Generic placeholder image

International Journal of Sensors, Wireless Communications and Control

Editor-in-Chief

ISSN (Print): 2210-3279
ISSN (Online): 2210-3287

Research Article

Error Rate Performance of Potential Multicarrier Waveforms and Coding Techniques for 5G

Author(s): Bhanu Priya* and Jyoteesh Malhotra

Volume 10, Issue 2, 2020

Page: [231 - 247] Pages: 17

DOI: 10.2174/2210327909666190409130000

Price: $65

Abstract

Background: The wisdom of future wireless communication is clearly highlighted by the gigabit experience, low latency and the three fold rises in the capacity, compared to the 4th Generation networks. To meet such an ambitious objective of the 5th Generation communication systems, efficient use of non-contiguous unused spectrum is required. The panacea to this issue lies in the symbiosis of multicarrier waveforms and coding schemes.

Methods: To study the interaction between these two, several multicarrier waveforms like Filtered- OFDM (F-OFDM), Universal Filtered Multi-Carrier (UFMC) and Weighted Overlap and Add (WOLA) which act as a powerful contender to win the 5G candidate waveform race, are analyzed in Low-Density Parity Check Codes (LDPC), Polar and Turbo coded representative Third Generation Partnership Project (3GPP) channel models under a common numerology framework. This article dwells upon the error rate and throughput performance of different modulation formats and coding schemes appropriate for the 5G in a well-defined multi-cellular environment.

Results and Conclusion: The results have shown that even though many waveforms and coding techniques may pave the route towards its adoption as a physical layer standard instead of classical OFDM and convolution codes but no one is a clear conqueror as their selection depends upon the considered environment and type of traffic.

Keywords: 3GPP channel models, 5G, channel coding, inter block interference, inter carrier interference, inter symbol interference, multi-cellular environment, multicarrier waveforms.

Graphical Abstract

[1]
Eeckhaute MV, Bourdoux A, Doncker PD, Horlin F. Performance of emerging multi-carrier waveforms for 5G asynchronous communications. EURASIP J Wirel Commun Netw 2017; 2017: 29.
[http://dx.doi.org/10.1186/s13638-017-0812-8]
[2]
Zhang X, Chen L, Qiu J, Abdoli J. On the waveform for 5G. IEEE Commun Mag 2016; 54(11): 74-80.
[http://dx.doi.org/10.1109/MCOM.2016.1600337CM]
[3]
Rappaport TS, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5G cellular: It will work. IEEE Access 2013; 1: 335-45.
[4]
Jungnickel V, Manolakis K, Zirwas W, et al. The role of small cells coordinated multipoint and massive MIMO 5G. IEEE Commun Mag 2014; 52(5): 44-51.
[http://dx.doi.org/10.1109/MCOM.2014.6815892]
[5]
Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks: A comprehensive survey. IEEE Comm Surv Tutor 2016; 18(3): 1617-55.
[http://dx.doi.org/10.1109/COMST.2016.2532458]
[6]
Dore JB, Gerzaguet R, Cassiau N, Ktenas D. Waveform contenders for 5G: Description, analysis and comparison. Phys Commun 2016; 24: 46-61.
[http://dx.doi.org/10.1016/j.phycom.2017.05.004]
[7]
Wunder G, Jung P, Kasparick M, et al. 5GNOW: Non-orthogonal asynchronous waveforms for future mobile applications. IEEE Commun Mag 2014; 52(2): 97-105.
[http://dx.doi.org/10.1109/MCOM.2014.6736749]
[8]
Gottfried U. Channel coding with multi-level/phase signals. IEEE Trans Inf Theory 1982; 28(1): 55-67.
[http://dx.doi.org/10.1109/TIT.1982.1056454]
[9]
Sandoval F, Poitau G, Gagnon F, et al. Hybrid peak-to-average power ratio reduction techniques: Review and performance comparison. IEEE Access 2017; 5: 27145-61.
[10]
Schaich F, Wild T. Waveform contenders for 5G - OFDM vs. FBMC vs. UFMC. Proceedings of 6th International Symposium on Communication Control and Signal Process (ISCCSP). Athens, Greece. 2014.
[11]
Zhang X, Jia M, Chen L, Ma J, Qiu J. Filtered-OFDM-Enabler for flexible waveform in the 5th generation cellular networks. Proceedings of IEEE Global Telecommunication Conference (GLOBECOM). San Diego, CA, USA. 2015.
[12]
Zayani R, Medjahdi Y, Shaiek H, Roviras D. WOLA-OFDM: A potential candidate for asynchronous 5G. Proceedings of IEEE Globe Communication Workshops. Washington DC, USA. 2016.
[http://dx.doi.org/10.1109/GLOCOMW.2016.7849087]
[13]
Arikan E. Channel polarization: A comparison of channel coding schemes for 5G short message transmission. Proceedings of IEEE Globe communication Workshops. Washington, DC, USA. 2016.
[14]
Banelli P, Buzzi S, Colavolpe G, et al. Modulation formats and waveforms for 5G networks: Who will be the heir of OFDM? IEEE Signal Process Mag 2014; 31(6): 80-93.
[http://dx.doi.org/10.1109/MSP.2014.2337391]
[15]
Gerzaguet R, Bartzoudis N, Baltar LG, et al. The 5G candidate waveform race: A comparison of complexity and performance. EURASIP J Wirel Commun Netw 2017; 2017: 13.
[http://dx.doi.org/10.1186/s13638-016-0792-0]
[16]
Gerzaguet R, Ktenas D, Cassiau N, Dore JB. Comparative study of 5G waveform candidates for below 6 GHz air interface. Proceedings of ETSI Workshop on Future Radio Technologies Air Interfaces. Sophia Antipolis, France. 2016.
[17]
Zhang D, Matthé M, Mendes L, et al. A study on the link level performance of advanced multicarrier waveforms under MIMO wireless communication channels. IEEE Trans Wirel Commun 2017; 16(4): 2350-65.
[http://dx.doi.org/10.1109/TWC.2017.2664820]
[18]
Tahir B, Schwarz S, Rupp M. BER comparison between convolutional, turbo, LDPC and polar codes. Proceedings of 24th International Conference on Telecommunication (ICT) Limassol, Cyprus. 2017.
[http://dx.doi.org/10.1109/ICT.2017.7998249]
[19]
Hehn T, Huber JB. 3GPP TR 38900 version 14203rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on channel model for frequency spectrum above 6 GHz (Release 14) 2017-06 2018. Available from: https://www.etsi.org/deliver/etsi_tr/138900_138999/138900/14.02. 00_60/tr_138900v140200p.pdf
[20]
Rupp M, Schwarz S, Taranetz M. The Vienna LTE-advanced simulators: Up and downlink. Singapore: Springer 2016.
[http://dx.doi.org/10.1007/978-981-10-0617-3]
[21]
Rajeswari K, Sangeetha T, Natchammai AP, Nandhini M, Thiruvengadam SJ. Performance analysis of pilot aided channel estimation methods for LTE system in time-selective channels. Proceedings of International Conference on Industrial and Information Systems (ICIIS). Mangalore, India. 2010.
[http://dx.doi.org/10.1109/ICIINFS.2010.5578723]
[22]
Wang CC. On the performance of turbo codes. Proceedings of IEEE Mili Communication Conference. Boston, MA,USA. 2002.
[23]
Hehn T, Huber JB. LDPC codes and convolutional codes with equal structural delay: A comparison. IEEE Trans Commun 2009; 57(6): 1683-92.
[http://dx.doi.org/10.1109/TCOMM.2009.06.080014]
[24]
Rupp M, Schwarz S, Taranetz M. The Vienna LTE-advanced simulators: Up and downlink. Singapore: Springer 2016.
[http://dx.doi.org/10.1007/978-981-10-0617-3]
[25]
Schwarz S, Rupp M, Marijanović L. Intercarrier interference of multiple access UFMC with flexible subcarrier spacings. Proceedings of European Signal Processing Conference (EUSIPCO). Kos, Greece. 2017.
[26]
Ambatali CDM, Marciano JJS. Performance evaluation of the UFMC scheme under various transmission impairments. Proceedings of IEEE International Conference on Communication Networks and Satellite (COMNETSAT). Surabaya, Indonesia. 2016.
[http://dx.doi.org/10.1109/COMNETSAT.2016.7907410]
[27]
Yunzheng T, Long L, Shang L, Zhi ZA. Survey: Several technologies of non-orthogonal transmission for 5G. China Commun 2015; 12(10): 1-15.
[http://dx.doi.org/10.1109/CC.2015.7315054]
[28]
Schaich F, Wild T, Chen Y. Waveform contenders for 5G- Suitability for short packet and low latency transmissions. Proceedings of IEEE 79th Vehicular Technology Conference (VTC Spring) Seoul, South Korea . 2015.
[29]
Kumar A, Gupta M. A review on activities of fifth generation mobile communication system. Alex Eng J 2018; 57(2): 1125-35.
[http://dx.doi.org/10.1016/j.aej.2017.01.043]
[30]
Andrea G. Wireless Communications. Cambridge: Cambridge University Press 2005.
[31]
Jiang Q, Speidel J, Zhao C. A joint OFDM channel estimation and ICI cancellation for double selective channels. Wirel Pers Commun 2007; 45(1): 131-43.
[http://dx.doi.org/10.1007/s11277-007-9404-y]
[32]
Cai Y, Qin Z, Cui F, Li GY, McCann JA. Modulation and multiple access for 5G networks. IEEE Comm Surv Tutor 2018; 20(1): 629-46.
[http://dx.doi.org/10.1109/COMST.2017.2766698]
[33]
Abdoli J, Jia M, Ma J. Filtered OFDM: A new waveform for future wireless systems. International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Stockholm, Sweden. 2015.
[http://dx.doi.org/10.1109/SPAWC.2015.7227001]
[34]
Li J, Kenneth K, Bala E, Yuang R. A resource block filtered OFDM scheme and performance comparison. Casablanca, Morocco 2013.
[35]
Umar R, Yang F, Mughal S. BER performance of a polar coded OFDM over different channel Models. Proceedings of 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST). Islamabad, Pakistan. 2018.
[http://dx.doi.org/10.1109/IBCAST.2018.8312308]
[36]
Bochechka G, Tikhvinskiy V, Vorozhishchev I, Aitmagambetov A, Nurgozhin B. Comparative analysis of UFMC technology in 5G networks. Proceedings of International Siberian Conference on Control and Communications (SIBCON). Astana. 2017.
[http://dx.doi.org/10.1109/SIBCON.2017.7998465]
[37]
Boroujeny BF, Moradi H. OFDM Inspired Waveforms for 5G. IEEE Comm Surv Tutor 2016; 18(4): 2474-92.
[http://dx.doi.org/10.1109/COMST.2016.2565566]
[38]
Zheng Q, Fanggang W, Xia C, et al. Comparison of 5G waveform candidates in high speed scenario. 32nd URSI GASS 2017; 2017: 1-4.
[39]
Nagapushpa PK, Chitra NK. Studying applicability feasibility of OFDM in upcoming 5G network. Int J Adv Comp Sci App 2017; 8(1): 216-26.
[40]
Vakilian V, Wild T, Schaich F, Brink ST, Frigon JF. Universal-filtered multi-carrier technique for wireless systems beyond LTE Proceedings of 2013 IEEE Globe communication Workshops. (GC Wkshps)Atlanta, GA, USA 2014.
[http://dx.doi.org/10.1109/GLOCOMW.2013.6824990]
[41]
Cho H, Yan Y, Chang GK, Ma X. Asynchronous multi-user uplink transmissions for 5G with UFMC waveform. IEEE Wireless Communications and Networking Conference (WCNC). San Francisco, CA, USA. 2017.
[http://dx.doi.org/10.1109/WCNC.2017.7925640]
[42]
Jordan MA, Nichols RA. The effects of channel characteristics on turbo code performance. Proceedings of MILCOM ’96 IEEE Military Communications Conference. 1996 Oct 17-22; McLean,VA.
[http://dx.doi.org/10.1109/MILCOM.1996.568576]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy