Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Progress in Molecularly Imprinted Polymers for Biomedical Applications

Author(s): Jane Ru Choi*, Kar Wey Yong*, Jean Yu Choi and Alistair C. Cowie

Volume 22, Issue 2, 2019

Page: [78 - 88] Pages: 11

DOI: 10.2174/1386207322666190325115526

Price: $65

Abstract

Background: Molecularly Imprinted Polymers (MIPs), a type of biomimetic materials have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favorable specificity and selectivity for target analytes, and long shelf life. These materials are able to mimic natural recognition entities, including biological receptors and antibodies, providing a versatile platform to achieve the desirable functionality for various biomedical applications.

Objective: In this review article, we introduce the most recent development of MIPs to date. We first highlight the advantages of using MIPs for a broad range of biomedical applications. We then review their various methods of synthesis along with their latest progress in biomedical applications, including biosensing, drug delivery, cell imaging and drug discovery. Lastly, the existing challenges and future perspectives of MIPs for biomedical applications are briefly discussed.

Conclusion: We envision that MIPs may be used as potential materials for diverse biomedical applications in the near future.

Keywords: Molecularly imprinted polymers, antibodies, biomedical applications, biosensing, drug delivery, cell imaging, drug discovery.

[1]
Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: perspectives and applications. Chem. Soc. Rev., 2016, 45(8), 2137-2211.
[2]
Uzun, L.; Turner, A.P. Molecularly-imprinted polymer sensors: Realising their potential. Biosens. Bioelectron., 2016, 76, 131-144.
[3]
Zaidi, S.A. Latest trends in molecular imprinted polymer based drug delivery systems. RSC Advances, 2016, 6(91), 88807-88819.
[4]
Neves, M.I.; Wechsler, M.E.; Gomes, M.E.; Reis, R.L.; Granja, P.L.; Peppas, N.A. Molecularly imprinted intelligent scaffolds for tissue engineering applications. Tissue Eng., Part B., 2017, 23(1), 27-43.
[5]
Wackerlig, J.; Lieberzeit, P.A. Molecularly imprinted polymer nanoparticles in chemical sensing–Synthesis, characterisation and application. Sens. Actuators B ., 2015, 207, 144-157.
[6]
Ye, L. Molecularly imprinted polymers with multi-functionality. Anal. Bioanal. Chem., 2016, 408(7), 1727-1733.
[7]
Mattiasson, B.; Ye, L. Molecularly imprinted polymers in biotechnology; Springer International Publishing: Switzerland, 2015.
[8]
Sarafraz-Yazdi, A.; Razavi, N. Application of molecularly-imprinted polymers in solid-phase microextraction techniques. TrAC. Trends Analyt. Chem., 2015, 73, 81-90.
[9]
Kong, X-J.; Zheng, C.; Lan, Y-H.; Chi, S-S.; Dong, Q.; Liu, H-L.; Peng, C.; Dong, L-Y.; Xu, L.; Wang, X-H. Synthesis of multirecognition magnetic molecularly imprinted polymer by atom transfer radical polymerization and its application in magnetic solid-phase extraction. Anal. Bioanal. Chem., 2018, 410(1), 247-257.
[10]
Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens. Bioelectron., 2018, 100, 56-70.
[11]
Abdollahi, E.; Khalafi-Nezhad, A.; Mohammadi, A.; Abdouss, M.; Salami-Kalajahi, M. Synthesis of new molecularly imprinted polymer via reversible addition fragmentation transfer polymerization as a drug delivery system. Polymer , 2018, 143, 245-257.
[12]
Pan, J.; Chen, W.; Ma, Y.; Pan, G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev., 2018, 47, 5574-5587.
[13]
Lofgreen, J.E.; Ozin, G.A. Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica. Chem. Soc. Rev., 2014, 43(3), 911-933.
[14]
Chen, L.; Xu, S.; Li, J. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem. Soc. Rev., 2011, 40(5), 2922-2942.
[15]
Ansari, S.; Karimi, M. Novel developments and trends of analytical methods for drug analysis in biological and environmental samples by molecularly imprinted polymers. TrAC. Trends Analyt. Chem., 2017, 89, 146-162.
[16]
Villar-Navarro, M.; Martín-Valero, M.J.; Fernández-Torres, R.M.; Callejón-Mochón, M.; Bello-López, M.Á. Easy, fast and environmental friendly method for the simultaneous extraction of the 16 EPA PAHs using magnetic molecular imprinted polymers (mag-MIPs). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1044, 63-69.
[17]
Beyazit, S.; Bui, B.T.S.; Haupt, K.; Gonzato, C. Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization. Prog. Polym. Sci., 2016, 62, 1-21.
[18]
Li, L.; Lin, Z.; Peng, A.; Zhong, H.; Chen, X.; Huang, Z. Biomimetic ELISA detection of malachite green based on magnetic molecularly imprinted polymers. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1035, 25-30.
[19]
Whitcombe, M.J.; Kirsch, N.; Nicholls, I.A. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J. Mol. Recognit., 2014, 27(6), 297-401.
[20]
Liu, J.; Song, H.; Liu, J.; Liu, Y.; Li, L.; Tang, H.; Li, Y. Preparation of molecularly imprinted polymer with double templates for rapid simultaneous determination of melamine and dicyandiamide in dairy products. Talanta, 2015, 134, 761-767.
[21]
Tang, W.; Li, G.; Row, K.H.; Zhu, T. Preparation of hybrid molecularly imprinted polymer with double-templates for rapid simultaneous purification of theophylline and chlorogenic acid in green tea. Talanta, 2016, 152, 1-8.
[22]
Bakas, I.; Oujji, N.B.; Istamboulié, G.; Piletsky, S.; Piletska, E.; Ait-Addi, E.; Ait-Ichou, I.; Noguer, T.; Rouillon, R. Molecularly imprinted polymer cartridges coupled to high performance liquid chromatography (HPLC-UV) for simple and rapid analysis of fenthion in olive oil. Talanta, 2014, 125, 313-318.
[23]
Lay, S.; Ni, X.; Yu, H.; Shen, S. State‐of‐the‐art applications of cyclodextrins as functional monomers in molecular imprinting techniques: a review. J. Sep. Sci., 2016, 39(12), 2321-2331.
[24]
Golker, K.; Olsson, G.D.; Nicholls, I.A. The influence of a methyl substituent on molecularly imprinted polymer morphology and recognition–Acrylic acid versus methacrylic acid. Eur. Polym. J., 2017, 92, 137-149.
[25]
Wackerlig, J.; Schirhagl, R. Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use. A review. Anal. Chem., 2015, 88(1), 250-261.
[26]
Algieri, C.; Drioli, E.; Guzzo, L.; Donato, L. Bio-mimetic sensors based on molecularly imprinted membranes. Sensors , 2014, 14(8), 13863-13912.
[27]
Zhang, Y.; Zhuang, X.; Gu, W.; Zhao, J. Synthesis of polyacrylonitrile nanoparticles at high monomer concentrations by AIBN-initiated semi-continuous emulsion polymerization method. Eur. Polym. J., 2015, 67, 57-65.
[28]
Cirillo, G.; Puoci, F.; Curcio, M.; Parisi, O.I.; Iemma, F.; Spizzirri, U.G.; Picci, N. Molecular imprinting polymerization by Fenton reaction. Colloid Polym. Sci., 2010, 288(6), 689-693.
[29]
Zuo, H.G.; Zhu, J.X.; Zhan, C.R.; Shi, L.; Xing, M.; Guo, P.; Ding, Y.; Yang, H. Preparation of malathion MIP-SPE and its application in environmental analysis. Environ. Monit. Assess., 2015, 187(7), 394.
[30]
Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers: present and future prospective. Int. J. Mol. Sci., 2011, 12(9), 5908-5945.
[31]
Ji, W.; Zhang, M.; Gao, Q.; Cui, L.; Chen, L.; Wang, X. Preparation of hydrophilic molecularly imprinted polymers via bulk polymerization combined with hydrolysis of ester groups for selective recognition of iridoid glycosides. Anal. Bioanal. Chem., 2016, 408(19), 5319-5328.
[32]
Nakamura, Y.; Matsunaga, H.; Haginaka, J. Preparation of molecularly imprinted polymers for strychnine by precipitation polymerization and multistep swelling and polymerization and their application for the selective extraction of strychnine from nux‐vomica extract powder. J. Sep. Sci., 2016, 39(8), 1542-1550.
[33]
Miura, C.; Matsunaga, H.; Haginaka, J. Molecularly imprinted polymer for caffeic acid by precipitation polymerization and its application to extraction of caffeic acid and chlorogenic acid from Eucommia ulmodies leaves. J. Pharm. Biomed. Anal., 2016, 127, 32-38.
[34]
Scorrano, S.; Mergola, L.; Di Bello, M.P.; Lazzoi, M.R.; Vasapollo, G.; Del Sole, R. Molecularly imprinted composite membranes for selective detection of 2-deoxyadenosine in urine samples. Int. J. Mol. Sci., 2015, 16(6), 13746-13759.
[35]
Pacheco, J.G.; Rebelo, P.; Freitas, M.; Nouws, H.P.; Delerue-Matos, C. Breast cancer biomarker (HER2-ECD) detection using a molecularly imprinted electrochemical sensor. Sens. Actuators B ., 2018, 273, 1008-1014.
[36]
Pacheco, J.G.; Silva, M.S.; Freitas, M.; Nouws, H.P.; Delerue-Matos, C. Molecularly imprinted electrochemical sensor for the point-of-care detection of a breast cancer biomarker (CA 15-3). Sens. Actuators B ., 2018, 256, 905-912.
[37]
Viswanathan, S.; Rani, C.; Ribeiro, S.; Delerue-Matos, C. Molecular imprinted nanoelectrodes for ultra sensitive detection of ovarian cancer marker. Biosens. Bioelectron., 2012, 33(1), 179-183.
[38]
Fourou, H.; Braiek, M.; Bonhomme, A.; Lagarde, F.; Zazoua, A.; Jaffrezic-Renault, N. Voltammetric sensor based on a double-layered molecularly imprinted polymer for testosterone. Anal. Lett., 2018, 51(3), 312-322.
[39]
Ertürk, G.; Özen, H.; Tümer, M.A.; Mattiasson, B.; Denizli, A. Microcontact imprinting based surface plasmon resonance (SPR) biosensor for real-time and ultrasensitive detection of prostate specific antigen (PSA) from clinical samples. Sens. Actuators B ., 2016, 224, 823-832.
[40]
Yang, B.; Gong, H.; Chen, C.; Chen, X.; Cai, C. A virus resonance light scattering sensor based on mussel-inspired molecularly imprinted polymers for high sensitive and high selective detection of Hepatitis A Virus. Biosens. Bioelectron., 2017, 87, 679-685.
[41]
He, K.; Chen, C.; Liang, C.; Liu, C.; Yang, B.; Chen, X.; Cai, C. Highly selective recognition and fluorescent detection of jev via virus-imprinted magnetic silicon microspheres. Sens. Actuators B., 2016, 233, 607-614.
[42]
Wangchareansak, T.; Thitithanyanont, A.; Chuakheaw, D.; Gleeson, M.P.; Lieberzeit, P.A.; Sangma, C. Influenza A virus molecularly imprinted polymers and their application in virus sub-type classification. J. Mater. Chem. B , 2013, 1(16), 2190-2197.
[43]
Altintas, Z.; Pocock, J.; Thompson, K-A.; Tothill, I.E. Comparative investigations for adenovirus recognition and quantification: Plastic or natural antibodies? Biosens. Bioelectron., 2015, 74, 996-1004.
[44]
Zhou, J.; Gan, N.; Li, T.; Hu, F.; Li, X.; Wang, L.; Zheng, L. A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes. Biosens. Bioelectron., 2014, 54, 199-206.
[45]
Zhang, C.; Bai, W.; Yang, Z. A novel photoelectrochemical sensor for bilirubin based on porous transparent TiO2 and molecularly imprinted polypyrrole. Electrochim. Acta, 2016, 187, 451-456.
[46]
Muhammad, P.; Tu, X.; Liu, J.; Wang, Y.; Liu, Z. Molecularly imprinted plasmonic substrates for specific and ultrasensitive immunoassay of trace glycoproteins in biological samples. ACS Appl. Mater. Interfaces, 2017, 9(13), 12082-12091.
[47]
Kumar, N.; Goyal, R.N. A melamine based molecularly imprinted sensor for the determination of 8-hydroxydeoxyguanosine in human urine. Talanta, 2017, 166, 215-222.
[48]
Cenci, L.; Andreetto, E.; Vestri, A.; Bovi, M.; Barozzi, M.; Iacob, E.; Busato, M.; Castagna, A.; Girelli, D.; Bossi, A.M. Surface plasmon resonance based on molecularly imprinted nanoparticles for the picomolar detection of the iron regulating hormone Hepcidin-25. J. Nanobiotechnology, 2015, 13(1), 51.
[49]
Liu, J.; Zhang, Y.; Jiang, M.; Tian, L.; Sun, S.; Zhao, N.; Zhao, F.; Li, Y. Electrochemical microfluidic chip based on molecular imprinting technique applied for therapeutic drug monitoring. Biosens. Bioelectron., 2017, 91, 714-720.
[50]
Safdarian, M.; Ramezani, Z.; Ghadiri, A.A. Facile synthesis of magnetic molecularly imprinted polymer: Perphenazine template and its application in urine and plasma analysis. J. Chromatogr. A, 2016, 1455, 28-36.
[51]
Pellizzoni, E.; Tommasini, M.; Marangon, E.; Rizzolio, F.; Saito, G.; Benedetti, F.; Toffoli, G.; Resmini, M.; Berti, F. Fluorescent molecularly imprinted nanogels for the detection of anticancer drugs in human plasma. Biosens. Bioelectron., 2016, 86, 913-919.
[52]
Battal, D.; Akgönüllü, S.; Yalcin, M.S.; Yavuz, H.; Denizli, A. Molecularly imprinted polymer based quartz crystal microbalance sensor system for sensitive and label-free detection of synthetic cannabinoids in urine. Biosens. Bioelectron., 2018, 111, 10-17.
[53]
Hong, C-C.; Lin, C-C.; Hong, C-L.; Lin, Z-X.; Chung, M-H.; Hsieh, P-W. Handheld analyzer with on-chip molecularly-imprinted biosensors for electrical detection of propofol in plasma samples. Biosens. Bioelectron., 2016, 86, 623-629.
[54]
Yang, Y.; Niu, H.; Zhang, H. Direct and highly selective drug optosensing in real, undiluted biological samples with quantum-dot-labeled hydrophilic molecularly imprinted polymer microparticles. ACS Appl. Mater. Interfaces, 2016, 8(24), 15741-15749.
[55]
Niu, H.; Yang, Y.; Zhang, H. Efficient one-pot synthesis of hydrophilic and fluorescent molecularly imprinted polymer nanoparticles for direct drug quantification in real biological samples. Biosens. Bioelectron., 2015, 74, 440-446.
[56]
Granados-Chinchilla, F.; Rodríguez, C. Tetracyclines in food and feedingstuffs: From regulation to analytical methods, bacterial resistance, and environmental and health implications. J. Anal. Methods Chem., 2017, 2017.
[57]
Yang, Y.; Wang, Z.; Niu, H.; Zhang, H. One-pot synthesis of quantum dot-labeled hydrophilic molecularly imprinted polymer nanoparticles for direct optosensing of folic acid in real, undiluted biological samples. Biosens. Bioelectron., 2016, 86, 580-587.
[58]
Piletsky, S.; Rabinowicz, S.; Yang, Z.; Zagar, C.; Piletska, E.V.; Guerreiro, A.; Piletsky, S.A. Development of molecularly imprinted polymers specific for blood antigens for application in antibody-free blood typing. Chem. Commun. , 2017, 53(11), 1793-1796.
[59]
Bai, J.; Zhang, Y.; Chen, L.; Yan, H.; Zhang, C.; Liu, L.; Xu, X. Synthesis and characterization of paclitaxel-imprinted microparticles for controlled release of an anticancer drug. Mater. Sci. Eng. C, 2018, 92, 338-348.
[60]
Hashemi-Moghaddam, H.; Zavareh, S.; Karimpour, S.; Madanchi, H. Evaluation of molecularly imprinted polymer based on HER2 epitope for targeted drug delivery in ovarian cancer mouse model. React. Funct. Polym., 2017, 121, 82-90.
[61]
Zhang, K.; Guan, X.; Qiu, Y.; Wang, D.; Zhang, X.; Zhang, H. A pH/glutathione double responsive drug delivery system using molecular imprint technique for drug loading. Appl. Surf. Sci., 2016, 389, 1208-1213.
[62]
Asadi, E.; Abdouss, M.; Leblanc, R.M.; Ezzati, N.; Wilson, J.N.; Azodi-Deilami, S. In vitro/in vivo study of novel anti-cancer, biodegradable cross-linked tannic acid for fabrication of 5-fluorouracil-targeting drug delivery nano-device based on a molecular imprinted polymer. RSC Advances, 2016, 6(43), 37308-37318.
[63]
Esfandyari-Manesh, M.; Darvishi, B.; Ishkuh, F.A.; Shahmoradi, E.; Mohammadi, A.; Javanbakht, M.; Dinarvand, R.; Atyabi, F. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: characterization and cellular cytotoxicity. Mater. Sci. Eng. C, 2016, 62, 626-633.
[64]
Madadian‐Bozorg, N.; Zahedi, P.; Shamsi, M.; Safarian, S. Poly (methacrylic acid)‐based molecularly imprinted polymer nanoparticles containing 5‐fluourouracil used in colon cancer therapy potentially. Polym. Adv. Technol., 2018, 29(8), 2401-2409.
[65]
Li, L.; Chen, L.; Zhang, H.; Yang, Y.; Liu, X.; Chen, Y. Temperature and magnetism bi-responsive molecularly imprinted polymers: preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil. Mater. Sci. Eng. C, 2016, 61, 158-168.
[66]
Tikoo, K.; Sane, M.S.; Gupta, C. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: potential role of tannins in cancer chemotherapy. Toxicol. Appl. Pharmacol., 2011, 251(3), 191-200.
[67]
Zhang, Y.; Deng, C.; Liu, S.; Wu, J.; Chen, Z.; Li, C.; Lu, W. Active targeting of tumors through conformational epitope imprinting. Angew. Chem., 2015, 127(17), 5246-5249.
[68]
Yin, D.; Li, X.; Ma, Y.; Liu, Z. Targeted cancer imaging and photothermal therapy via monosaccharide-imprinted gold nanorods. Chem. Commun. , 2017, 53(50), 6716-6719.
[69]
Mao, C.; Xie, X.; Liu, X.; Cui, Z.; Yang, X.; Yeung, K.; Pan, H.; Chu, P.K.; Wu, S. The controlled drug release by pH-sensitive molecularly imprinted nanospheres for enhanced antibacterial activity. Mater. Sci. Eng. C, 2017, 77, 84-91.
[70]
Ruela, A.L.M.; Figueiredo, E.C.; Pereira, G.R. Molecularly imprinted polymers as nicotine transdermal delivery systems. Chem. Eng. J., 2014, 248, 1-8.
[71]
Kunath, S.; Panagiotopoulou, M.; Maximilien, J.; Marchyk, N.; Sänger, J.; Haupt, K. Cell and tissue imaging with molecularly imprinted polymers as plastic antibody mimics. Adv. Healthc. Mater., 2015, 4(9), 1322-1326.
[72]
Panagiotopoulou, M.; Salinas, Y.; Beyazit, S.; Kunath, S.; Duma, L.; Prost, E.; Mayes, A.G.; Resmini, M.; Tse Sum Bui, B.; Haupt, K. Molecularly imprinted polymer coated quantum dots for multiplexed cell targeting and imaging. Angew. Chem. Int. Ed., 2016, 55(29), 8244-8248.
[73]
Yin, D.; Wang, S.; He, Y.; Liu, J.; Zhou, M.; Ouyang, J.; Liu, B.; Chen, H-Y.; Liu, Z. Surface-enhanced Raman scattering imaging of cancer cells and tissues via sialic acid-imprinted nanotags. Chem. Commun. , 2015, 51(100), 17696-17699.
[74]
Wang, S.; Yin, D.; Wang, W.; Shen, X.; Zhu, J-J.; Chen, H-Y.; Liu, Z. Targeting and imaging of cancer cells via monosaccharide-imprinted fluorescent nanoparticles. Sci. Rep., 2016, 6, 22757.
[75]
Liu, R.; Cui, Q.; Wang, C.; Wang, X.; Yang, Y.; Li, L. Preparation of sialic acid-imprinted fluorescent conjugated nanoparticles and their application for targeted cancer cell imaging. ACS Appl. Mater. Interfaces, 2017, 9(3), 3006-3015.
[76]
Wang, S.; Wen, Y.; Wang, Y.; Ma, Y.; Liu, Z. Pattern recognition of cells via multiplexed imaging with monosaccharide-imprinted quantum dots. Anal. Chem., 2017, 89(10), 5646-5652.
[77]
Hoshino, Y.; Koide, H.; Urakami, T.; Kanazawa, H.; Kodama, T.; Oku, N.; Shea, K.J. Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody. J. Am. Chem. Soc., 2010, 132(19), 6644-6645.
[78]
Li, N.; Liu, Y.; Liu, F.; Luo, M.; Wan, Y.; Huang, Z.; Liao, Q.; Mei, F.; Wang, Z.; Jin, A. Bio-inspired virus imprinted polymer for prevention of viral infections. Acta Biomater., 2017, 51, 175-183.
[79]
Gama, M.R.; Bottoli, C.B.G. Molecularly imprinted polymers for bioanalytical sample preparation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1043, 107-121.
[80]
Thompson, M.K.; Fridy, P.C.; Keegan, S.; Chait, B.T.; Fenyö, D.; Rout, M.P. Optimizing selection of large animals for antibody production by screening immune response to standard vaccines. J. Immunol. Methods, 2016, 430, 56-60.
[81]
Takeuchi, T.; Sunayama, H. Beyond natural antibodies–a new generation of synthetic antibodies created by post-imprinting modification of molecularly imprinted polymers. Chem. Commun. , 2018, 54(49), 6243-6251.
[82]
Ashley, J.; Shahbazi, M-A.; Kant, K.; Chidambara, V.A.; Wolff, A.; Bang, D.D.; Sun, Y. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosens. Bioelectron., 2017, 91, 606-615.
[83]
Zhang, Y.; Ding, J.; Gong, S. Preparation of molecularly imprinted polymers for vanillin via reversible addition‐fragmentation chain transfer suspension polymerization. J. Appl. Polym. Sci., 2013, 128(5), 2927-2932.
[84]
Chen, H.; Son, S.; Zhang, F.; Yan, J.; Li, Y.; Ding, H.; Ding, L. Rapid preparation of molecularly imprinted polymers by microwave-assisted emulsion polymerization for the extraction of florfenicol in milk. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 983, 32-38.
[85]
Xu, S.; Chen, L.; Li, J.; Qin, W.; Ma, J. Preparation of hollow porous molecularly imprinted polymers and their applications to solid-phase extraction of triazines in soil samples. J. Mater. Chem., 2011, 21(32), 12047-12053.
[86]
Liu, Y.; Hoshina, K.; Haginaka, J. Monodispersed, molecularly imprinted polymers for cinchonidine by precipitation polymerization. Talanta, 2010, 80(5), 1713-1718.
[87]
Liu, M.; Pi, J.; Wang, X.; Huang, R.; Du, Y.; Yu, X.; Tan, W.; Liu, F.; Shea, K.J. A sol-gel derived pH-responsive bovine serum albumin molecularly imprinted poly (ionic liquids) on the surface of multiwall carbon nanotubes. Anal. Chim. Acta, 2016, 932, 29-40.
[88]
Tan, L.H.; Sykes, P.H.; Alkaisi, M.M.; Evans, J.J. The characteristics of Ishikawa endometrial cancer cells are modified by substrate topography with cell-like features and the polymer surface. Int. J. Nanomedicine, 2015, 10, 4883.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy