Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

The Computational Models of Drug-target Interaction Prediction

Author(s): Yijie Ding, Jijun Tang and Fei Guo*

Volume 27, Issue 5, 2020

Page: [348 - 358] Pages: 11

DOI: 10.2174/0929866526666190410124110

Price: $65

Abstract

The identification of Drug-Target Interactions (DTIs) is an important process in drug discovery and medical research. However, the tradition experimental methods for DTIs identification are still time consuming, extremely expensive and challenging. In the past ten years, various computational methods have been developed to identify potential DTIs. In this paper, the identification methods of DTIs are summarized. What's more, several state-of-the-art computational methods are mainly introduced, containing network-based method and machine learning-based method. In particular, for machine learning-based methods, including the supervised and semisupervised models, have essential differences in the approach of negative samples. Although these effective computational models in identification of DTIs have achieved significant improvements, network-based and machine learning-based methods have their disadvantages, respectively. These computational methods are evaluated on four benchmark data sets via values of Area Under the Precision Recall curve (AUPR).

Keywords: Drug discovery, drug-target interaction, bipartite network, network analysis, machine learning, computational methods.

Graphical Abstract

[1]
Yamanishi, Y.; Araki, M.; Gutteridge, A.; Honda, W.; Kanehisa, M. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 2008, 24(13), i232-i240.
[2]
Schomburg, I.; Chang, A.; Placzek, S.; Söhngen, C.; Rother, M.; Lang, M.; Munaretto, C.; Ulas, S.; Stelzer, M.; Grote, A.; Scheer, M.; Schomburg, D. BRENDA in 2013: Integrated reactions, kinetic data, enzyme function data, improved disease classification: New options and contents in BRENDA. Nucleic Acids Res., 2013, 41(Database issue), 764-772.
[3]
Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A.C.; Liu, Y.; Maciejewski, A.; Arndt, D.; Wilson, M.; Neveu, V.; Tang, A.; Gabriel, G.; Ly, C.; Adamjee, S.; Dame, Z.T.; Han, B.; Zhou, Y.; Wishart, D.S. DrugBank 4.0: Shedding new light on drug metabolism. Nucleic Acids Res., 2014, 42(Database issue), 1091-1097.
[4]
Hecker, N.; Ahmed, J.; Eichborn, J.V.; Dunkel, M.; Macha, K.; Eckert, A.; Gilson, M.K.; Bourne, P.E.; Preissner, R. SuperTarget goes quantitative: Update on drug-target interactions. Nucleic Acids Res., 2012, 40(Database issue), 1113-1117.
[5]
Kanehisa, M.; Goto, S.; Hattori, M.; Aoki-Kinoshita, K.F.; Itoh, M.; Kawashima, S.; Katayama, T.; Araki, M.; Hirakawa, M. From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Res., 2006, 34(Database issue), 354-357.
[6]
Park, Y.; Marcotte, E.M. A flaw in the typical evaluation scheme for pair-input computational predictions. Nature. Methods, 2012, 9(12), 1134-1136.
[7]
Hattori, M.; Okuno, Y. Susumu, Goto, A.; Kanehisa, M. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc., 2003, 125(39), 11853.
[8]
Smith, T.F.; Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol., 1981, 147(1), 195-197.
[9]
Laarhoven, T.V.; Nabuurs, S.B.; Marchiori, E. Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics, 2011, 27(21), 3036-3043.
[10]
Chen, X.; Liu, M.X.; Yan, G.Y. Drug-target interaction prediction by random walk on the heterogeneous network. Mol. Biosyst., 2012, 8(7), 1970.
[11]
Cheng, F.; Liu, C.; Jiang, J.; Lu, W.; Li, W.; Liu, G.; Zhou, W.; Huang, J.; Tang, Y. Prediction of drug-target interactions and drug repositioning via network-based inference. PLOS Comput. Biol., 2012, 8(5), e1002503
[12]
Cao, D.S.; Zhang, L.X.; Tan, G.S.; Xiang, Z.; Zeng, W.B.; Xu, Q.S.; Chen, A.F. Computational prediction of drug target interactions using chemical, biological, and network features. Mol. Inform., 2014, 33(10), 669-681.
[13]
Breiman, L. Random Forests. Mach. Learn., 2001, 45(1), 5-32.
[14]
Ding, Y.; Tang, J.; Guo, F. Identification of drug-target interactions via multiple information integration. Inf. Sci., 2017, 418, 546-560.
[15]
Ding, Y.; Tang, J.; Guo, F. Predicting protein-protein interactions via multivariate mutual information of protein sequences. BMC Bioinformatics, 2016, 17(1), 398.
[16]
Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297.
[17]
Yan, K.; Zhang, D. Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sens. Actuators B Chem., 2015, 212, 353-363.
[18]
Li, Z.; Han, P.; You, Z.; Li, X.; Zhang, Y.; Yu, H.; Nie, R.; Chen, X. In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences. Sci. Rep., 2017, 7(1), 11174.
[19]
Gui, J.; Liu, T.; Tao, D.; Sun, Z.; Tan, T. Representative vector machines: A unified framework for classical classifiers. IEEE Trans. Cybern., 2017, 46(8), 1877-1888.
[20]
Wen, M.; Zhang, Z.; Niu, S.; Sha, H.; Yang, R.; Yun, Y.; Lu, H. Deep-learning-based drug–target interaction prediction. J. Proteome Res., 2017, 16(4), 1401.
[21]
Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786), 504-507.
[22]
Bleakley, K.; Yamanishi, Y. Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics, 2009, 25(18), 2397-2403.
[23]
Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol., 2011, 2, 1-39.
[24]
Mei, J.P.; Kwoh, C.K.; Yang, P.; Li, X.L.; Zheng, J. Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics, 2013, 29(2), 238-245.
[25]
Xia, Z.; Wu, L.Y.; Zhou, X.; Wong, S.T. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol., 2010, 4(S2), 1-16.
[26]
Nascimento, A.C.A.; Prudêncio, R.B.C.; Costa, I.G. A multiple kernel learning algorithm for drug-target interaction prediction. BMC Bioinformatics, 2016, 17(1), 46.
[27]
Cichonska, A.; Pahikkala, T.; Szedmak, S.; Julkunen, H.; Airola, A.; Heinonen, M.; Aittokallio, T.; Rousu, J. Learning with multiple pairwise kernels for drug bioactivity prediction. Bioinformatics, 2018, 34(13), i509-i518.
[28]
Zheng, X.; Ding, H.; Mamitsuka, H.; Zhu, S. Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM; Chicago, Illinois, USA,2013, pp. 1025-1033.
[29]
Gönen, M. Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics, 2012, 28(18), 2304-2310.
[30]
Liu, Y.; Wu, M.; Miao, C.; Zhao, P.; Li, X-L. Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLOS Comput. Biol., 2016, 12(2), e1004760
[31]
Hao, M.; Bryant, S.H.; Wang, Y. Predicting drug-target interactions by dual-network integrated logistic matrix factorization. Sci. Rep., 2017, 7, 40376.
[32]
Ezzat, A.; Zhao, P.; Wu, M.; Li, X.L.; Kwoh, C.K. Drug-target interaction prediction with graph regularized matrix factorization. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2016, 14(3), 646-656.
[33]
Zhang, W.; Chen, Y.; Li, D. Drug-target interaction prediction through label propagation with linear neighborhood information. Molecules, 2017, 22(12), 2056.
[34]
Luo, Y.; Zhao, X.; Zhou, J.; Yang, J.; Zhang, Y.; Kuang, W.; Peng, J.; Chen, L.; Zeng, J. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun., 2017, 8(1), 573.
[35]
Bolgár, B.; Antal, P.V.B-M.K-L.M.F. fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization. BMC Bioinformatics, 2017, 18(1), 440.
[36]
Peng, L.; Liao, B.; Zhu, W.; Li, Z.; Li, K. Predicting drug-target interactions with multi-information fusion. IEEE J. Biomed. Health Inform., 2017, 21(2), 561-572.
[37]
Lan, W.; Wang, J.; Li, M.; Liu, J.; Li, Y.; Wu, F-X.; Pan, Y. Predicting drug-target interaction using positive-unlabeled learning. Neurocomputing, 2016, 206, 50-57.
[38]
Kuang, Q.; Xu, X.; Li, R.; Dong, Y.; Li, Y.; Huang, Z.; Li, Y.; Li, M. An eigenvalue transformation technique for predicting drug-target interaction. Sci. Rep., 2015, 5, 13867.
[39]
Chen, X.; Yan, C.C.; Zhang, X.; Zhang, X.; Dai, F.; Yin, J.; Zhang, Y. Drug-target interaction prediction: Databases, web servers and computational models. Brief. Bioinform., 2016, 17(4), 696-712.
[40]
Hao, M.; Wang, Y.; Bryant, S.H. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique. Anal. Chim. Acta, 2016, 909, 41-50.
[41]
Chen, X.; Huang, L.; Xie, D.; Zhao, Q. EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction. Cell Death Dis., 2018, 9(1), 3.
[42]
Chen, X.; Qu, J.; Yin, J. TLHNMDA: Triple Layer Heterogeneous Network Based Inference for MiRNA-Disease Association Prediction. Front. Genet., 2018, 9, 234.
[43]
Chen, X.; Wang, L.; Qu, J.; Guan, N.N.; Li, J.Q. Predicting miRNA-disease association based on inductive matrix completion. Bioinformatics, 2018, 34(24), 4256-4265.
[44]
Chen, X.; Xie, D.; Wang, L.; Zhao, Q.; You, Z.H.; Liu, H. BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction. Bioinformatics, 2018, 34(18), 3178-3186.
[45]
Chen, X.; Yin, J.; Qu, J.; Huang, L. MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction. PLOS Comput. Biol., 2018, 14(8), e1006418
[46]
Xie, D.; Zhao, Q.; Liu, H.; Wang, F.; Yan, G-Y.; Chen, X. SSCMDA: Spy and super cluster strategy for MiRNA-disease association prediction. Oncotarget, 2018, 9(2), 1826-1842.
[47]
You, Z-H.; Huang, Z-A.; Zhu, Z.; Yan, G-Y.; Li, Z-W.; Wen, Z.; Chen, X. PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLOS Comput. Biol., 2017, 13(3), e1005455
[48]
Zhang, W.; Yue, X.; Tang, G.; Wu, W.; Huang, F.; Zhang, X. SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions. PLOS Comput. Biol., 2018, 14(12), e1006616
[49]
Zhao, Q.; Zhang, Y.; Hu, H.; Ren, G.; Zhang, W.; Liu, H. IRWNRLPI: Integrating Random Walk and Neighborhood Regularized Logistic Matrix Factorization for lncRNA-protein interaction prediction. Front. Genet., 2018, 9, 239.
[50]
Hu, H.; Zhang, L.; Ai, H.; Zhang, H.; Fan, Y.; Zhao, Q.; Liu, H. HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy. RNA Biol., 2018, 15(6), 797-806.
[51]
Liu, H.; Ren, G.; Hu, H.; Zhang, L.; Ai, H.; Zhang, W.; Zhao, Q. LPI-NRLMF: lncRNA-protein interaction prediction by neighborhood regularized logistic matrix factorization. Oncotarget, 2017, 8(61), 103975-103984.
[52]
Hu, H.; Zhu, C.; Ai, H.; Zhang, L.; Zhao, J.; Zhao, Q.; Liu, H. LPI-ETSLP: lncRNA-protein interaction prediction using eigenvalue transformation-based semi-supervised link prediction. Mol. Biosyst., 2017, 13(9), 1781-1787.
[53]
Zhang, W.; Qu, Q.; Zhang, Y.; Wang, W. The linear neighborhood propagation method for predicting long non-coding RNA-protein Interactions. Neurocomputing, 2018, 273, 526-534.
[54]
Zhao, Q.; Yu, H.; Ming, Z.; Hu, H.; Ren, G.; Liu, H. The bipartite network projection recommended algorithm for predicting long noncoding RNA-protein interactions. Mol. Thera. Nucleic Acid, 2018, 13, 464-471.
[55]
Zhao, Q.; Liang, D.; Hu, H.; Ren, G.; Liu, H. RWLPAP: Random walk for lncRNA-protein associations prediction. Protein Pept. Lett., 2018, 25(9), 830-837.
[56]
Ding, Y.; Tang, J.; Guo, F. Identification of drug-side effect association via multiple information integration with centered kernel alignment. Neurocomputing, 2019, 325(24), 211-224.
[57]
Ding, Y.; Tang, J.; Guo, F. Identification of drug-side effect association via semi-supervised model and multiple kernel learning. IEEE J. Biomed. Health Inform., 2018, 1-1.
[58]
Zhang, W.; Zou, H.; Luo, L.; Liu, Q.; Wu, W.; Xiao, W. Predicting potential side effects of drugs by recommender methods and ensemble learning. Neurocomputing, 2016, 173(P3), 979-987.
[59]
Chen, X.; Guan, N-N.; Sun, Y-Z.; Li, J-Q.; Qu, J. MicroRNA-small molecule association identification: From experimental results to computational models. Brief. Bioinform., 2018., bby098
[60]
Chen, X.; Yan, C.C.; Zhang, X.; You, Z.H. Long non-coding RNAs and complex diseases: From experimental results to computational models. Brief. Bioinform., 2016, 18(4), 558-576.
[61]
Yan, G-Y.; Chen, X. Novel human lncRNA–disease association inference based on lncRNA expression profiles. Bioinformatics, 2013, 29(20), 2617-2624.
[62]
Chen, X.; Huang, Y-A.; You, Z-H.; Yan, G.Y.; Wang, X.S. A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics, 2017, 34(8), 1440-1440.
[63]
Zhang, W.; Yue, X.; Lin, W.; Wu, W.; Liu, R.; Huang, F.; Liu, F. Predicting drug-disease associations by using similarity constrained matrix factorization. BMC Bioinformatics, 2018, 19(1), 233.
[64]
Zhang, W.; Yue, X.; Huang, F.; Liu, R.; Chen, Y.; Ruan, C. Predicting drug-disease associations and their therapeutic function based on the drug-disease association bipartite network. Methods, 2018, 145(1), 51-59.
[65]
Martínez, V.; Navarro, C.; Cano, C.; Fajardo, W.; Blanco, A. DrugNet: Network-based drug–disease prioritization by integrating heterogeneous data. Artif. Intell. Med., 2015, 63(1), 41-49.
[66]
Luo, H.; Wang, J.; Li, M.; Luo, J.; Peng, X.; Wu, F.X.; Pan, Y. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics, 2016, 32(17), 2664-2671.
[67]
Liang, X.; Zhang, P.; Yan, L.; Fu, Y.; Peng, F. LRSSL: Predict and interpret drug-disease associations based on data integration using sparse subspace learning. Bioinformatics, 2017, 33(8), 1187-1196.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy