Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Creation of Cultures Containing Mutations Linked with Cardiovascular Diseases using Transfection and Genome Editing

Author(s): Margarita A. Sazonova*, Anastasia I. Ryzhkova, Vasily V. Sinyov, Marina D. Sazonova, Zukhra B. Khasanova, Nadezhda A. Nikitina, Vasily P. Karagodin, Alexander N. Orekhov and Igor A. Sobenin

Volume 25, Issue 6, 2019

Page: [693 - 699] Pages: 7

DOI: 10.2174/1381612825666190329121532

Price: $65

Abstract

Objective: In this review article, we analyzed the literature on the creation of cultures containing mutations associated with cardiovascular diseases (CVD) using transfection, transduction and editing of the human genome.

Methods: We described different methods of transfection, transduction and editing of the human genome, used in the literature.

Results: We reviewed the researches in which the creation of сell cultures containing mutations was described. According to the literature, system CRISPR/Cas9 proved to be the most preferred method for editing the genome. We found rather promising and interesting a practically undeveloped direction of mitochondria transfection using a gene gun. Such a gun can direct a genetically-engineered construct containing human DNA mutations to the mitochondria using heavy metal particles. However, in human molecular genetics, the transfection method using a gene gun is unfairly forgotten and is almost never used.

Ethical problems arising from editing the human genome were also discussed in our review. We came to a conclusion that it is impossible to stop scientific and technical progress. It is important that the editing of the genome takes place under the strict control of society and does not bear dangerous consequences for humanity. To achieve this, the constant interaction of science with society, culture and business is necessary.

Conclusion: The most promising methods for the creation of cell cultures containing mutations linked with cardiovascular diseases, were system CRISPR/Cas9 and the gene gun.

Keywords: Transfection, transduction, human genome editing, cell cultures, mutation, gene, genome, mtDNA.

[1]
Yang S, Zhou X, Li R, Fu X, Sun P. Optimized PEI-based Transfection Method for Transient Transfection and Lentiviral Production. Curr Protoc Chem Biol 2017; 9(3): 147-57.
[2]
Potter H, Heller R. Transfection by Electroporation. Curr Protoc Immunol 2017. Apr 3; 117: 10.15.1-9
[3]
Guo Y, Klüppel M, Tang H, Tan S, Zhang P, Chen Z. Lentivirus-mediated transfection of chondroitinase ABC gene without the bacterial leader sequence enables long-term secretion of functional chondroitinase ABC in human bone marrow stromal cells. Biotechnol Lett 2016; 38(5): 893-900.
[4]
Benskey MJ, Manfredsson FP. Lentivirus Production and Purification. Methods Mol Biol 2016; 1382: 107-14.
[5]
Munye MM, Ravi J, Tagalakis AD, McCarthy D, Ryadnov MG, Hart SL. Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector. Sci Rep 2015; 5: 9292.
[6]
Molnar MJ, Kovacs GG. Mitochondrial diseases. Handb Clin Neurol 2017; 145: 147-55.
[7]
Ryzhkova AI, Sazonova MA, Sinyov VV, et al. Mitochondrial diseases caused by mtDNA mutations: A mini-review. Ther Clin Risk Manag 2018; 14: 1933-42.
[8]
Ouyang Q, Nakayama T, Baytas O, et al. Mutations in mitochondrial enzyme GPT2 cause metabolic dysfunction and neurological disease with developmental and progressive features. Proc Natl Acad Sci USA 2016; 113(38): E5598-607.
[9]
Simon DK, Matott JC, Espinosa J, Abraham NA. Mitochondrial DNA mutations in Parkinson’s disease brain. Acta Neuropathol Commun 2017; 5(1): 33.
[10]
Vernon HJ, McClellan R, Batista DA, Naidu S. Mutations in FARS2 and non-fatal mitochondrial dysfunction in two siblings. Am J Med Genet A 2015; 167A(5): 1147-51.
[11]
Adema AY, Janssen MC, van der Heijden JW. A novel mutation in mitochondrial DNA in a patient with diabetes, deafness and proteinuria. Neth J Med 2016; 74(10): 455-7.
[12]
Lee JJ, Tripi LM, Erbe RW, Garimella-Krovi S, Springate JE. A mitochondrial DNA deletion presenting with corneal clouding and severe Fanconi syndrome. Pediatr Nephrol 2012; 27(5): 869-72.
[13]
Meunier I, Lenaers G, Bocquet B, et al. A dominant mutation in MAPKAPK3, an actor of p38 signaling pathway, causes a new retinal dystrophy involving Bruch’s membrane and retinal pigment epithelium. Hum Mol Genet 2016; 25(5): 916-26.
[14]
Sazonova MA, Ryzhkova AI, Sinyov VV, et al. Mitochondrial genome mutations associated with myocardial infarction. Dis Markers 2018; Feb 18 20189749457
[15]
Sazonova MA, Sinyov VV, Ryzhkova AI, et al. Role of mitochondrial genome mutations in pathogenesis of carotid atherosclerosis. Oxid Med Cell Long 2017; p. 7.
[16]
Sazonova MA, Chicheva MM, Zhelankin AV, Sobenin IA, Bobryshev YV, Orekhov AN. Association of mutations in the mitochondrial genome with the subclinical carotid atherosclerosis in women. Exp Mol Pathol 2015; 99(1): 25-32.
[17]
Sazonova MA, Sinyov VV, Barinova VA, et al. Mosaicism of mitochondrial genetic variation in atherosclerotic lesions of the human aorta. BioMed Res Int 2015; 2015825468
[18]
Sazonova MA, Zhelankin AV, Barinova VA, et al. Mutations of mitochondrial genome in carotid atherosclerosis. Front Genet 2015; 6: 111.
[19]
Sazonova MA, Zhelankin AV, Barinova VA, et al. Dataset of mitochondrial genome variants associated with asymptomatic atherosclerosis. Data Brief 2016; 7: 1570-5.
[20]
Sazonova MA, Ryzhkova AI, Sinyov VV, et al. New markers of atherosclerosis: A threshold level of heteroplasmy in mtDNA mutations. Vessel Plus 2017; 1: 182-91.
[21]
Sobenin IA, Myasoedova VA, Anisimova EV, et al. Blood serum atherogenicity and coronary artery calcification. Curr Pharm Des 2014; 20(37): 5884-8.
[22]
Bilovol O. Predictors of hormonal and metabolic disorders of arterial hypertension and type 2 diabetes mellitus comorbidity. Vessel Plus 2017; 1: 22-8.
[23]
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl) 2017; 95(11): 1153-65.
[24]
Vakhtangadze T, Gakhokidze N. Myocardial ischemia in women: problems and challenges. Vessel Plus 2017; 1: 43-8.
[25]
Cordero A, López-Palop R, Carrillo P, et al. Initial experience with bioresorbable vascular scaffolds for percutaneous revascularisation in patients with acute coronary syndrome. Vessel Plus 2017; 1: 68-76.
[26]
Liu S, Zibetti C, Wan J, Wang G, Blackshaw S, Qian J. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility. BMC Bioinformatics 2017; 18(1): 355.
[27]
Koban R, Neumann M, Daugs A, et al. A novel three-dimensional cell culture method enhances antiviral drug screening in primary human cells. Antiviral Res 2018; 150: 20-9.
[28]
Engelke M, Zorn-Kruppa M, Gabel D, Reisinger K, Rusche B, Mewes KR. A human hemi-cornea model for eye irritation testing: quality control of production, reliability and predictive capacity. Toxicol In Vitro 2013; 27(1): 458-68.
[29]
Sazonova MA, Sinyov VV, Ryzhkova AI, et al. Cybrid Models of Pathological Cell Processes in Different Diseases. Oxid Med Cell Longev 2018; 20184647214
[30]
Bruneau N, Szepetowski P. Magnetofection™ of NMDA Receptor Subunits GluN1 and GluN2A Expression Vectors in Non-Neuronal Host Cells. Methods Mol Biol 2017; 1677: 129-35.
[31]
Prosen L, Hudoklin S, Cemazar M, et al. Magnetic field contributes to the cellular uptake for effective therapy with magnetofection using plasmid DNA encoding against Mcam in B16F10 melanoma in vivo. Nanomedicine (Lond) 2016; 11(6): 627-41.
[32]
Uchugonova A, Breunig HG, Batista A, König K. Optical reprogramming of human cells in an ultrashort femtosecond laser microfluidic transfection platform. J Biophotonics 2016; 9(9): 942-7.
[33]
Belyantseva IA. Helios(®) Gene Gun-Mediated Transfection of the Inner Ear Sensory Epithelium: Recent Updates. Methods Mol Biol 2016; 1427: 3-26.
[34]
Dunaevsky A. The gene-gun approach for transfection and labeling of cells in brain slices. Methods Mol Biol 2013; 1018: 111-8.
[35]
Li P, Zhang L. Exogenous Nkx2.5- or GATA-4-transfected rabbit bone marrow mesenchymal stem cells and myocardial cell co-culture on the treatment of myocardial infarction in rabbits. Mol Med Rep 2015; 12(2): 2607-21.
[36]
Li H, Jiang L, Yu Z, et al. The Role of a Novel Long Noncoding RNA TUC40- in Cardiomyocyte Induction and Maturation in P19 Cells. Am J Med Sci 2017; 354(6): 608-16.
[37]
Yang Y, Yang Y, Xu Y, Lick SD, Awasthi YC, Boor PJ. Endothelial glutathione-S-transferase A4-4 protects against oxidative stress and modulates iNOS expression through NF-kappaB translocation. Toxicol Appl Pharmacol 2008; 230(2): 187-96.
[38]
Matsuno Y, Iwata H, Umeda Y, et al. Nonviral gene gun mediated transfer into the beating heart. ASAIO J 2003; 49(6): 641-4.
[39]
Steele DF, Dou Y, Fedida D. Biolistic transfection of freshly isolated adult ventricular myocytes. Methods Mol Biol 2013; 940: 145-55.
[40]
Nishizaki K, Mazda O, Dohi Y, et al. In vivo gene gun-mediated transduction into rat heart with Epstein-Barr virus-based episomal vectors. Ann Thorac Surg 2000; 70(4): 1332-7.
[41]
Patrushev MV, Kamenski PA, Mazunin IO. Mutations in mitochondrial DNA and approaches for their correction. Biochemistry 2014; 79(11): 1151-60.
[42]
Wang G. Correcting human mitochondrial mutations with targeted RNA import. Proc Natl Acad Sci USA 2012; 109(13): 4840-5.
[43]
Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 2013; 19(9): 1111-3.
[44]
Gammage PA, Rorbach J, Vincent AI, Rebar EJ, Minczuk M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med 2014; 6(4): 458-66.
[45]
Tonin Y, Heckel AM, Vysokikh M, et al. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. J Biol Chem 2014; 289(19): 13323-34.
[46]
Yu H, Koilkonda RD, Chou TH, et al. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci USA 2012; 109(20): E1238-47.
[47]
Kolesnikova O, Kazakova H, Comte C, et al. Selection of RNA aptamers imported into yeast and human mitochondria. RNA 2010; 16(5): 926-41.
[48]
Comte C, Tonin Y, Heckel-Mager AM, et al. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome. Nucleic Acids Res 2013; 41(1): 418-33.
[49]
Niazi AK, Mileshina D, Cosset A, Val R, Weber-Lotfi F, Dietrich A. Targeting nucleic acids into mitochondria: progress and prospects. Mitochondrion 2013; 13(5): 548-58.
[50]
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014; 32(4): 347-55.
[51]
Seibel P, Trappe J, Villani G, Klopstock T, Papa S, Reichmann H. Transfection of mitochondria: strategy towards a gene therapy of mitochondrial DNA diseases. Nucleic Acids Res 1995; 23(1): 10-7.
[52]
Coutinho E, Batista C, Sousa F, Queiroz J, Costa D. Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and Nanosystems Targeted to Mitochondria. Mol Pharm 2017; 14(3): 626-38.
[53]
Coutinho E, Batista C, Sousa F, Queiroz J, Costa D. Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and Nanosystems Targeted to Mitochondria. Mol Pharm 2017; 14(3): 626-38.
[54]
Liu G, Yang RF, Shi BY, Liu DP. Prokaryotic expression and purification of mitochondrial transcription complex proteins. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2011; 33(6): 638-43.
[55]
Van Maerken T, Sarkar D, Speleman F, Dent P, Weiss WA, Fisher PB. Adenovirus-mediated hPNPase(old-35) gene transfer as a therapeutic strategy for neuroblastoma. J Cell Physiol 2009; 219(3): 707-15.
[56]
Wolf DP, Mitalipov N, Mitalipov S. Mitochondrial replacement therapy in reproductive medicine. Trends Mol Med 2015; 21(2): 68-76.
[57]
Rulli T. The Mitochondrial Replacement ‘Therapy’ Myth. Bioethics 2017; 31(5): 368-74.
[58]
Adashi EY, Cohen IG. Mitochondrial Replacement Therapy: Unmade in the USA. JAMA 2017; 317(6): 574-5.
[59]
Burrell C. Mitochondrial replacement therapy and ‘three-parent children’-who should be registered as the legal parents? BJOG 2017; 124(7): 1056.
[60]
Gammage PA, Gaude E, Van Haute L, et al. Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Res 2016; 44(16): 7804-16.
[61]
Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 2013; 19(9): 1111-3.
[62]
Kumarasamy S, Waghulde H, Cheng X, et al. Targeted disruption of regulated endocrine-specific protein (Resp18) in Dahl SS/Mcw rats aggravates salt-induced hypertension and renal injury. Physiol Genomics 2018; 50(5): 369-75.
[63]
Karakikes I, Termglinchan V, Cepeda DA, et al. A Comprehensive TALEN-Based Knockout Library for Generating Human-Induced Pluripotent Stem Cell-Based Models for Cardiovascular Diseases. Circ Res 2017; 120(10): 1561-71.
[64]
Li B, Yang H, Wang X, et al. Engineering human ventricular heart muscles based on a highly efficient system for purification of human pluripotent stem cell-derived ventricular cardiomyocytes. Stem Cell Res Ther 2017; 8(1): 202.
[65]
Wang J, Xu ZW, Liu S, et al. Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication. World J Gastroenterol 2015; 21(32): 9554-65.
[66]
Chicherin IV, Levitsky SA, Krasheninnikov IA, Tarassov I, Kamenski P. The prospects of gene therapy for mitochondrial diseases: can’t we do without CRISPR/Cas9? Bulletin of Russian State Medical University 2017; 3: 43-7.
[67]
Rauch BJ, Silvis MR, Hultquist JF, et al. Inhibition of CRISPR-Cas9 with Bacteriophage Proteins. Cell 2017; 168(1-2): 150-158.e10.
[68]
Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V. Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 2015; 32: 76-84.
[69]
Gao Y, Wu H, Wang Y, et al. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol 2017; 18(1): 13.
[70]
Straub SP, Stiller SB, Wiedemann N, Pfanner N. Dynamic organization of the mitochondrial protein import machinery. Biol Chem 2016; 397(11): 1097-114.
[71]
Orishchenko KE, Sofronova JK, Chupakhin EG, Lunev EA, Mazunin IO. Delivery Cas9 into mitochondria. Genes Cells 2016; 11: 100-5.
[72]
Comte C, Tonin Y, Heckel-Mager AM, et al. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome. Nucleic Acids Res 2013; 41(1): 418-33.
[73]
Tonin Y, Heckel AM, Vysokikh M, et al. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. J Biol Chem 2014; 289(19): 13323-34.
[74]
Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015; 6(5): 363-72.
[75]
Tang L, Zeng Y, Du H, et al. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics 2017; 292(3): 525-33.
[76]
Callaway E. HIV overcomes CRISPR gene-editing attack. Nature 2016.
[77]
Wang Z, Pan Q, Gendron P, et al. CRISPR/Cas9-Derived Mutations Both Inhibit HIV-1 Replication and Accelerate Viral Escape. Cell Reports 2016; 15(3): 481-9.
[78]
Paone C, Diofano F, Park DD, Rottbauer W, Just S. Genetics of Cardiovascular Disease: Fishing for Causality. Front Cardiovasc Med 2018. Jun 1; 5: 60. eCollection 2018. Review
[79]
Bősze Z, Major P, Baczkó I, et al. The potential impact of new generation transgenic methods on creating rabbit models of cardiac diseases. Prog Biophys Mol Biol 2016; 121(2): 123-30.
[80]
Reardon S. Global summit reveals divergent views on human gene editing. Nature 2015; 528(7581): 173.
[81]
Committee on Science, Technology, and Law; Policy and Global Affairs; National Academies of Sciences,Engineering, and Medicine. Olson S, Ed. International Summit on Human Gene Editing: A Global Discussion 2016 Jan; .
[82]
Zhang B, Chen XF, Huang X, Yang X. Research advances on animal genetics in China in 2015. Yi Chuan 2016; 38(6): 467-507.
[83]
Report of the International Bioethics Committee (IBC) on Updating Its Reflection on the Human Genome and Human Rights. FINAL RECOMMENDATIONS. Rev Derecho Genoma Hum 2015; (43): 195-9.
[84]
Langlois A. The global governance of human cloning: the case of UNESCO. Palgrave Commun 2017; 3: 17019.
[85]
Pei D, Beier DW, Levy-Lahad E, et al. Human Embryo Editing: Opportunities and Importance of Transnational Cooperation. Cell Stem Cell 2017; 21(4): 423-6.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy