Generic placeholder image

Current Smart Materials (Discontinued)

Editor-in-Chief

ISSN (Print): 2405-4658
ISSN (Online): 2405-4666

Review Article

A Review on the Development of Dampers Utilizing Smart Magnetorheological Fluids

Author(s): Jong-Seok Oh and Seung-Bok Choi*

Volume 4, Issue 1, 2019

Page: [15 - 21] Pages: 7

DOI: 10.2174/2405465804666190408153926

Abstract

It is generally known that MR fluid is a kind of designed materials whose rheological properties are controllable with the application of an external magnetic field. Based on these features, MR dampers have gained much attention of researchers owing to their salient properties such as controllable damping force and relatively fast response time. This article offers a recent review on the MR damper technology, particularly focusing on the application to various fields. Conceivable limitations, challenges, and comparative advantages of MR damper are critically analyzed. In order to promote the practical use of MR damper in application from the automobile to the military sector, this review summarizes different MR dampers and their significant contribution.

Keywords: Civil engineering, magnetorheological (MR) fluids, MR damper, railway vehicle, ride quality, seat damper, vehicle suspension, vibration control, washing machine.

Graphical Abstract

[1]
Rabinow, J. The magnetic fluid clutch. Electr. Eng., 1948, 67(12), 1167-1167.
[2]
Rabinow, J. Magnetic fluid torque and force transmitting device. U.S. Patent 2,575,360, November 20, 1951.
[3]
De Vicente, J.; Klingenberg, D.J.; Hidalgo-Alvarez, R. Magnetorheological fluids: A review. Soft Matter, 2011, 7(8), 3701-3710.
[4]
Ghaffari, A.; Hashemabadi, S.H.; Ashtiani, M. A review on the simulation and modeling of magnetorheological fluids. J. Intell. Mater. Syst. Struct., 2015, 26(8), 881-904.
[5]
Wang, D.H.; Liao, W.H. Magnetorheological fluid dampers: A review of parametric modelling. Smart Mater. Struct., 2011, 20(2), 023001.
[6]
Zhu, X.; Jing, X.; Cheng, L. Magnetorheological fluid dampers: A review on structure design and analysis. J. Intell. Mater. Syst. Struct., 2012, 23(8), 839-873.
[7]
Choi, S.B.; Li, W.; Yu, M.; Du, H.; Fu, J.; Do, P.X. State of the art of control schemes for smart systems featuring magneto-rheological materials. Smart Mater. Struct., 2016, 25(4), 043001.
[8]
Carlson, J.D.; Catanzarite, D.M.; St. Clair, K.A. Commercial magneto-rheological fluid devices. Int. J. Modern Phys. B, 1996. 10(23n24), 2857-2865.
[9]
Oh, J.S.; Choi, S.H.; Choi, S.B. Design of a 4-DOF MR haptic master for application to robot surgery: Virtual environment work. Smart Mater. Struct., 2014, 23(9), 095032.
[10]
Song, B.K.; Oh, J.S.; Choi, S.B. Design of a new 4-DOF haptic master featuring magnetorheological fluid. Adv. Mech. Eng., 2014, 6, 843498.
[11]
Hahm, D.; Ok, S.Y.; Park, W.; Koh, H.M.; Park, K.S. Cost-effectiveness evaluation of an MR damper system based on a life-cycle cost concept. KSCE J. Civ. Eng., 2013, 17(1), 145-154.
[12]
Wu, W.J.; Cai, C.S.; Chen, S.R. Experiments on reduction of cable vibration using MR dampers. In: Proceedings of 17th ASCE Engineering Mechanics Conference, 2004.
[13]
Zapateiro, M.; Karimi, H.R.; Luo, N.; Spencer, B.F. Frequency domain control based on quantitative feedback theory for vibration suppression in structures equipped with magnetorheological dampers. Smart Mater. Struct., 2009, 18(9), 095041.
[14]
Weber, F.; Distl, H. Amplitude and frequency independent cable damping of Sutong Bridge and Russky Bridge by magnetorheological dampers. Struct. Contr. Health Monit., 2015, 22(2), 237-254.
[15]
Fujitani, H.; Sodeyama, H.; Tomura, T.; Hiwatashi, T.; Shiozaki, Y.; Hata, K.; Soda, S. Development of 400kN magnetorheological damper for a real base-isolated building. In:Smart Structures and Materials: Damping and Isolation; International Society for Optics and Photonics, 2003, pp. 265-277.
[16]
Ahmadian, M. Semiactive fuzzy logic control for heavy truck primary suspensions: Is it effective? (No. 2005-01-3542). SAE Tech. Paper,2005.
[17]
Song, X.; Ahmadian, M.; Southward, S.C. Modeling magnetorheological dampers with application of nonparametric approach. J. Intell. Mater. Syst. Struct., 2005, 16(5), 421-432.
[18]
Dutta, S.; Choi, S.B. A nonlinear kinematic and dynamic modeling of Macpherson suspension systems with a magneto-rheological damper. Smart Mater. Struct., 2016, 25(3), 035003.
[19]
Kim, H.C.; Shin, Y.J.; You, W.; Jung, K.C.; Oh, J.S.; Choi, S.B. A ride quality evaluation of a semi-active railway vehicle suspension system with MR damper: Railway field tests. In: Proceedings of the Institution of Mechanical Engineers, Part F: J. Rail Rapid Transit.,2017, 231(3), 306-316.
[20]
Simon, D.; Ahmadian, M. Vehicle evaluation of the performance of magneto rheological dampers for heavy truck suspensions. J. Vib. Acoust., 2001, 123(3), 365-375.
[21]
Wang, D.H.; Liao, W.H. Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part I: System integration and modelling. Veh. Syst. Dyn., 2009, 47(11), 1305-1325.
[22]
Nguyen, Q.H.; Choi, S.B. Optimal design of MR shock absorber and application to vehicle suspension. Smart Mater. Struct., 2009, 18(3), 035012.
[23]
Lu, S.B.; Li, Y.N.; Choi, S.B.; Zheng, L.; Seong, M.S. Integrated control on MR vehicle suspension system associated with braking and steering control. Veh. Syst. Dyn., 2011, 49(1-2), 361-380.
[24]
Choi, S.B.; Sung, K.G. Vibration control of magnetorheological damper system subjected to parameter variations. Int. J. Veh. Des., 2008, 46(1), 94-110.
[25]
Milecki, A.; Hauke, M. Application of magnetorheological fluid in industrial shock absorbers. Mech. Syst. Signal Process., 2012, 28, 528-541.
[26]
Dutta, S.; Choi, S.B. Control of a shimmy vibration in vehicle steering system using a magneto-rheological damper. J. Vib. Control, 2018, 24(4), 797-807.
[27]
Sun, S.S.; Ning, D.H.; Yang, J.; Du, H.; Zhang, S.W.; Li, W.H. A seat suspension with a rotary magnetorheological damper for heavy duty vehicles. Smart Mater. Struct., 2016, 25(10), 105032.
[28]
Choi, S.B.; Han, Y.M. MR seat suspension for vibration control of a commercial vehicle. Int. J. Veh. Des., 2003, 31(2), 202-215.
[29]
Phu, D.X.; Quoc Hung, N.; Choi, S.B. A novel adaptive controller featuring inversely fuzzified values with application to vibration control of magneto-rheological seat suspension system. J. Vib. Control, 2018, 24(21), 5000-5018.
[30]
Phu, D.X.; Choi, S.M.; Choi, S.B. A new adaptive hybrid controller for vibration control of a vehicle seat suspension featuring MR damper. J. Vib. Control, 2017, 23(20), 3392-3413.
[31]
Chrzan, M.J.; Carlson, J.D. MR fluid sponge devices and their use in vibration control of washing machines. In:Smart Structures and Materials 2001: Damping and Isolation; International Society for Optics and Photonics, 2001, pp. 370-379.
[32]
Spelta, C.; Previdi, F.; Savaresi, S.M.; Fraternale, G.; Gaudiano, N. Control of magnetorheological dampers for vibration reduction in a washing machine. Mechatronics, 2009, 19(3), 410-421.
[33]
Nguyen, Q.H.; Choi, S.B.; Woo, J.K. Optimal design of magnetorheological fluid-based dampers for front-loaded washing machines. In: Proceedings of the Institution of Mechanical Engineers, Part C. J. Mech. Eng. Sci., 2014, 228(2), 294-306.
[34]
Carlson, J.D.; Matthis, W.; Toscano, J.R. Smart prosthetics based on magnetorheological fluids. In:Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies; International Society for Optics and Photonics, 2001, pp. 308-317.
[35]
Kim, J.H.; Oh, J.H. Development of an above knee prosthesis using MR damper and leg simulator. In: Robotics and Automation, Proceedings of IEEE International Conference ICRA, 2001, pp. 3686-3691.
[36]
Xie, H.L.; Liang, Z.Z.; Li, F.; Guo, L.X. The knee joint design and control of above-knee intelligent bionic leg based on magneto-rheological damper. Int. J. Automat. Comput., 2010, 7(3), 277-282.
[37]
Zite, J.L.; Ahmadkhanlou, F.; Neelakantan, V.A.; Washington, G.N. A magnetorheological fluid based orthopedic active knee brace. In:Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies; International Society for Optics and Photonics, 2006, p. 61710H.
[38]
Park, J.; Yoon, G.H.; Kang, J.W.; Choi, S.B. Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes. Smart Mater. Struct., 2016, 25(8), 085009.
[39]
Garcia, E.; Arevalo, J.C.; Munoz, G.; Gonzalez-de-Santos, P. On the biomimetic design of agile-robot legs. Sensors, 2011, 11(12), 11305-11334.
[40]
Ha, S.H.; Seong, M.S.; Jeon, J.; Choi, S.B. Dynamic modelling and design of tracked vehicle suspension system using magnetorheological valve. Int. J. Heavy Veh. Syst., 2013, 20(3), 191-208.
[41]
Simon, D.; Ahmadian, M. Vehicle evaluation of the performance of magneto rheological dampers for heavy truck suspensions. J. Vib. Acoust., 2001, 123(3), 365-375.
[42]
phys.org, 2004: Army looks at improving vehicles’ performance with MR fluid technology from Lord Corporation. Available at: https://phys.org/news/2004-07-army-vehicles-fluid-technology-lord.html (Accessed Feb. 03, 2019)
[43]
Kim, H.C.; Oh, J.S.; Choi, S.B. The field-dependent shock profiles of a magnetorhelogical damper due to high impact: An experimental investigation. Smart Mater. Struct., 2014, 24(2), 025008.
[44]
Oh, J.S.; Lee, T.H.; Choi, S.B. Design and analysis of a new magnetorheological damper for generation of tunable shock-wave profiles. Shock Vib., 2018, 2018, Article ID 8963491.
[45]
Ha, S.H.; Choi, S.B.; Lee, K.S.; Cho, M.W. Ride quality evaluation of railway vehicle suspension system featured by magnetorheological fluid damper. Adv. Sci. Lett., 2012, 12(1), 209-213.
[46]
Kim, H.C.; Shin, Y.J.; You, W.; Jung, K.C.; Oh, J.S.; Choi, S.B. A ride quality evaluation of a semi-active railway vehicle suspension system with MR damper: Railway field tests. In: Proceedings of the Institution of Mechanical Engineers, Part F: J. Rail Rapid Transit.,2017, 231(3), 306-316.
[47]
Oh, J.S.; Shin, Y.J.; Koo, H.W.; Kim, H.C.; Park, J.; Choi, S.B. Vibration control of a semi-active railway vehicle suspension with magneto-rheological dampers. Adv. Mech. Eng., 2016, 8(4), 1687814016643638.
[48]
Kubík, M.; Macháček, O.; Strecker, Z.; Roupec, J.; Mazůrek, I. Design and testing of magnetorheological valve with fast force response time and great dynamic force range. Smart Mater. Struct., 2017, 26(4), 047002.

© 2025 Bentham Science Publishers | Privacy Policy