[1]
O’Dalaigh, C.; Corr, S.A.; Gun’ko, Y.K.; Connon, S.J. A magnetic-nanoparticle-supported 4-N,N-dialkylaminopyridine catalyst: Excellent reactivity combined with facile catalyst recovery and recyclability. Angew. Chem. Int. Ed., 2007, 46, 4329-4332.
[2]
Shi, F.; Tse, M.K.; Pohl, M.M.; Brückner, A.; Zhang, S.; Beller, M. Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano-Fe2O3 in selective oxidations. Angew. Chem. Int. Ed., 2007, 46, 8866-8868.
[3]
Zhang, D.H.; Li, G.D.; Li, J.X.; Chen, J.S. One-pot synthesis of Ag–Fe3O4 nanocomposite: a magnetically recyclable and efficient catalyst for epoxidation of styrene. Chem. Commun. , 2008, 3414-3416.
[4]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108, 2064-2110.
[5]
Yavuz, C.T.; Mayo, J.T.; Yu, W.W.; Prakash, A.; Falkner, J.C.; Yean, S.; Cong, L.L.; Shipley, H.J.; Kan, A.; Tomson, M.; Natelson, D.; Colvin, V. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science, 2006, 314, 964-967.
[6]
Karimi, B.; Farhangi, E.A. A highly recyclable magnetic core‐shell nanoparticle‐supported TEMPO catalyst for efficient metal‐ and halogen‐free aerobic oxidation of alcohols in water. Chemistry Eur. J., 2011, 17, 6056-6060.
[7]
Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111, 3036-3075.
[8]
Rajasekaran, S.; Rao, G.K.; Pai, S.P.N.; Ranjan, A. Synthesis of novel coumarin derivatives and its biological evaluations. Inter. J. Chem. Tech. Res., 2011, 3(2), 555-559.
[9]
Patil, P.O.; Bari, S.B.; Firke, S.D.; Deshmukh, P.K.; Donda, S.T.; Patil, D.A.A. omprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer’s disease. Bioorg. Med. Chem., 2013, 21, 2434-2450.
[10]
Musa, M.A.; Cooperwood, J.S.; Khan, M.O. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem., 2008, 15, 2664-2679.
[11]
Beinema, M.; Brouwers, J.R.; Schalekamp, T.; Wilffert, B. Pharmacogenetic differences between warfarin, acenocoumarol and phenprocoumon. Thromb. Haemost., 2008, 100, 1052-1057.
[12]
Khodabakhshi, S.; Karami, B. Tungstate sulfuric acid catalyzed one-pot synthesis of a new class of aroylamido coumarins under solvent-free conditions. Tetrahedron Lett., 2014, 55, 7136-7139.
[13]
Shi, Y.; Zhou, C.H. Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2011, 21, 956-960.
[14]
Khodabakhshi, S.; Karami, B.; Eskandari, K.; Hoseini, S.J.; Rashidi, A. Graphene oxide nanosheets promoted regioselective and green synthesis of new dicoumarols. RSC Advances, 2014, 4, 17891-17895.
[15]
Khodabakhshi, S.; Marahel, F.; Rashidi, A.; Khaleghi-Abasabadi, M.K. A green synthesis of substituted coumarins using nano graphene oxide as recyclable catalyst. J. Chin. Chem. Soc. , 2015, 62, 389-392.