.C.; Reijerkerk, A.; van der Pol, S.M.; van Het Hof, B.; Drexhage, J.; Vennegoor, A.; Killestein, J.; Scheffer, G.; Oerlemans, R.; Scheper, R.; van der Valk, P.; Dijkstra, C.D.; de Vries, H.E. T lymphocytes impair P-glycoprotein function during neuroinflammation. J. Autoimmun., 2010, 34(4), 416-425. [http://dx.doi.org/10.1016/j.jaut.2009.10.006] [PMID: 19959334]
[12]
Kumar, A.; Ekavali, M.J.; Mishra, J.; Chopra, K.; Dhull, D.K. Possible role of P-glycoprotein in the neuroprotective mechanism of berberine in intracerebroventricular streptozotocin-induced cognitive dysfunction. Psychopharmacology (Berl.), 2016, 233(1), 137-152. [http://dx.doi.org/10.1007/s00213-015-4095-7] [PMID: 26446867]
[13]
Abuznait, A.H.; Qosa, H.; Busnena, B.A.; El Sayed, K.A.; Kaddoumi, A. Olive-oil-derived oleocanthal enhances β-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: in vitro and in vivo studies. ACS Chem. Neurosci., 2013, 4(6), 973-982. [http://dx.doi.org/10.1021/cn400024q] [PMID: 23414128]
[14]
Lemmen, J.; Tozakidis, I.E.; Galla, H.J. Pregnane X receptor upregulates ABC-transporter Abcg2 and Abcb1 at the blood-brain barrier. Brain Res., 2013, 1491, 1-13. [http://dx.doi.org/10.1016/j.brainres.2012.10.060] [PMID: 23123212]
[15]
Elali, A.; Rivest, S. The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer’s disease. Front. Physiol., 2013, 4, 45. [http://dx.doi.org/10.3389/fphys.2013.00045] [PMID: 23494712]
[16]
Borges-Walmsley, M.I.; McKeegan, K.S.; Walmsley, A.R. Structure and function of efflux pumps that confer resistance to drugs. Biochem. J., 2003, 376(Pt 2), 313-338. [http://dx.doi.org/10.1042/bj20020957] [PMID: 13678421]
[17]
Jones, P.M.; George, A.M. The ABC transporter structure and mechanism: perspectives on recent research. Cell. Mol. Life Sci., 2004, 61(6), 682-699. [http://dx.doi.org/10.1007/s00018-003-3336-9] [PMID: 15052411]
[18]
Zolnerciks, J.K.; Andress, E.J.; Nicolaou, M.; Linton, K.J. Structure of ABC transporters. Essays Biochem., 2011, 50(1), 43-61. [http://dx.doi.org/10.1042/bse0500043] [PMID: 21967051]
[19]
Begley, D.J. ABC transporters and the blood-brain barrier. Curr. Pharm. Des., 2004, 10(12), 1295-1312. [http://dx.doi.org/10.2174/1381612043384844] [PMID: 15134482]
[20]
Schinkel, A.H.; Jonker, J.W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv. Drug Deliv. Rev., 2003, 55(1), 3-29. [http://dx.doi.org/10.1016/S0169-409X(02)00169-2] [PMID: 12535572]
[21]
Bartels, A.L. Blood-brain barrier P-glycoprotein function in neurodegenerative disease. Curr. Pharm. Des., 2011, 17(26), 2771-2777. [http://dx.doi.org/10.2174/138161211797440122] [PMID: 21831040]
[22]
Chin, J.E.; Soffir, R.; Noonan, K.E.; Choi, K.; Roninson, I.B. Structure and expression of the human MDR (P-glycoprotein) gene family. Mol. Cell. Biol., 1989, 9(9), 3808-3820. [http://dx.doi.org/10.1128/MCB.9.9.3808] [PMID: 2571078]
[23]
Ceccanti, M.; Cambieri, C.; Frasca, V.; Onesti, E.; Biasiotta, A.; Giordano, C.; Bruno, S.M.; Testino, G.; Lucarelli, M.; Arca, M.; Inghilleri, M. A novel mutation in ABCA1 gene causing tangier disease in an italian family with uncommon neurological presentation. Front. Neurol., 2016, 7, 185. [http://dx.doi.org/10.3389/fneur.2016.00185] [PMID: 27853448]
[24]
Sakai, H.; Tanaka, Y.; Tanaka, M.; Ban, N.; Yamada, K.; Matsumura, Y.; Watanabe, D.; Sasaki, M.; Kita, T.; Inagaki, N. ABCA2 deficiency results in abnormal sphingolipid metabolism in mouse brain. J. Biol. Chem., 2007, 282(27), 19692-19699. [http://dx.doi.org/10.1074/jbc.M611056200] [PMID: 17488728]
[25]
Tsybovsky, Y.; Molday, R.S.; Palczewski, K. The ATP-binding cassette transporter ABCA4: structural and functional properties and role in retinal disease. Adv. Exp. Med. Biol., 2010, 703, 105-125. [http://dx.doi.org/10.1007/978-1-4419-5635-4_8] [PMID: 20711710]
[26]
DeStefano, G.M.; Kurban, M.; Anyane-Yeboa, K.; Dall’Armi, C.; Di Paolo, G.; Feenstra, H.; Silverberg, N.; Rohena, L.; López-Cepeda, L.D.; Jobanputra, V.; Fantauzzo, K.A.; Kiuru, M.; Tadin-Strapps, M.; Sobrino, A.; Vitebsky, A.; Warburton, D.; Levy, B.; Salas-Alanis, J.C.; Christiano, A.M. Mutations in the cholesterol transporter gene ABCA5 are associated with excessive hair over-growth. PLoS Genet., 2014, 10(5), e1004333. [http://dx.doi.org/10.1371/journal.pgen.1004333] [PMID: 24831815]
[27]
Kjeldsen, E.W.; Tybjærg-Hansen, A.; Nordestgaard, B.G.; Frikke-Schmidt, R. ABCA7 and risk of dementia and vascular disease in the Danish population. Ann. Clin. Transl. Neurol., 2017, 5(1), 41-51. [http://dx.doi.org/10.1002/acn3.506] [PMID: 29376091]
[28]
Pappas, J.J.; Petropoulos, S.; Suderman, M.; Iqbal, M.; Moisiadis, V.; Turecki, G.; Matthews, S.G.; Szyf, M. The multidrug resistance 1 gene Abcb1 in brain and placenta: comparative analysis in human and guinea pig. PLoS One, 2014, 9(10), e111135. [http://dx.doi.org/10.1371/journal.pone.0111135] [PMID: 25353162]
[29]
Kilic, E.; Spudich, A.; Kilic, U.; Rentsch, K.M.; Vig, R.; Matter, C.M.; Wunderli-Allenspach, H.; Fritschy, J.M.; Bassetti, C.L.; Hermann, D.M. ABCC1: a gateway for pharmacological compounds to the ischaemic brain. Brain, 2008, 131(Pt 10), 2679-2689. [http://dx.doi.org/10.1093/brain/awn222] [PMID: 18796513]
[30]
Guo, D.; Liu, H.; Ruzi, A.; Gao, G.; Nasir, A.; Liu, Y.; Yang, F.; Wu, F.; Xu, G.; Li, Y.X. Modeling congenital hyperinsulinism with ABCC8-deficient human embryonic stem cells generated by CRISPR/Cas9. Sci. Rep., 2017, 7(1), 3156. [http://dx.doi.org/10.1038/s41598-017-03349-w] [PMID: 28600547]
[31]
Nelson, P.T.; Jicha, G.A.; Wang, W.X.; Ighodaro, E.; Artiushin, S.; Nichols, C.G.; Fardo, D.W. ABCC9/SUR2 in the brain: Implications for hippocampal sclerosis of aging and a potential therapeutic target. Ageing Res Rev.,2015, 24(Pt B), 111-125.
[32]
Lauer, A.; Da, X.; Hansen, M.B.; Boulouis, G.; Ou, Y.; Cai, X.; Liberato Celso Pedrotti, A.; Kalpathy-Cramer, J.; Caruso, P.; Hayden, D.L.; Rost, N.; Mouridsen, K.; Eichler, F.S.; Rosen, B.; Musolino, P.L. ABCD1 dysfunction alters white matter microvascular perfusion. Brain, 2017, 140(12), 3139-3152. [http://dx.doi.org/10.1093/brain/awx262] [PMID: 29136088]
[33]
Burgess, B.L.; Parkinson, P.F.; Racke, M.M.; Hirsch-Reinshagen, V.; Fan, J.; Wong, C.; Stukas, S.; Theroux, L.; Chan, J.Y.; Donkin, J.; Wilkinson, A.; Balik, D.; Christie, B.; Poirier, J.; Lütjohann, D.; Demattos, R.B.; Wellington, C.L. ABCG1 influences the brain cholesterol biosynthetic pathway but does not affect amyloid precursor protein or apolipoprotein E metabolism in vivo. J. Lipid Res., 2008, 49(6), 1254-1267. [http://dx.doi.org/10.1194/jlr.M700481-JLR200] [PMID: 18314463]
[34]
Adams, S.M.; Conley, Y.P.; Ren, D.; Okonkwo, D.O.; Puccio, A.M.; Dixon, C.E.; Clark, R.S.B.; Kochanek, P.M.; Empey, P.E. ABCG2 c.421C>A is associated with outcomes after severe traumatic brain injury. J. Neurotrauma, 2018, 35(1), 48-53. [http://dx.doi.org/10.1089/neu.2017.5000] [PMID: 28747144]
[35]
Dodacki, A.; Wortman, M.; Saubaméa, B.; Chasseigneaux, S.; Nicolic, S.; Prince, N.; Lochus, M.; Raveu, A.L.; Declèves, X.; Scherrmann, J.M.; Patel, S.B.; Bourasset, F. Expression and function of Abcg4 in the mouse blood-brain barrier: role in restricting the brain entry of amyloid-β peptide. Sci. Rep., 2017, 7(1), 13393. [http://dx.doi.org/10.1038/s41598-017-13750-0] [PMID: 29042617]
[36]
Dean, M.; Rzhetsky, A.; Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res., 2001, 11(7), 1156-1166. [http://dx.doi.org/10.1101/gr.GR-1649R] [PMID: 11435397]
[37]
Vasiliou, V.; Vasiliou, K.; Nebert, D.W. Human ATP-binding cassette (ABC) transporter family. Hum. Genomics, 2009, 3(3), 281-290. [http://dx.doi.org/10.1186/1479-7364-3-3-281] [PMID: 19403462]
[38]
Rees, D.C.; Johnson, E.; Lewinson, O. ABC transporters: The power to change. Nat. Rev. Mol. Cell Biol., 2009, 10(3), 218-227. [http://dx.doi.org/10.1038/nrm2646] [PMID: 19234479]
[39]
ter Beek, J.; Guskov, A.; Slotboom, D.J. Structural diversity of ABC transporters. J. Gen. Physiol., 2014, 143(4), 419-435. [http://dx.doi.org/10.1085/jgp.201411164] [PMID: 24638992]
[40]
Schmitt, L.; Tampé, R. Structure and mechanism of ABC transporters. Curr. Opin. Struct. Biol., 2002, 12(6), 754-760. [http://dx.doi.org/10.1016/S0959-440X(02)00399-8] [PMID: 12504680]
[41]
Wilkens, S. Structure and mechanism of ABC transporters. F1000Prime Rep., 2015, 7, 14. [http://dx.doi.org/10.12703/P7-14] [PMID: 25750732]
[42]
Hermann, D.M.; Kilic, E.; Spudich, A.; Krämer, S.D.; Wunderli-Allenspach, H.; Bassetti, C.L. Role of drug efflux carriers in the healthy and diseased brain. Ann. Neurol., 2006, 60(5), 489-498. [http://dx.doi.org/10.1002/ana.21012] [PMID: 17048260]
[43]
Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis., 2010, 37(1), 13-25. [http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[44]
Abbott, N.J. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell. Mol. Neurobiol., 2005, 25(1), 5-23. [http://dx.doi.org/10.1007/s10571-004-1374-y] [PMID: 15962506]
[45]
Hawkins, B.T.; Davis, T.P. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev., 2005, 57(2), 173-185. [http://dx.doi.org/10.1124/pr.57.2.4] [PMID: 15914466]
[46]
Shen, S.; Zhang, W. ABC transporters and drug efflux at the blood-brain barrier. Rev. Neurosci., 2010, 21(1), 29-53. [http://dx.doi.org/10.1515/REVNEURO.2010.21.1.29] [PMID: 20458886]
[47]
Hermann, D.M.; Bassetti, C.L. Implications of ATP-binding cassette transporters for brain pharmacotherapies. Trends Pharmacol. Sci., 2007, 28(3), 128-134. [http://dx.doi.org/10.1016/j.tips.2007.01.007] [PMID: 17275929]
[48]
Neuwelt, E.; Abbott, N.J.; Abrey, L.; Banks, W.A.; Blakley, B.; Davis, T.; Engelhardt, B.; Grammas, P.; Nedergaard, M.; Nutt, J.; Pardridge, W.; Rosenberg, G.A.; Smith, Q.; Drewes, L.R. Strategies to advance translational research into brain barriers. Lancet Neurol., 2008, 7(1), 84-96. [http://dx.doi.org/10.1016/S1474-4422(07)70326-5] [PMID: 18093565]
[49]
Morganti-Kossmann, M.C.; Rancan, M.; Stahel, P.F.; Kossmann, T. Inflammatory response in acute traumatic brain injury: A double-edged sword. Curr. Opin. Crit. Care, 2002, 8(2), 101-105. [http://dx.doi.org/10.1097/00075198-200204000-00002] [PMID: 12386508]
[50]
Fisher, M. Pericyte signaling in the neurovascular unit. Stroke, 2009, 40(3)(Suppl.), S13-S15. [http://dx.doi.org/10.1161/STROKEAHA.108.533117] [PMID: 19064799]
[51]
Jin, R.; Yang, G.; Li, G. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol. Dis., 2010, 38(3), 376-385. [http://dx.doi.org/10.1016/j.nbd.2010.03.008] [PMID: 20302940]
[52]
Minagar, A.; Alexander, J.S. Blood-brain barrier disruption in multiple sclerosis. Mult. Scler., 2003, 9(6), 540-549. [http://dx.doi.org/10.1191/1352458503ms965oa] [PMID: 14664465]
[53]
Semple, B.D.; Kossmann, T.; Morganti-Kossmann, M.C. Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J. Cereb. Blood Flow Metab., 2010, 30(3), 459-473. [http://dx.doi.org/10.1038/jcbfm.2009.240] [PMID: 19904283]
[54]
Methia, N.; André, P.; Hafezi-Moghadam, A.; Economopoulos, M.; Thomas, K.L.; Wagner, D.D. ApoE deficiency compromises the blood brain barrier especially after injury. Mol. Med., 2001, 7(12), 810-815. [http://dx.doi.org/10.1007/BF03401973] [PMID: 11844869]
[55]
Hafezi-Moghadam, A.; Thomas, K.L.; Wagner, D.D. ApoE deficiency leads to a progressive age-dependent blood-brain barrier leakage. Am. J. Physiol. Cell Physiol., 2007, 292(4), C1256-C1262. [http://dx.doi.org/10.1152/ajpcell.00563.2005] [PMID: 16870825]
[56]
Muresanu, D.F.; Sharma, A.; Sharma, H.S. Diabetes aggravates heat stress-induced blood-brain barrier breakdown, reduction in cerebral blood flow, edema formation, and brain pathology: possible neuroprotection with growth hormone. Ann. N. Y. Acad. Sci., 2010, 1199, 15-26. [http://dx.doi.org/10.1111/j.1749-6632.2009.05328.x] [PMID: 20633105]
[57]
ElAli, A.; Doeppner, T.R.; Zechariah, A.; Hermann, D.M. Increased blood-brain barrier permeability and brain edema after focal cerebral ischemia induced by hyperlipidemia: role of lipid peroxidation and calpain-1/2, matrix metalloproteinase-2/9, and RhoA overactivation. Stroke, 2011, 42(11), 3238-3244. [http://dx.doi.org/10.1161/STROKEAHA.111.615559] [PMID: 21836084]
[58]
Wijnholds, J.; Evers, R.; van Leusden, M.R.; Mol, C.A.; Zaman, G.J.; Mayer, U.; Beijnen, J.H.; van der Valk, M.; Krimpenfort, P.; Borst, P. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat. Med., 1997, 3(11), 1275-1279. [http://dx.doi.org/10.1038/nm1197-1275] [PMID: 9359705]
[59]
Zlokovic, B.V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 2008, 57(2), 178-201. [http://dx.doi.org/10.1016/j.neuron.2008.01.003] [PMID: 18215617]
[60]
Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53. [http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[61]
Löscher, W.; Potschka, H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx, 2005, 2(1), 86-98. [http://dx.doi.org/10.1602/neurorx.2.1.86] [PMID: 15717060]
[62]
Miller, D.S. Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol. Sci., 2010, 31(6), 246-254. [http://dx.doi.org/10.1016/j.tips.2010.03.003] [PMID: 20417575]
[63]
van de Ven, R.; Oerlemans, R.; van der Heijden, J.W.; Scheffer, G.L.; de Gruijl, T.D.; Jansen, G.; Scheper, R.J. ABC drug transporters and immunity: novel therapeutic targets in autoimmunity and cancer. J. Leukoc. Biol., 2009, 86(5), 1075-1087. [http://dx.doi.org/10.1189/jlb.0309147] [PMID: 19745159]
[64]
Brück, W.; Sommermeier, N.; Bergmann, M.; Zettl, U.; Goebel, H.H.; Kretzschmar, H.A.; Lassmann, H. Macrophages in multiple sclerosis. Immunobiology, 1996, 195(4-5), 588-600. [http://dx.doi.org/10.1016/S0171-2985(96)80024-6] [PMID: 8933159]
[65]
Li, H.; Cuzner, M.L.; Newcombe, J. Microglia-derived macrophages in early multiple sclerosis plaques. Neuropathol. Appl. Neurobiol., 1996, 22(3), 207-215. [http://dx.doi.org/10.1111/j.1365-2990.1996.tb00896.x] [PMID: 8804022]
[66]
Tani, M.; Glabinski, A.R.; Tuohy, V.K.; Stoler, M.H.; Estes, M.L.; Ransohoff, R.M. In situ hybridization analysis of glial fibrillary acidic protein mRNA reveals evidence of biphasic astrocyte activation during acute experimental autoimmune encephalomyelitis. Am. J. Pathol., 1996, 148(3), 889-896. [PMID: 8774143]
[67]
Speth, C.; Dierich, M.P.; Sopper, S. HIV-infection of the central nervous system: the tightrope walk of innate immunity. Mol. Immunol., 2005, 42(2), 213-228. [http://dx.doi.org/10.1016/j.molimm.2004.06.018] [PMID: 15488609]
[68]
Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci., 2009, 32(12), 638-647. [http://dx.doi.org/10.1016/j.tins.2009.08.002] [PMID: 19782411]
[69]
Kooij, G.; Backer, R.; Koning, J.J.; Reijerkerk, A.; van Horssen, J.; van der Pol, S.M.; Drexhage, J.; Schinkel, A.; Dijkstra, C.D.; den Haan, J.M.; Geijtenbeek, T.B.; de Vries, H.E. P-glycoprotein acts as an immunomodulator during neuroinflammation. PLoS One, 2009, 4(12), e8212. [http://dx.doi.org/10.1371/journal.pone.0008212] [PMID: 19997559]
[70]
Sita, G.; Hrelia, P.; Tarozzi, A.; Morroni, F. P-glycoprotein (ABCB1) and Oxidative stress: Focus on Alzheimer’s Disease. Oxid. Med. Cell. Longev., 2017, 2017, 7905486. [http://dx.doi.org/10.1155/2017/7905486] [PMID: 29317984]
[71]
Kooij, G.; Mizee, M.R.; van Horssen, J.; Reijerkerk, A.; Witte, M.E.; Drexhage, J.A.; van der Pol, S.M.; van Het Hof, B.; Scheffer, G.; Scheper, R.; Dijkstra, C.D.; van der Valk, P.; de Vries, H.E. Adenosine triphosphate-binding cassette transporters mediate chemokine (C-C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis. Brain, 2011, 134(Pt 2), 555-570. [http://dx.doi.org/10.1093/brain/awq330] [PMID: 21183485]
[72]
van de Ven, R.; de Jong, M.C.; Reurs, A.W.; Schoonderwoerd, A.J.; Jansen, G.; Hooijberg, J.H.; Scheffer, G.L.; de Gruijl, T.D.; Scheper, R.J. Dendritic cells require multidrug resistance protein 1 (ABCC1) transporter activity for differentiation. J. Immunol., 2006, 176(9), 5191-5198. [http://dx.doi.org/10.4049/jimmunol.176.9.5191] [PMID: 16621983]
[73]
Randolph, G.J.; Beaulieu, S.; Pope, M.; Sugawara, I.; Hoffman, L.; Steinman, R.M.; Muller, W.A. A physiologic function for p-glycoprotein (MDR-1) during the migration of dendritic cells from skin via afferent lymphatic vessels. Proc. Natl. Acad. Sci. USA, 1998, 95(12), 6924-6929. [http://dx.doi.org/10.1073/pnas.95.12.6924] [PMID: 9618515]
[74]
Vogelgesang, S.; Cascorbi, I.; Schroeder, E.; Pahnke, J.; Kroemer, H.K.; Siegmund, W.; Kunert-Keil, C.; Walker, L.C.; Warzok, R.W. Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics, 2002, 12(7), 535-541. [http://dx.doi.org/10.1097/00008571-200210000-00005] [PMID: 12360104]
[75]
Langford, D.; Grigorian, A.; Hurford, R.; Adame, A.; Ellis, R.J.; Hansen, L.; Masliah, E. Altered P-glycoprotein expression in AIDS patients with HIV encephalitis. J. Neuropathol. Exp. Neurol., 2004, 63(10), 1038-1047. [http://dx.doi.org/10.1093/jnen/63.10.1038] [PMID: 15535131]
[76]
Kortekaas, R.; Leenders, K.L.; van Oostrom, J.C.; Vaalburg, W.; Bart, J.; Willemsen, A.T.; Hendrikse, N.H. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann. Neurol., 2005, 57(2), 176-179. [http://dx.doi.org/10.1002/ana.20369] [PMID: 15668963]
[77]
Aronica, E.; Sisodiya, S.M.; Gorter, J.A. Cerebral expression of drug transporters in epilepsy. Adv. Drug Deliv. Rev., 2012, 64(10), 919-929. [http://dx.doi.org/10.1016/j.addr.2011.11.008] [PMID: 22138133]
[78]
Mahringer, A.; Fricker, G. ABC transporters at the blood-brain barrier. Expert Opin. Drug Metab. Toxicol., 2016, 12(5), 499-508. [http://dx.doi.org/10.1517/17425255.2016.1168804] [PMID: 26998936]
[79]
Zhao, Y.; Hou, D.; Feng, X.; Lin, F.; Luo, J. Role of ABC transporters in the pathology of Alzheimer’s disease. Rev. Neurosci., 2017, 28(2), 155-159. [http://dx.doi.org/10.1515/revneuro-2016-0060] [PMID: 27997355]
[80]
Jha, S.K.; Jha, N.K.; Kumar, D.; Sharma, R.; Shrivastava, A.; Ambasta, R.K.; Kumar, P. Stress-induced synaptic dysfunction and neurotransmitter release in Alzheimer’s disease: Can neurotransmitters and neuromodulators be potential therapeutic targets? J. Alzheimers Dis., 2017, 57(4), 1017-1039. [http://dx.doi.org/10.3233/JAD-160623] [PMID: 27662312]
[81]
Vogelgesang, S.; Warzok, R.W.; Cascorbi, I.; Kunert-Keil, C.; Schroeder, E.; Kroemer, H.K.; Siegmund, W.; Walker, L.C.; Pahnke, J. The role of P-glycoprotein in cerebral amyloid angiopathy; implications for the early pathogenesis of Alzheimer’s disease. Curr. Alzheimer Res., 2004, 1(2), 121-125. [http://dx.doi.org/10.2174/1567205043332225] [PMID: 15975076]
[82]
Bruckmann, S.; Brenn, A.; Grube, M.; Niedrig, K.; Holtfreter, S. von Bohlen und Halbach, O.; Groschup, M.; Keller, M.; Vogelgesang, S. von Bohlen und Halbach, O.; Groschup, M.; Keller, M.; Vogelgesang, S. Lack of P-glycoprotein results in impairment of removal of beta-amyloid and increased intraparenchymal cerebral amyloid angiopathy after active immunization in a transgenic mouse model of Alzheimer’s disease. Curr. Alzheimer Res., 2017, 14(6), 656-667. [http://dx.doi.org/10.2174/1567205013666161201201227] [PMID: 27915995]
[83]
Park, R.; Kook, S.Y.; Park, J.C.; Mook-Jung, I. Aβ1-42 reduces Pglycoprotein in the blood-brain barrier through RAGE-NF-κB signaling. Cell Death Dis.,2014, 5e1299 [http://dx.doi.org/10.1038/cddis.2014.258] [PMID: 24967961]
[84]
Hartz, A.M.; Zhong, Y.; Wolf, A.; LeVine, H., III; Miller, D.S.; Bauer, B. A40 reduces P-glycoprotein at the blood brain barrier through the ubiquitin-proteasome pathway. J. Neurosci., 2016, 36(6), 1930-1941. [http://dx.doi.org/10.1523/JNEUROSCI.0350-15.2016] [PMID: 26865616]
[85]
Hofrichter, J.; Krohn, M.; Schumacher, T.; Lange, C.; Feistel, B.; Walbroel, B.; Heinze, H.J.; Crockett, S.; Sharbel, T.F.; Pahnke, J. Reduced Alzheimer’s disease pathology by St. John’s Wort treatment is independent of hyperforin and facilitated by ABCC1 and microglia activation in mice. Curr. Alzheimer Res., 2013, 10(10), 1057-1069. [http://dx.doi.org/10.2174/15672050113106660171] [PMID: 24156265]
[86]
Krohn, M.; Bracke, A.; Avchalumov, Y.; Schumacher, T.; Hofrichter, J.; Paarmann, K.; Fröhlich, C.; Lange, C.; Brüning, T.; von Bohlen Und Halbach, O.; Pahnke, J. Accumulation of murine amyloid-β mimics early Alzheimer’s disease. Brain, 2015, 138(Pt 8), 2370-2382. [http://dx.doi.org/10.1093/brain/awv137] [PMID: 25991605]
[87]
Ye, B.; Shen, H.; Zhang, J.; Zhu, Y.G.; Ransom, B.R.; Chen, X.C.; Ye, Z.C. Dual pathways mediate β-amyloid stimulated glutathione release from astrocytes. Glia, 2015, 63(12), 2208-2219. [http://dx.doi.org/10.1002/glia.22886] [PMID: 26200696]
[88]
Bamji-Mirza, M.; Li, Y.; Najem, D.; Liu, Q.Y.; Walker, D.; Lue, L.F.; Stupak, J.; Chan, K.; Li, J.; Ghani, M.; Yang, Z.; Rogaeva, E.; Zhang, W. Genetic variations in ABCA7 can increase secreted levels of amyloid-β40 and amyloid-β42 peptides and ABCA7 transcription in cell culture models. J. Alzheimers Dis., 2018, 66(2), 853-854. [http://dx.doi.org/10.3233/JAD-189009] [PMID: 30400101]
[89]
Vardarajan, B.N.; Ghani, M.; Kahn, A.; Sheikh, S.; Sato, C.; Barral, S.; Lee, J.H.; Cheng, R.; Reitz, C.; Lantigua, R.; Reyes-Dumeyer, D.; Medrano, M.; Jimenez-Velazquez, I.Z.; Rogaeva, E.; St George-Hyslop, P.; Mayeux, R. Rare coding mutations identified by sequencing of Alzheimer disease genome-wide association studies loci. Ann. Neurol., 2015, 78(3), 487-498. [http://dx.doi.org/10.1002/ana.24466] [PMID: 26101835]
[90]
Liu, L.H.; Xu, J.; Deng, Y.L.; Tang, H.D.; Wang, Y.; Ren, R.J.; Xu, W.; Ma, J.F.; Wang, G.; Chen, S.D. A complex association of ABCA7 genotypes with sporadic Alzheimer disease in Chinese Han population. Alzheimer Dis. Assoc. Disord., 2014, 28(2), 141-144. [http://dx.doi.org/10.1097/WAD.0000000000000000] [PMID: 24113560]
[91]
Aikawa, T.; Holm, M.L.; Kanekiyo, T. ABCA7 and pathogenic pathways of Alzheimer’s disease. Brain Sci., 2018, 8(2), E27. [http://dx.doi.org/10.3390/brainsci8020027] [PMID: 29401741]
[92]
Payami, H.; Zareparsi, S.; Montee, K.R.; Sexton, G.J.; Kaye, J.A.; Bird, T.D.; Yu, C.E.; Wijsman, E.M.; Heston, L.L.; Litt, M.; Schellenberg, G.D. Gender difference in apolipoprotein E-associated risk for familial Alzheimer disease: a possible clue to the higher incidence of Alzheimer disease in women. Am. J. Hum. Genet., 1996, 58(4), 803-811. [PMID: 8644745]
[93]
Macé, S.; Cousin, E.; Ricard, S.; Génin, E.; Spanakis, E.; Lafargue-Soubigou, C.; Génin, B.; Fournel, R.; Roche, S.; Haussy, G.; Massey, F.; Soubigou, S.; Bréfort, G.; Benoit, P.; Brice, A.; Campion, D.; Hollis, M.; Pradier, L.; Benavides, J.; Deleuze, J.F. ABCA2 is a strong genetic risk factor for early-onset Alzheimer’s disease. Neurobiol. Dis., 2005, 18(1), 119-125. [http://dx.doi.org/10.1016/j.nbd.2004.09.011] [PMID: 15649702]
[94]
Wollmer, M.A.; Kapaki, E.; Hersberger, M.; Muntwyler, J.; Brunner, F.; Tsolaki, M.; Akatsu, H.; Kosaka, K.; Michikawa, M.; Molyva, D.; Paraskevas, G.P.; Lütjohann, D.; von Eckardstein, A.; Hock, C.; Nitsch, R.M.; Papassotiropoulos, A. Ethnicity-dependent genetic association of ABCA2 with sporadic Alzheimer’s disease. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2006, 141B(5), 534-536. [http://dx.doi.org/10.1002/ajmg.b.30345] [PMID: 16752360]
[95]
Davis, W., Jr The ATP-binding cassette transporter-2 (ABCA2) increases endogenous amyloid precursor protein expression and Aβ fragment generation. Curr. Alzheimer Res., 2010, 7(7), 566-577. [http://dx.doi.org/10.2174/156720510793499002] [PMID: 20704561]
[96]
Chen, Z.J.; Vulevic, B.; Ile, K.E.; Soulika, A.; Davis, W., Jr; Reiner, P.B.; Connop, B.P.; Nathwani, P.; Trojanowski, J.Q.; Tew, K.D. Association of ABCA2 expression with determinants of Alzheimer’s disease. FASEB J., 2004, 18(10), 1129-1131. [http://dx.doi.org/10.1096/fj.03-1490fje] [PMID: 15155565]
[97]
Michaki, V.; Guix, F.X.; Vennekens, K.; Munck, S.; Dingwall, C.; Davis, J.B.; Townsend, D.M.; Tew, K.D.; Feiguin, F.; De Strooper, B.; Dotti, C.G.; Wahle, T. Down-regulation of the ATP-binding cassette transporter 2 (Abca2) reduces amyloid-β production by altering Nicastrin maturation and intracellular localization. J. Biol. Chem., 2012, 287(2), 1100-1111. [http://dx.doi.org/10.1074/jbc.M111.288258] [PMID: 22086926]
[98]
Tansley, G.H.; Burgess, B.L.; Bryan, M.T.; Su, Y.; Hirsch-Reinshagen, V.; Pearce, J.; Chan, J.Y.; Wilkinson, A.; Evans, J.; Naus, K.E.; McIsaac, S.; Bromley, K.; Song, W.; Yang, H.C.; Wang, N.; DeMattos, R.B.; Wellington, C.L. The cholesterol transporter ABCG1 modulates the subcellular distribution and proteolytic processing of beta-amyloid precursor protein. J. Lipid Res., 2007, 48(5), 1022-1034. [http://dx.doi.org/10.1194/jlr.M600542-JLR200] [PMID: 17293612]
[99]
Sano, O.; Tsujita, M.; Shimizu, Y.; Kato, R.; Kobayashi, A.; Kioka, N.; Remaley, A.T.; Michikawa, M.; Ueda, K.; Matsuo, M. ABCG1 and ABCG4 suppress γ-secretase activity and amyloid β production. PLoS One, 2016, 11(5), e0155400. [http://dx.doi.org/10.1371/journal.pone.0155400] [PMID: 27196068]
[100]
Kim, W.S.; Rahmanto, A.S.; Kamili, A.; Rye, K.A.; Guillemin, G.J.; Gelissen, I.C.; Jessup, W.; Hill, A.F.; Garner, B. Role of ABCG1 and ABCA1 in regulation of neuronal cholesterol efflux to apolipoprotein E discs and suppression of amyloid-beta peptide generation. J. Biol. Chem., 2007, 282(5), 2851-2861. [http://dx.doi.org/10.1074/jbc.M607831200] [PMID: 17121837]
[101]
Zeng, Y.; Callaghan, D.; Xiong, H.; Yang, Z.; Huang, P.; Zhang, W. Abcg2 deficiency augments oxidative stress and cognitive deficits in Tg-SwDI transgenic mice. J. Neurochem., 2012, 122(2), 456-469. [http://dx.doi.org/10.1111/j.1471-4159.2012.07783.x] [PMID: 22578166]
[102]
Xiong, H.; Callaghan, D.; Jones, A.; Bai, J.; Rasquinha, I.; Smith, C.; Pei, K.; Walker, D.; Lue, L.F.; Stanimirovic, D.; Zhang, W. ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1-40) peptides. J. Neurosci., 2009, 29(17), 5463-5475. [http://dx.doi.org/10.1523/JNEUROSCI.5103-08.2009] [PMID: 19403814]
[103]
Shen, S.; Callaghan, D.; Juzwik, C.; Xiong, H.; Huang, P.; Zhang, W. ABCG2 reduces ROS-mediated toxicity and inflammation: a potential role in Alzheimer’s disease. J. Neurochem., 2010, 114(6), 1590-1604. [http://dx.doi.org/10.1111/j.1471-4159.2010.06887.x] [PMID: 20626554]
[104]
Liu, L.; Liu, X.D. Alterations in function and expression of ABC transporters at blood-brain barrier under diabetes and the clinical significances. Front. Pharmacol., 2014, 5, 273. [http://dx.doi.org/10.3389/fphar.2014.00273] [PMID: 25540622]
[105]
Jha, N.K.; Jha, S.K.; Kumar, D.; Kejriwal, N.; Sharma, R.; Ambasta, R.K.; Kumar, P. Impact of insulin degrading enzyme and neprilysin in Alzheimer’s disease biology: Characterization of putative cognates for therapeutic applications. J. Alzheimers Dis., 2015, 48(4), 891-917. [http://dx.doi.org/10.3233/JAD-150379] [PMID: 26444774]
[106]
Abuznait, A.H.; Kaddoumi, A. Role of ABC transporters in the pathogenesis of Alzheimer’s disease. ACS Chem. Neurosci., 2012, 3(11), 820-831. [http://dx.doi.org/10.1021/cn300077c] [PMID: 23181169]
[107]
Sun, Y.; Yao, J.; Kim, T.W.; Tall, A.R. Expression of liver X receptor target genes decreases cellular amyloid beta peptide secretion. J. Biol. Chem., 2003, 278(30), 27688-27694. [http://dx.doi.org/10.1074/jbc.M300760200] [PMID: 12754201]
[108]
Fu, Y.; Hsiao, J.H.; Paxinos, G.; Halliday, G.M.; Kim, W.S. ABCA5 regulates amyloid-β peptide production and is associated with Alzheimer’s disease neuropathology. J. Alzheimers Dis., 2015, 43(3), 857-869. [http://dx.doi.org/10.3233/JAD-141320] [PMID: 25125465]
[109]
Chan, S.L.; Kim, W.S.; Kwok, J.B.; Hill, A.F.; Cappai, R.; Rye, K.A.; Garner, B. ATP-binding cassette transporter A7 regulates processing of amyloid precursor protein in vitro. J. Neurochem., 2008, 106(2), 793-804. [http://dx.doi.org/10.1111/j.1471-4159.2008.05433.x] [PMID: 18429932]
[110]
Sakae, N.; Liu, C.C.; Shinohara, M.; Frisch-Daiello, J.; Ma, L.; Yamazaki, Y.; Tachibana, M.; Younkin, L.; Kurti, A.; Carrasquillo, M.M.; Zou, F.; Sevlever, D.; Bisceglio, G.; Gan, M.; Fol, R.; Knight, P.; Wang, M.; Han, X.; Fryer, J.D.; Fitzgerald, M.L.; Ohyagi, Y.; Younkin, S.G.; Bu, G.; Kanekiyo, T. ABCA7 deficiency accelerates amyloid-β generation and Alzheimer’s neuronal pathology. J. Neurosci., 2016, 36(13), 3848-3859. [http://dx.doi.org/10.1523/JNEUROSCI.3757-15.2016] [PMID: 27030769]
[111]
Deane, R.; Sagare, A.; Hamm, K.; Parisi, M.; Lane, S.; Finn, M.B.; Holtzman, D.M.; Zlokovic, B.V. apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J. Clin. Invest., 2008, 118(12), 4002-4013. [http://dx.doi.org/10.1172/JCI36663] [PMID: 19033669]
[112]
Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 1993, 261(5123), 921-923. [http://dx.doi.org/10.1126/science.8346443] [PMID: 8346443]
[113]
Jiang, Q.; Lee, C.Y.; Mandrekar, S.; Wilkinson, B.; Cramer, P.; Zelcer, N.; Mann, K.; Lamb, B.; Willson, T.M.; Collins, J.L.; Richardson, J.C.; Smith, J.D.; Comery, T.A.; Riddell, D.; Holtzman, D.M.; Tontonoz, P.; Landreth, G.E. ApoE promotes the proteolytic degradation of Abeta. Neuron, 2008, 58(5), 681-693. [http://dx.doi.org/10.1016/j.neuron.2008.04.010] [PMID: 18549781]
[114]
Fu, Y.; Hsiao, J.H.; Paxinos, G.; Halliday, G.M.; Kim, W.S. ABCA7 mediates phagocytic clearance of amyloid-β in the brain. J. Alzheimers Dis., 2016, 54(2), 569-584. [http://dx.doi.org/10.3233/JAD-160456] [PMID: 27472885]
[115]
Uehara, Y.; Yamada, T.; Baba, Y.; Miura, S.; Abe, S.; Kitajima, K.; Higuchi, M.A.; Iwamoto, T.; Saku, K. ATP-binding cassette transporter G4 is highly expressed in microglia in Alzheimer’s brain. Brain Res., 2008, 1217, 239-246. [http://dx.doi.org/10.1016/j.brainres.2008.04.048] [PMID: 18508037]
[116]
Westerlund, M.; Belin, A.C.; Anvret, A.; Håkansson, A.; Nissbrandt, H.; Lind, C.; Sydow, O.; Olson, L.; Galter, D. Association of a polymorphism in the ABCB1 gene with Parkinson’s disease. Parkinsonism Relat. Disord., 2009, 15(6), 422-424. [http://dx.doi.org/10.1016/j.parkreldis.2008.11.010] [PMID: 19196542]
[117]
Müller, T. ABCB1: is there a role in the drug treatment of Parkinson’s disease? Expert Opin. Drug Metab. Toxicol., 2018, 14(2), 127-129. [http://dx.doi.org/10.1080/17425255.2018.1416096] [PMID: 29224383]
[118]
Dutheil, F.; Jacob, A.; Dauchy, S.; Beaune, P.; Scherrmann, J.M.; Declèves, X.; Loriot, M.A. ABC transporters and cytochromes P450 in the human central nervous system: influence on brain pharmacokinetics and contribution to neurodegenerative disorders. Expert Opin. Drug Metab. Toxicol., 2010, 6(10), 1161-1174. [http://dx.doi.org/10.1517/17425255.2010.510832] [PMID: 20843279]
[119]
Jablonski, M.; Miller, D.S.; Pasinelli, P.; Trotti, D. ABC transporter-driven pharmacoresistance in amyotrophic lateral sclerosis. Brain Res., 2015, 1607, 1-14. [http://dx.doi.org/10.1016/j.brainres.2014.08.060] [PMID: 25175835]
[120]
Theodoulou, F.L.; Kerr, I.D. ABC transporter research: going strong 40 years on. Biochem. Soc. Trans., 2015, 43(5), 1033-1040. [http://dx.doi.org/10.1042/BST20150139] [PMID: 26517919]
[121]
Dean, M.; Hamon, Y.; Chimini, G. The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res., 2001, 42(7), 1007-1017. [PMID: 11441126]
[122]
Bartels, A.L.; de Klerk, O.L.; Kortekaas, R.; de Vries, J.J.; Leenders, K.L. 11C-verapamil to assess P-gp function in human brain during aging, depression and neurodegenerative disease. Curr. Top. Med. Chem., 2010, 10(17), 1775-1784. [http://dx.doi.org/10.2174/156802610792928059] [PMID: 20645917]
[123]
Xiong, H.; Callaghan, D.; Jones, A.; Bai, J.; Rasquinha, I.; Smith, C.; Pei, K.; Walker, D.; Lue, L.F.; Stanimirovic, D.; Zhang, W. ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1-40) peptides. J. Neurosci., 2009, 29(17), 5463-5475. [http://dx.doi.org/10.1523/JNEUROSCI.5103-08.2009] [PMID: 19403814]
[124]
Spudich, A.; Kilic, E.; Xing, H.; Kilic, U.; Rentsch, K.M.; Wunderli-Allenspach, H.; Bassetti, C.L.; Hermann, D.M. Inhibition of multidrug resistance transporter-1 facilitates neuroprotective therapies after focal cerebral ischemia. Nat. Neurosci., 2006, 9(4), 487-488.
[125]
Patak, P.; Hermann, D.M. ATP-binding cassette transporters at the blood-brain barrier in ischaemic stroke. Curr. Pharm. Des., 2011, 17(26), 2787-2792. [http://dx.doi.org/10.2174/138161211797440195] [PMID: 21827402]
[126]
ElAli, A.; Hermann, D.M. Liver X receptor activation enhances blood-brain barrier integrity in the ischemic brain and increases the abundance of ATP-binding cassette transporters ABCB1 and ABCC1 on brain capillary cells. Brain Pathol., 2012, 22(2), 175-187. [http://dx.doi.org/10.1111/j.1750-3639.2011.00517.x] [PMID: 21767321]
[127]
Seegers, U.; Potschka, H.; Löscher, W. Transient increase of P-glycoprotein expression in endothelium and parenchyma of limbic brain regions in the kainate model of temporal lobe epilepsy. Epilepsy Res., 2002, 51(3), 257-268. [http://dx.doi.org/10.1016/S0920-1211(02)00156-0] [PMID: 12399076]
[128]
Löscher, W.; Potschka, H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat. Rev. Neurosci., 2005, 6(8), 591-602. [http://dx.doi.org/10.1038/nrn1728] [PMID: 16025095]
[129]
Kaminski, W.E.; Piehler, A.; Wenzel, J.J. ABC A-subfamily transporters: structure, function and disease. Biochim. Biophys. Acta, 2006, 1762(5), 510-524.
[130]
Bojanic, D.D.; Tarr, P.T.; Gale, G.D.; Smith, D.J.; Bok, D.; Chen, B.; Nusinowitz, S.; Lövgren-Sandblom, A.; Björkhem, I.; Edwards, P.A. Differential expression and function of ABCG1 and ABCG4 during development and aging. J. Lipid Res., 2010, 51(1), 169-181. [http://dx.doi.org/10.1194/jlr.M900250-JLR200] [PMID: 19633360]
[131]
Kim, W.S.; Weickert, C.S.; Garner, B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J. Neurochem., 2008, 104(5), 1145-1166. [http://dx.doi.org/10.1111/j.1471-4159.2007.05099.x] [PMID: 17973979]
[132]
Davis, W., Jr The ATP-binding cassette transporter-2 (ABCA2) regulates esterification of plasma membrane cholesterol by modulation of sphingolipid metabolism. Biochim. Biophys. Acta, 2014, 1841(1), 168-179. [http://dx.doi.org/10.1016/j.bbalip.2013.10.019] [PMID: 24201375]
[133]
Westerlund, M.; Belin, A.C.; Olson, L.; Galter, D. Expression of multi-drug resistance 1 mRNA in human and rodent tissues: reduced levels in Parkinson patients. Cell Tissue Res., 2008, 334(2), 179-185. [http://dx.doi.org/10.1007/s00441-008-0686-5] [PMID: 18855017]
[134]
Porro, A.; Haber, M.; Diolaiti, D.; Iraci, N.; Henderson, M.; Gherardi, S.; Valli, E.; Munoz, M.A.; Xue, C.; Flemming, C.; Schwab, M.; Wong, J.H.; Marshall, G.M.; Della Valle, G.; Norris, M.D.; Perini, G. Direct and coordinate regulation of ATP-binding cassette transporter genes by Myc factors generates specific transcription signatures that significantly affect the chemoresistance phenotype of cancer cells. J. Biol. Chem., 2010, 285(25), 19532-19543. [http://dx.doi.org/10.1074/jbc.M109.078584] [PMID: 20233711]
[135]
Miller, D.S. Regulation of ABC transporters blood-brain barrier: The good, the bad, and the ugly. Adv. Cancer Res., 2015, 125, 43-70. [http://dx.doi.org/10.1016/bs.acr.2014.10.002] [PMID: 25640266]
[136]
Nishida, Y.; Ito, S.; Ohtsuki, S.; Yamamoto, N.; Takahashi, T.; Iwata, N.; Jishage, K.; Yamada, H.; Sasaguri, H.; Yokota, S.; Piao, W.; Tomimitsu, H.; Saido, T.C.; Yanagisawa, K.; Terasaki, T.; Mizusawa, H.; Yokota, T. Depletion of vitamin E increases amyloid β accumulation by decreasing its clearances from brain and blood in a mouse model of Alzheimer disease. J. Biol. Chem., 2009, 284(48), 33400-33408. [http://dx.doi.org/10.1074/jbc.M109.054056] [PMID: 19679659]
[137]
Hartz, A.M.S.; Miller, D.S.; Bauer, B. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-β in a mouse model of Alzheimer’s disease. Mol. Pharmacol., 2010, 77(5), 715-723. [http://dx.doi.org/10.1124/mol.109.061754] [PMID: 20101004]
[138]
Watkins, R.E.; Wisely, G.B.; Moore, L.B.; Collins, J.L.; Lambert, M.H.; Williams, S.P.; Willson, T.M.; Kliewer, S.A.; Redinbo, M.R. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science, 2001, 292(5525), 2329-2333. [http://dx.doi.org/10.1126/science.1060762] [PMID: 11408620]
[139]
Loeb, M.B.; Molloy, D.W.; Smieja, M.; Standish, T.; Goldsmith, C.H.; Mahony, J.; Smith, S.; Borrie, M.; Decoteau, E.; Davidson, W.; McDougall, A.; Gnarpe, J. O’DONNell, M.; Chernesky, M. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease. J. Am. Geriatr. Soc., 2004, 52(3), 381-387. [http://dx.doi.org/10.1111/j.1532-5415.2004.52109.x] [PMID: 14962152]
[140]
Hofrichter, J.; Krohn, M.; Schumacher, T.; Lange, C.; Feistel, B.; Walbroel, B.; Heinze, H.J.; Crockett, S.; Sharbel, T.F.; Pahnke, J. Reduced Alzheimer’s disease pathology by St. John’s Wort treatment is independent of hyperforin and facilitated by ABCC1 and microglia activation in mice. Curr. Alzheimer Res., 2013, 10(10), 1057-1069. [http://dx.doi.org/10.2174/15672050113106660171] [PMID: 24156265]
[141]
Durk, M.R.; Han, K.; Chow, E.C.; Ahrens, R.; Henderson, J.T.; Fraser, P.E.; Pang, K.S. 1α,25-Dihydroxyvitamin D3 reduces cerebral amyloid-β accumulation and improves cognition in mouse models of Alzheimer’s disease. J. Neurosci., 2014, 34(21), 7091-7101. [http://dx.doi.org/10.1523/JNEUROSCI.2711-13.2014] [PMID: 24849345]
[142]
Durk, M.R.; Chan, G.N.; Campos, C.R.; Peart, J.C.; Chow, E.C.; Lee, E.; Cannon, R.E.; Bendayan, R.; Miller, D.S.; Pang, K.S. 1α,25-Dihydroxyvitamin D3-liganded vitamin D receptor increases expression and transport activity of P-glycoprotein in isolated rat brain capillaries and human and rat brain microvessel endothelial cells. J. Neurochem., 2012, 123(6), 944-953. [http://dx.doi.org/10.1111/jnc.12041] [PMID: 23035695]
[143]
Chow, E.C.Y.; Durk, M.R.; Cummins, C.L.; Pang, K.S. 1α,25-dihydroxyvitamin D3 up-regulates P-glycoprotein via the vitamin D receptor and not farnesoid X receptor in both fxr(-/-) and fxr(+/+) mice and increased renal and brain efflux of digoxin in mice in vivo. J. Pharmacol. Exp. Ther., 2011, 337(3), 846-859. [http://dx.doi.org/10.1124/jpet.111.179101] [PMID: 21421739]
[144]
Manda, S.; Sharma, S.; Wani, A.; Joshi, P.; Kumar, V.; Guru, S.K.; Bharate, S.S.; Bhushan, S.; Vishwakarma, R.A.; Kumar, A.; Bharate, S.B. Discovery of a marine-derived bis-indole alkaloid fascaplysin, as a new class of potent P-glycoprotein inducer and establishment of its structure-activity relationship. Eur. J. Med. Chem., 2016, 107, 1-11. [http://dx.doi.org/10.1016/j.ejmech.2015.10.049] [PMID: 26560048]
[145]
Mohamed, L.A.; Keller, J.N.; Kaddoumi, A. Role of P-glycoprotein in mediating rivastigmine effect on amyloid-β brain load and related pathology in Alzheimer’s disease mouse model. Biochim. Biophys. Acta, 2016, 1862(4), 778-787. [http://dx.doi.org/10.1016/j.bbadis.2016.01.013] [PMID: 26780497]
[146]
Krohn, M.; Lange, C.; Hofrichter, J.; Scheffler, K.; Stenzel, J.; Steffen, J.; Schumacher, T.; Brüning, T.; Plath, A.S.; Alfen, F.; Schmidt, A.; Winter, F.; Rateitschak, K.; Wree, A.; Gsponer, J.; Walker, L.C.; Pahnke, J. Cerebral amyloid-β proteostasis is regulated by the membrane transport protein ABCC1 in mice. J. Clin. Invest., 2011, 121(10), 3924-3931. [http://dx.doi.org/10.1172/JCI57867] [PMID: 21881209]
[147]
Koldamova, R.P.; Lefterov, I.M.; Ikonomovic, M.D.; Skoko, J.; Lefterov, P.I.; Isanski, B.A.; DeKosky, S.T.; Lazo, J.S. 22R-hydroxycholesterol and 9-cis-retinoic acid induce ATP-binding cassette transporter A1 expression and cholesterol efflux in brain cells and decrease amyloid beta secretion. J. Biol. Chem., 2003, 278(15), 13244-13256. [http://dx.doi.org/10.1074/jbc.M300044200] [PMID: 12547833]
[148]
Cramer, P.E.; Cirrito, J.R.; Wesson, D.W.; Lee, C.Y.; Karlo, J.C.; Zinn, A.E.; Casali, B.T.; Restivo, J.L.; Goebel, W.D.; James, M.J.; Brunden, K.R.; Wilson, D.A.; Landreth, G.E. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science, 2012, 335(6075), 1503-1506. [http://dx.doi.org/10.1126/science.1217697] [PMID: 22323736]
[149]
Terwel, D.; Steffensen, K.R.; Verghese, P.B.; Kummer, M.P.; Gustafsson, J.A.; Holtzman, D.M.; Heneka, M.T. Critical role of astroglial apolipoprotein E and liver X receptor-α expression for microglial Aβ phagocytosis. J. Neurosci., 2011, 31(19), 7049-7059. [http://dx.doi.org/10.1523/JNEUROSCI.6546-10.2011] [PMID: 21562267]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy