Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

EDXRF Spectrometry and Complementary Non-Destructive Analytical Techniques in the Archaeometric Study of Copper Artefacts

Author(s): Christos S. Katsifas* and George A. Zachariadis

Volume 15, Issue 7, 2019

Page: [776 - 787] Pages: 12

DOI: 10.2174/1573411015666190327170037

Price: $65

Abstract

Background: For more than a decade, Energy Dispersive X-Ray Fluorescence (EDXRF) spectrometry is the primary analytical technique in archaeometric research and especially in the study of ancient copper artefacts. EDXRF has established itself as the fundamental archaeometric analytical technique because of features like: the ability to analyze samples in a non destructive or non invasive way, no requirements for sample preparation, portability, in situ analysis, simultaneous determination of many elements and finally its easy in use. At the same time there is an explosion of related research publications which provide new possibilities to museums and archaeology scientists. On the other hand, due to its limitations it cannot provide information for every analytical question.

Objective: The goal of this article is to present an overview of the capabilities of the contemporary EDXRF spectrometry for the study of ancient copper artifacts and the necessity to be implemented, depending on the analytical question, in correlation with complementary analytical techniques which are presented through related case studies.

Conclusion: The demand for studying artefacts in situ, the evolution of the instrumentation and the access of more scientists (historians, archaeologists, curators etc.) to archaeometry will maintain EDXRF spectrometry as the central analytical technique. Limitations like inability for light elements detection, penetration depth, low (relatively) sensitivity can be partially overcome with the implementation of other analytical techniques which will provide complementary information. Moreover, progress in non-invasive analysis and new portable instruments combining elemental and molecular techniques expand significantly the capabilities of in situ analysis.

Keywords: Archaeometry, non-destructive, copper artefacts, XRF, overview, central analytical technique.

Graphical Abstract

[1]
Saroj, S.; Shah, P.; Jairaj, V.; Rathod, R. Green analytical chemistry and quality by design: A combined approach towards robust and sustainable modern analysis. Curr. Anal. Chem., 2018, 14(4), 367-381.
[2]
Hall, E.T. X-Ray Fluorescence analysis applied to archaeology. Archaeometry, 1960, 3(1), 29-35.
[3]
Frahm, E.; Doonan, R.C.P. The technological versus methodological revolution of portable XRF in archaeology. J. Archaeol. Sci., 2013, 40, 1425-1434.
[4]
Piorek, S. Field - portable X-ray fluorescence spectrometry: Past, present and future. Field Anal. Chem. Technol., 1997, 1(6), 317-329.
[5]
Strüder, L.; Meidinger, N.; Stotter, D.; Kemmer, J. Lechner, P.; Leutenegger, P.; Soltau, H.; Eggert, F.; Rohde, M.; Schulein, T. High-resolution X-ray spectroscopy close to room temperature. Microsc. Microanal., 1998, 4(6), 622-631.
[6]
Bronk, H.; Röhrs, S.; Bjeoumikhov, A.; Langhoff, N.; Schmalz, J.; Wedell, R.; Gorny, H.E.; Herold, A.; Waldschläger, U. Artax - a new mobile spectrometer for energy-dispersive micro X-ray fluorescence spectrometry on art and archaeological objects. Fresenius J. Anal. Chem., 2001, 371(3), 307-316.
[7]
Potts, P.J.; West, M. Portable X-ray Fluorescence Spectrometry - Capabilities of In Situ Analysis; The Royal Society of Chemistry: Cambridge, 2008.
[8]
Karydas, A.G.; Brecoulaki, Ch.; Pantazis, T.; Aloupi, T.E.; Argyropoulos, V.; Kotzamani, D.; Bernard, R.; Zarkadas, Ch.; Paradellis, T. Importance of in-situ EDXRF Measurements in the Preservation and Conservation of Material Culture. In: X-rays for Archaeology; Uda, M.; Demortier, G.; Nakai, I., Eds.; Springer: Dordrecht, 2005, pp. 27-53.
[9]
Fitzerald, S. Non-destructive micro-analysis of art and archaeological objects using micro-XRF. Archeometriai Műhely, 2008, 3, 73-78.
[10]
Beckhoff, B.; Kanngießer, B.; Langhoff, N.; Wedell, R.; Wolff, H. Handbook of Practical X-Ray Fluorescence Analysis; Springer Science and Business Media: New York, 2006.
[11]
Cechak, T.; Hlozek, M.; Musilek, L.; Trojek, T. X-ray fluorescence in investigations of archaeological finds. Nucl. Instrum. Methods Phys. Res. B, 2007, 263, 54-57.
[12]
Tykot, R.H. Using nondestructive portable X-ray fluorescence spectrometers on stone, ceramics, metals and other materials in museums: advantages and limitations. Appl. Spectrosc., 2016, 70(1), 42-56.
[13]
Rindby, A.; Adams, F.; Engström, P. Microfocusing X-ray optics. In: Microscopic X-ray Fluorescence Analysis; Janssens, K.; Adams, F, Rindby, A., Ed.; John Wiley & Sons Inc.: New York; , 1999, pp. pp. 63-94.
[14]
Zarkadas, C.; Karydas, A.G. A portable semi-micro-Xray fluorescence spectrometer for archaeometrical studies. Spectrochim. Acta B , 2004, 59(10-11), 1611-1618.
[15]
Buzanich, G.; Wobrauschek, P.; Streli, C.; Markowicz, A.; Wegrzynek, D.; Chinea-Cano, E. Bamford. S. A portable micro-X-ray fluorescence spectrometer with polycapillary optics and vacuum chamber for archaeometric and other applications. Spectrochim. Acta B , 2007, 62(11), 1152-1256.
[16]
Janssens, K.; Vittiglio, G.; Deraedt, I.; Aerts, A.; Vekemans, B.; Vincze, L.; Wei, F.; De Ryck, I.; Schalm, O.; Adams, F.; Rindby, A.; Knochel, A.; A.; Simionovici, A. A. Snigirev, A. Use of microscopic XRF for non-destructive analysis in art and archaeometry. XRay Spectrom., 2000, 29(1), 73-91.
[17]
Haschke, M. Laboratory Micro-X-Ray Fluorescence Spectroscopy - Instrumentation and Applications; Springer International Publishing: Switzerland, 2014.
[18]
Mantouvalou, I.; Malzer, W.; Kanngießer, B. Quantification for 3D micro X-ray fluorescence. Spectrochim. Acta B , 2012, 77, 9-18.
[19]
Wei, H.; Kockelmann, W.; Godfrey, E.; Scott, D.A. The metallography and corrosion of an ancient Chinese bimetallic bronze sword. J. Cult. Herit., 2018, 1, 1-7.
[20]
Pollard, A.M.; Bray, P. Chemical and Isotopic Studies of Ancient Metals. In: Archaeometallurgy in Global Perspective - Methods and Synthesis; Roberts, B.W.; Thornton, C.P., Eds.; Springer Science and Business Media: New York, 2014, pp. 217-238.
[21]
Mantouvalou, I.; Malzer, W.; Schaumann, I.; Lühl, L.; Dargel, R.; Vogt, C.; Kanngiesser, B. Reconstruction of thickness and composition of stratified materials by means of 3D micro X-ray fluorescence spectroscopy. Anal. Chem., 2008, 80, 819-826.
[22]
Goffer, Z. Archaeological Chemistry, 2nd ed; John Wiley & Sons Inc.: Hoboken, New Jersey, 2007.
[23]
Henderson, J. The Science and Archaeology of Materials - An Investigation of Inorganic Materials; Routledge: New York, 2000.
[24]
Orfanou, S. Early Iron Age Greek Copper-Based Technology: Votive Offerings from Thessaly. PhD Thesis.
[25]
Lazic, V.; Vadrucci, M.; Fantoni, R.; Chiari, M.; Mazzinghi, A.; Gorghinian, A. Applications of laser induced breakdown spectroscopy for cultural heritage: A comparison with X-ray Fluorescence and Particle Induced X-ray Emission techniques. Spectrochim. Acta B, , 2018, 149, 1-14.
[26]
Jenkins, R. X-ray Fluorescence Spectrometry, 2nd ed; Wiley & Sons Inc.: New York, 1999.
[27]
Milazzo, M.; Cicardi, C. Simple methods for quantitative X-ray fluorescence analysis of ancient metal objects of archaeological interest. XRay Spectrom., 1997, 26, 211-216.
[28]
Rousseau, R.M. Detection limit and estimate of uncertainty of analytical XRF results. Rigaku J., 2001, 18(2), 33-47.
[29]
Heginbotham, A.; Bezur, A.; Bouchard, M.; Davis, J.M.; Eremin, K.; Frantz, J.H.; Glinsman, L.; Hayek8, L.A.; Hook, D.; Kantarelou, V.; Karydas, A.G.; Lee, L.; Mass, J.; Matsen, K.; McCarthy, B.; McGath, M.; Shugar, A.; Sirois, J.; Smith, D.; Speakman, R.J. An evaluation of inter-laboratory reproducibility for quantitative XRF of historic copper alloys. In: Metal 2010, Proceedings of the Interim Meeting of the ICOM-CC Metal Working Group, Charleston, South Carolina, USA, October 11-15, 2010;; Mardikian, P.; Chemello, C.; Watters, C.; Hull, P. Eds.; International Council of Museums: Clemson, South Carolina, USA. , 2011, pp. 244-255.
[30]
Martin, G. Alloy analysis. In: Bells & Mortars and Related Utensil - Catalogue of Italian bronzes in the Victoria and Albert Museum;. Motture, P. Ed.; V & A Publications: London; , 2001.
[31]
Heginbotham, A.; Bassett, J.; Bourgarit, D.; Eveleigh, C.; Frantz, T.; Glinsman, L.; Hook, D.; Smith, D.; Speakman, R.J.; Sugar, A.; Van Langh, R. The copper CHARM set: A new set of certified reference materials for the standardization of quantitative X-ray fluorescence analysis of heritage copper alloys. Archaeometry, 2015, 57(5), 856-868.
[32]
Shugar A.N.; Mass, J.L. Introduction. Shugar, A.N.; Mass, J.L. Eds. Handheld XRF for Art and Archaeology, Leuven University Press: Leunen; , 2012, pp. pp. 17-36.
[33]
Datta, P.K.; Chattopadhyay, P.K.; Mandal, B. Investigations on ancient high-Sn bronze excavated from lower Bengal region of Tilpi. Indian J. Hist. Sci., 2008, 43(3), 381-410.
[34]
Scott, D.A. Ancient Metals: Microstructure and Metallurgy, vol. I. Los Angeles,, 2010.
[35]
Smith, D. Handheld XRF analysis of Renaissance bronzes: practical approaches to quantification and acquisition.Shugar, A.N.; Mass, J.L. Eds. Handheld XRF for Art and Archaeology, Leuven University Press: Leunen; , 2012, pp. pp. 37-74.
[36]
Guerra, M.F. Analysis of archaeological metals. The place of XRF and PIXE in the determination of technology and provenance. XRay Spectrom., 1998, 27, 73-80.
[37]
Karydas, A.G. Application of a portable XRF spectrometer for the non invasive analysis of museum metal artifacts. Annali di Chimica., 2007, 97(7), 419-432.
[38]
Katsifas, C.S.; Ignatiadou, D.; Zacharopoulou, A.; Kantiranis, N.; Karapanagiotis, I.; Zachariadis, G.A. Non-destructive X-ray spectrometric and chromatographic analysis of metal containers and their contents, from ancient Macedonia. Separations, 2018, 5(32), 1-17.
[39]
Figueiredo, E.; Valerio, P.; Fatima Araújo, M.; Silva, R.J.C.; Soares, A.M.M. Inclusions and metal composition of ancient copper-based artefacts: A diachronic view by micro-EDXRF and SEM-eds. XRay Spectrom., 2010, 40, 325-332.
[40]
Charalambous, A.; Kassianidou, V.; Papasavvas, G. A compositional study of Cypriot bronzes dating to the Early Iron Age using portable X-ray fluorescence spectrometry (pXRF). J. Archaeol. Sci., 2014, 46, 205-216.
[41]
Kantarelou, V.; Karydas, A.G.; Zarkadas, Ch.; Giannoulaki, M.; Argyropoulos, V. Micro-XRF analysis of high tin bronze mirrors at the museum of ancient Messene in Greece. In: Strategies for Saving our Cultural Heritage, Proceedings of the International Conference on Conservation Strategies for Saving Indoor Metallic Collections with a Satellite Meeting on Leagal Issues in the Conservation of Cultural Heritage Cairo, February 25 - March 1, 2007; Argyropoulos, V.; Hein, A.; Harith, M. A. Eds; Technological and Educational Institute of Athens; , 2007; pp. 93-99.
[42]
Figueiredo, E.; Valério, P.; Araújo, M.F.; Senna-Martinez, J.C. Micro-EDXRF surface analyses of a bronze spear head: lead content in metal and corrosion layer. Nucl. Instrum. Methods Phys. Res., 2007, A(580), 725-727.
[43]
Baijot-Stroobant, J.; Bodart, F. Ancient pottery analysis by proton bombardment and Mössbauer spectroscopy. Nucl. Instrum. Methods, 1977, 142(1-2), 293-300.
[44]
Cristea-Stan, D.; Constaninescu, B.; Ceccato, D.; Pacheco, C.; Pichon, L.; Luculescu, C. Micro-PIXE studies on native Transylvanian gold for archaeological artifacts authentication. Int. J. Mod. Phys. Conf. Ser, 2014, 27, 1-9.
[45]
Guerra, M.F. The study of the characterisation and provenance of coins and other metalwork using XRF, PIXE and activation analysis. In: Radiation in Art and Archaeometry; Creagh, D.C.; Bradley, D.A., Eds.; Elsevier: Amsterdam, 2000, pp. 379-416.
[46]
De Ryck, L.; Adriaens, A.; Pantos, E.; Adams, F. A comparison of microbeam techniques for the analysis of corroded ancient bronze objects. Analyst , 2003, 128, 1104-1109.
[47]
Dran, J.C.; Salomon, J.; Calligaro, T.; Walter, Ph. Ion beam analysis of art works: 14 years of use in the Louvre. Nucl. Inst. Methods B, 2004, 219-220, 7-15.
[48]
Verma, H.R. Atomic and Nuclear Analytical Methods - XRF, Mössbauer, XPS, NAA, and Ion Beam Spectroscopic Techniques; Springer Science and Business Media: New York, 2007.
[49]
Zucchiatti, A. X-ray spectrometry in archaeometry. In: X-ray Spectrometry: Recent Technological Advance; Tsuji, K.; Injuk, J.; Van Grieken, R., Eds.; John Wiley & Sons Ltd: Chichester, 2004, pp. 553-552.
[50]
Vasilescu, A.; Constantinescu, B.; Stan, D.; Talmatchi, G.; Ceccato, D. XRF and micro-PIXE studies of inhomogeneity of ancient bronze and silver alloys. Nucl. Instrum. Methods Phys. Res. B, 2017, 406, 302-308.
[51]
Żmuda-Trzebiatowska, I.; Śliwiński, S. Surface layers analysis of bronze artifacts by means of laser spectroscopy techniques. Photonics Lett. Pol., 2011, 3(2), 79-81.
[52]
Orlić-Bachler, M.; Bišcan, M.; Kregar, Z.; Jelovica Badovinac, I.; Dobrini’ce, J.; Miloševic, S. Analysis of antique bronze coins by Laser Induced Breakdown Spectroscopy and multivariate analysis. Spectrochimic. Acta B, 2016, 123, 163-170.
[53]
Melessanaki, K.; Mateo, M.; Ferrence, S.C.; Betancourt, P.P.; Anglos, D. The application of LIBS for the analysis of archaeological ceramic and metal artefacts. Appl. Surf. Sci., 2002, 197-198, 156-163.
[54]
Calvo del Castillo, H.; Strivay, D. X-Ray Methods. In: Analytical Archaeometry - Selected Topics; Howell, G.; Edwards, M.; Vandenabeele, P; The Royal Society of Chemistry: Cambridge, 2012, pp. 59-112.
[55]
Fortes, F.J.; Cortes, M.; Simon, M.D.; Cabalin, L.M.; Laserna, J.J. Chronocultural sorting of archaeological bronze objects using laser-induced breakdown spectrometry. Anal. Chim. Acta, 2005, 554, 136-143.
[56]
Fantoni, R.; Caneve, L.; Colao, F.; Fornarini, L.; Lazic, V.; Spizzichino, V. Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis - A review. Spectrochim. Acta B , 2008, 63, 1097-1108.
[57]
Guirado, S.F.J.; Fortes, F.J.V.; Lazic, V.J.J.; Laserna, J.J. Chemical analysis of archaeological materials in submarine environments using LIBS. On-site trials in the Mediterranean Sea. Spectrochim. Acta B ., 2012, 74-75, 137-143.
[58]
Papazoglou, D.G. Papadakis, V. Anglos, D. In situ interferometric depth and topography monitoring in LIBS elemental profiling of multi-layer structures. J. Anal. At. Spectrom., 2004, 19, 483-488.
[59]
Goodall, R.A. Indentification and Authentication In: Analytical Archaeometry - Selected Topics; Howell, G.; Edwards, M.; Vandenabeele, P.; The Royal Society of Chemistry: Cambridge,; , 2012, pp. pp. 483-500.
[60]
Bussera, B.; Moncayo, S.; Colla, J-L.; Sancey, L.; Motto-Ros, V. Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications. Coord. Chem. Rev., 2018, 358, 70-79.
[61]
Kantarelou, V.; Zarkadas, C.; Giakoumaki, A.; Karydas, A.G.; Anglos, D.; Argyropoulos, V. A novel approach on the combined in-situ application of LIBS and μ-XRF spectrometers for the characterization of copper alloy corrosion products. In: Metal 2007; vol.2 Proceedings of International Council of Museums, Innovative Investigation of Metal Artefacts, Amsterdam, September 17-21, 2007; The Netherlands; , 2007; pp. pp. 35-41.
[62]
Arafat, A.; Na’es, M.; Vicky Kantarelou, V.; Naseem, H.; Anastasia Giakoumaki, A. Argyropoulose, V.; Anglos, D.; Karydas, A.G. Combined in situ micro-XRF, LIBS and SEM-EDS analysis of base metal and corrosion products for Islamic copper alloyed artefacts from Umm Qais museum, Jordan. J. Cult. Herit., 2013, 14, 261-269.
[63]
Sotelo-Mazon, O.; Cuevas-Arteaga, C.; Porcayo-Calderon, J.; Izquierdo-Montalvo, G. Chemical, physical and electrochemical characterization of two stainless steels exposed in NaVO3 molten salt at 700°C. Curr. Anal. Chem., 2016, 12(6), 602-611.
[64]
Selwyn, L.S. Corrosion of Metal Artifacts in Buried Environments. ASM International, vol. 13C; , 2006.
[65]
Figueiredo, E.; Valério, P.; Araújo, M.F.; Silva, R.J.C.; Soares, A.M.M. Inclusions and metal composition of ancient copper-based artefacts: A diachronic view by micro-XRF and SEM-EDS. XRay Spectrom., 2011, 40, 325-332.
[66]
Peterson, D.L.; Dudgeon, J.V.; Tromp, M.; Bobokhyan, A. LA-ICP-MS analysis of Prehistoric Copper and Bronze Metalwork from Armenia. In: Recent Advances in Laser Ablation ICP-MS for Archaeology; Dussubieux, L.; Golitko, M.; Gratuze, B., Eds.; Springer, 2016, pp. 115-135.
[67]
Pollard, A.M.; Heron, C. Archaeological Chemistry; The Royal Society of Chemistry: Cambridge, 1996.
[68]
Gale, N.H.; Stos-Gale, Z. Lead isotope analysesapplied to provenance studies. In: Modern Analytical Methods in Art and Archaeology; Ciliberto, E., Spoto, G. Ed.; John Wiley & Sons: New York; , 2000, vol. 155, pp. pp. 503-584.
[69]
Bouchard, M.; Smith, D.C. Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and colored glass. Spectrochim. Acta A, 2003, 59, 227-266.
[70]
Bouchard, M.; Smith, D.C. Database of 74 Raman spectra of standard minerals of relevance to metal corrosion, stained glass or prehistoric rock art. In: Raman Spectroscopy in Archaeology and Art History; Edwards, H.G.M.; Chalmers, J.M., Eds.; Royal Society of Chemistry: Cambridge, 2005, pp. 17-40.
[71]
Robinet, L.; Thickett, D. Case study: Application to Raman spectroscopy to corrosion products. In:Raman Spectroscopy in Archaeology and Art History; Edwards, H.G.M.; Chalmers, J.M., Eds.; Royal Society of Chemistry: Cambridge, 2005, pp. 325-334.
[72]
Andrikopoulos, K.S.; Daniilia, S.; Roussel, B.; Janssens, K. In vitro validation of a mobile Raman-XRF microanalytical instrument’s capabilities on the diagnosis of Byzantine icons. J. Raman Spectrosc., 2006, 37(10), 1026-1034.
[73]
Colomban, P.; Tournié, A.; Meynard, P. On-site Raman and XRF analysis of Japanese/Chinese bronze/brass patina - the search of specific Raman signatures. J. Raman Spectrosc., 2012, 43, 799-808.
[74]
Żmuda-Trzebiatowska; I.; Śliwiński, S. LIBS and Raman spectroscopic investigation of historical copper alloy objects. In: Laser Physics and Applications, roceedings of the 18th International School on Quantum Electronics, September 29 - October 3, 2014; Sozopol, Bulgaria, 2014; Dreischuh, T.; Gateva, S.; Serafetinides, A. Eds; Society of Photo-Optical Instrumentation Engineers (SPIE),. Vol. 94472015,
[75]
Ciupiński, L.; Fortuna-Zaleśna, E.; Garbacz, H.; Koss, A.; Kurzydłowski, K.J.; Marczak, J.; Mróz, J.; Onyszczuk, T.; Rycyk, A.; Sarzyński, A.; Skrzeczanowski, W.; Strzelec, M.; Zatorska, A.; Żukowska, G.Z. Comparative laser spectroscopy diagnostics for ancient metallic artefacts exposed to environmental pollution. Sensor, 2010, 10, 4926-4949.
[76]
Nakai, I. New trend in application of synchrotron radiation-induced. In: X-rays for Archaeology; Uda, M.; Demortier, G.; Nakai, I., Eds.; Springer: Dordrecht, 2005, pp. 183-198.
[77]
Taube, M.; King, A.H.; Chase, W.T. Transforamtion of ancient Chinese and model two phase bronze surfaces to smooth adherent patinas. Phase Transit., 2008, 81, 217-232.
[78]
Ashkenazi, D.; Iddan, N.; Tal, O. Archaeometallurgical characterization of Hellenistic metal objects: The contribution of the objects for Rishon Le-Zion (Israel). Archaeometry, 2012, 54(3), 528-548.
[79]
Oudbashi, O.; Davami, P. Metallography and microstructure interpretation of some archaeological tin bronze vessels from Iran. Mater. Charact., 2014, 97, 74-82.
[80]
Li, B.; Jiang, X.; Wu, R.; Wei, B.; Hu, T.; Pan, C. Formation of black patina on an ancient Chinese bronze sword of the Warring States Period. Appl. Surf. Sci., 2018, 455, 724-728.
[81]
Wang, C.S.; Lu, B.; Tan, S.; Zhang, S.Y.; Wang, G.Y. An analysis of nanocrystalline on the surface of “heiqigu” mirrors. J. Chin. Electr. Microscopy Soc, 1993, 161, 1.
[82]
Valério, P.; Silva, R.J.C.; Soares, A.M.M.; Araújo, M.F.; Gonçalves, A.P.; Soares, R.M. Combining X-ray based methods to study the protohistoric bronze technology in Western Iberia. Nucl. Instrum. Methods Phys. Res. B, 2015, 358, 117-123.
[83]
Mantovani, L. Tribaudino, M.; Facchinetti, G. A mineralogical approach to the authentication of an archaeological artefact: Real ancient bronze from Roman Age or fake? J. Cult. Herit., 2016, 21, 876-880.
[84]
Robbiola, L.; Portier, R. A global approach to the authentication of ancient bronzes based on the characterization of the alloy-patina-environment system. J. Cult. Herit., 2006, 1, 1-12.
[85]
Scott, D.A. An examination of the patina and corrosion morphology of some Roman bronzes. J. Am. Inst. Conserv., 1994, 33, 1-23.
[86]
Liritzis, I.; Zacharias, N. Portable XRF of Archaeological Artifacts: Current Research and Limitations. In: X-Ray Fluorescence Spectrometry in Geoarchaeology. ; Ed. Shackley, M.S.; Springer Science and Business Media: New York; , 2011, pp. 109-142.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy