[1]
Bowles, J.; Schepers, G.; Koopman, P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev. Biol., 2000, 227, 239-255.
[2]
Harley, V.R.; Lovell-badge, R.; Goodfellow, P.N. Definition of a consensus DNA binding site for SRY. Nucleic Acids Res., 1994, 22, 1500-1501.
[3]
Lovell-Badge, R. The early history of the sox genes. Int. J. Biochem. Cell Biol., 2010, 42, 378-380.
[4]
Hawkins, K.; Joy, S.; McKay, T. Cell signalling pathways underlying induced pluripotent stem cell reprogramming. World J. Stem Cells, 2014, 6, 620-628.
[5]
Graham, V.; Khudyakov, J.; Ellis, P.; Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron, 2003, 39, 749-765.
[6]
Basu-Roy, U.; Ambrosetti, D.; Favaro, R.; Nicolis, S.K.; Mansukhani, A.; Basilico, C. The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death Differ., 2010, 17, 1345-1353.
[7]
Zhang, S. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem Cells, 2014, 6, 305.
[8]
Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131, 861-872.
[9]
Ichida, J.K.; Blanchard, J.; Lam, K.; Son, E.Y.; Chung, J.E.; Egli, D.; Loh, K.M.; Carter, A.C.; Di Giorgio, F.P.; Koszka, K.; Huangfu, D.; Akutsu, H.; Liu, D.R.; Rubin, L.L.; Eggan, K. A small-molecule inhibitor of Tgf-β signaling replaces Sox2 in reprogramming by inducing nanog. Cell Stem Cell, 2009, 5, 491-503.
[10]
Zoumaro-Djayoon, A.D.; Ding, V.; Foong, L.Y.; Choo, A.; Heck, A.J.R.; Muñoz, J. Investigating the role of FGF-2 in stem cell maintenance by global phosphoproteomics profiling. Proteomics, 2011, 11, 3962-3971.
[11]
Lundberg, I.V.; Edin, S.; Eklöf, V.; Öberg, Å.; Palmqvist, R.; Wikberg, M.L. SOX2 expression is associated with a cancer stem cell state and down-regulation of CDX2 in colorectal cancer. BMC Cancer, 2016, 16, 471.
[12]
Justilien, V.; Walsh, M.P.; Ali, S.A.; Thompson, E.A.; Murray, N.R.; Fields, A.P. The PRKCI and SOX2 oncogenes are coamplified and cooperate to activate hedgehog signaling in lung squamous cell carcinoma. Cancer Cell, 2014, 25, 139-151.
[13]
Hussenet, T.; Dali, S.; Exinger, J.; Monga, B.; Jost, B.; Dembelé, D.; Martinet, N.; Thibault, C.; Huelsken, J.; Brambilla, E.; Du Manoir, S. SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLoS One, 2010, 5, e8960.
[14]
McCaughan, F.; Pole, J.C.M.; Bankier, A.T.; Konfortov, B.A.; Carroll, B.; Falzon, M.; Rabbitts, T.H.; George, P.J.; Dear, P.H.; Rabbitts, P.H. Progressive 3q amplification consistently targets SOX2 in preinvasive squamous lung cancer. Am. J. Respir. Crit. Care Med., 2010, 182, 83-91.
[15]
Wilbertz, T.; Wagner, P.; Petersen, K.; Stiedl, A-C.; Scheble, V.J.; Maier, S.; Reischl, M.; Mikut, R.; Altorki, N.K.; Moch, H.; Fend, F.; Staebler, A.; Bass, A.J.; Meyerson, M.; Rubin, M. a; Soltermann, A.; Lengerke, C.; Perner, S. SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer. Mod. Pathol., 2011, 24, 944-953.
[16]
Saigusa, S.; Tanaka, K.; Toiyama, Y.; Yokoe, T.; Okugawa, Y.; Ioue, Y.; Miki, C.; Kusunoki, M. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann. Surg. Oncol., 2009, 16, 3488-3498.
[17]
Li, X.; Wang, J.; Xu, Z.; Ahmad, A.; Li, E.; Wang, Y.; Qin, S.; Wang, Q. Expression of Sox2 and Oct4 and their clinical significance in human non-small-cell lung cancer. Int. J. Mol. Sci., 2012, 13, 7663-7675.
[18]
Lu, Y.; Futtner, C.; Rock, J.R.; Xu, X.; Whitworth, W.; Hogan, B.L.M.; Onaitis, M.W. Evidence that SOX2 overexpression is oncogenic in the lung. PLoS One, 2010, 5, e11022.
[19]
Xu, N.; Papagiannakopoulos, T.; Pan, G.; Thomson, J.A.; Kosik, K.S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 2009, 137, 647-658.
[20]
Peng, C.; Li, N.; Ng, Y-K.; Zhang, J.; Meier, F.; Theis, F.J.; Merkenschlager, M.; Chen, W.; Wurst, W.; Prakash, N. A unilateral negative feedback loop between miR-200 microRNAs and Sox2/E2F3 controls neural progenitor cell-cycle exit and differentiation. J. Neurosci., 2012, 32, 13292-13308.
[21]
Jeong, C.H.; Cho, Y.Y.; Kim, M.O.; Kim, S.H.; Cho, E.J.; Lee, S.Y.; Jeon, Y.J.; Lee, K.Y.; Yao, K.; Keum, Y.S.; Bode, A.M.; Dong, Z. Phosphorylation of Sox2 cooperates in reprogramming to pluripotent stem cells. Stem Cells, 2010, 28, 2141-2150.
[22]
Van Hoof, D.; Muñoz, J.; Braam, S.R.; Pinkse, M.W.H.; Linding, R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J. Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell, 2009, 5, 214-226.
[23]
Tsuruzoe, S.; Ishihara, K.; Uchimura, Y.; Watanabe, S.; Sekita, Y.; Aoto, T.; Saitoh, H.; Yuasa, Y.; Niwa, H.; Kawasuji, M.; Baba, H.; Nakao, M. Inhibition of DNA binding of Sox2 by the SUMO conjugation. Biochem. Biophys. Res. Commun., 2006, 351, 920-926.
[24]
Baltus, G.A.; Kowalski, M.P.; Zhai, H.; Tutter, A.V.; Quinn, D.; Wall, D.; Kadam, S. Acetylation of Sox2 induces its nuclear export in embryonic stem cells. Stem Cells, 2009, 27, 2175-2184.
[25]
Zhao, H.; Zhang, Y.J.; Dai, H.; Zhang, Y.; Shen, Y.F. CARM1 mediates modulation of Sox2. PLoS One, 2011, 6, e27026.
[26]
Jang, H.; Kim, T.W.; Yoon, S.; Choi, S.Y.; Kang, T.W.; Kim, S.Y.; Kwon, Y.W.; Cho, E.J.; Youn, H.D. O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell, 2012, 11, 62-74.
[27]
Myers, S.A.; Peddada, S.; Chatterjee, N.; Friedrich, T.; Tomoda, K.; Krings, G.; Thomas, S.; Maynard, J.; Broeker, M.; Thomson, M.; Pollard, K.; Yamanaka, S.; Burlingame, A.L.; Panning, B. SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells. eLife, 2016, 5, e10647.
[28]
Fang, L.; Zhang, L.; Wei, W.; Jin, X.; Wang, P.; Tong, Y.; Li, J.; Du, J.X.; Wong, J. A Methylation-phosphorylation switch determines SOX2 stability and function in ESC maintenance or differentiation. Mol. Cell, 2014, 55, 537-551.
[29]
Kamachi, Y.; Uchikawa, M.; Collignon, J.; Lovell-Badge, R.; Kondoh, H. Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development, 1998, 125, 2521-2532.
[30]
Reményi, A.; Lins, K.; Nissen, L.J.; Reinbold, R.; Schöler, H.R.; Wilmanns, M. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev., 2003, 17, 2048-2059.
[31]
Werner, M.H.; Huth, J.R.; Gronenborn, A.M.; Marius Clore, G. Molecular basis of human 46X, Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell, 1995, 81, 705-714.
[32]
Williams, D.C.; Cai, M.; Clore, G.M. Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42-kDa Oct1·Sox2· Hoxb1-DNA ternary transcription factor complex. J. Biol. Chem., 2004, 279, 1449-1457.
[33]
Kamachi, Y.; Uchikawa, M.; Kondoh, H. Pairing SOX off: With partners in the regulation of embryonic development. Trends Genet., 2000, 16, 182-187.
[34]
Seo, E.; Basu-Roy, U.; Zavadil, J.; Basilico, C.; Mansukhani, A. Distinct functions of Sox2 control self-renewal and differentiation in the osteoblast lineage. Mol. Cell. Biol., 2011, 31, 4593-4608.
[35]
Cox, J.L.; Mallanna, S.K.; Luo, X.; Rizzino, A. Sox2 uses multiple domains to associate with proteins present in Sox2-protein complexes. PLoS One, 2010, 5, e15486.
[36]
Liu, Y.R.; Laghari, Z.A.; Novoa, C.A.; Hughes, J.; Webster, J.R.M.; Goodwin, P.E.; Wheatley, S.P.; Scotting, P.J. Sox2 acts as a transcriptional repressor in neural stem cells. BMC Neurosci., 2014, 15, 95.
[37]
Kamachi, Y.; Uchikawa, M.; Tanouchi, A.; Sekido, R.; Kondoh, H. Pax6 and SOX2 form a Co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev., 2001, 15, 1272-1286.
[38]
Yuan, H.; Corbi, N.; Basilico, C.; Dailey, L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev., 1995, 9, 2635-2645.
[39]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126, 663-676.
[40]
Engelen, E.; Akinci, U.; Bryne, J.C.; Hou, J.; Gontan, C.; Moen, M.; Szumska, D.; Kockx, C.; Van Ijcken, W.; Dekkers, D.H.W.; Demmers, J.; Rijkers, E.J.; Bhattacharya, S.; Philipsen, S.; Pevny, L.H.; Grosveld, F.G.; Rottier, R.J.; Lenhard, B.; Poot, R.A. Sox2 cooperates with Chd7 to regulate genes that are mutated in human syndromes. Nat. Genet., 2011, 43, 607-611.
[41]
Ahmed, M.; Wong, E.Y.M.; Sun, J.; Xu, J.; Wang, F.; Xu, P.X. Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating atoh1 expression in cooperation with Sox2. Dev. Cell, 2012, 22, 377-390.
[42]
Neves, J.; Uchikawa, M.; Bigas, A.; Giraldez, F. The prosensory function of Sox2 in the chicken inner ear relies on the direct regulation of Aoh1. PLoS One, 2012, 7, e30871.
[43]
Aksoy, I.; Jauch, R.; Chen, J.; Dyla, M.; Divakar, U.; Bogu, G.K.; Teo, R.; Leng Ng, C.K.; Herath, W.; Lili, S.; Hutchins, A.P.; Robson, P.; Kolatkar, P.R.; Stanton, L.W. Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO J., 2013, 32, 938-953.
[44]
Jauch, R.; Aksoy, I.; Hutchins, A.P.; Ng, C.K.L.; Tian, X.F.; Chen, J.; Palasingam, P.; Robson, P.; Stanton, L.W.; Kolatkar, P.R. Conversion of Sox17 into a pluripotency reprogramming factor by reengineering its association with Oct4 on DNA. Stem Cells, 2011, 29, 940-951.
[45]
Mallanna, S.K.; Ormsbee, B.D.; Iacovino, M.; Gilmore, J.M.; Cox, J.L.; Kyba, M.; Washburn, M.P.; Rizzino, A. Proteomic analysis of Sox2-associated proteins during early stages of mouse embryonic stem cell differentiation identifies Sox21 as a novel regulator of stem cell fate. Stem Cells, 2010, 28, 1715-1727.
[46]
Huttlin, E.L.; Ting, L.; Bruckner, R.J.; Gebreab, F.; Gygi, M.P.; Szpyt, J.; Tam, S.; Zarraga, G.; Colby, G.; Baltier, K.; Dong, R.; Guarani, V.; Vaites, L.P.; Ordureau, A.; Rad, R.; Erickson, B.K.; Wühr, M.; Chick, J.; Zhai, B.; Kolippakkam, D.; Mintseris, J.; Obar, R.A.; Harris, T.; Artavanis-Tsakonas, S.; Sowa, M.E.; De Camilli, P.; Paulo, J.A.; Harper, J.W.; Gygi, S.P. The BioPlex network: A systematic exploration of the human interactome. Cell, 2015, 162, 425-440.
[47]
Huttlin, E.L.; Bruckner, R.J.; Paulo, J.A.; Cannon, J.R.; Ting, L.; Baltier, K.; Colby, G.; Gebreab, F.; Gygi, M.P.; Parzen, H.; Szpyt, J.; Tam, S.; Zarraga, G.; Pontano-Vaites, L.; Swarup, S.; White, A.E.; Schweppe, D.K.; Rad, R.; Erickson, B.K.; Obar, R.A.; Guruharsha, K.G.; Li, K.; Artavanis-Tsakonas, S.; Gygi, S.P.; Wade Harper, J. Architecture of the human interactome defines protein communities and disease networks. Nature, 2017, 545, 505-509.
[48]
Shimozaki, K.; Zhang, C.L.; Suh, H.; Denli, A.M.; Evans, R.M.; Gage, F.H. SRY-Box-containing gene 2 regulation of nuclear receptor tailless (Tlx) transcription in adult neural stem cells. J. Biol. Chem., 2012, 287, 5969-5978.
[49]
Fong, Y.W.; Inouye, C.; Yamaguchi, T.; Cattoglio, C.; Grubisic, I.; Tjian, R. A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells. Cell, 2011, 147, 120-131.
[50]
Gao, Z.; Cox, J.L.; Gilmore, J.M.; Ormsbee, B.D.; Mallanna, S.K.; Washburn, M.P.; Rizzino, A. Determination of protein interactome of transcription factor Sox2 in embryonic stem cells engineered for inducible expression of four reprogramming factors. J. Biol. Chem., 2012, 287, 11384-11397.
[51]
Vescovi, A.L.; Galli, R.; Reynolds, B.A. Brain tumor stem cells. Nat. Rev. Cancer, 2006, 6, 425-436.
[52]
Singh, S.K.; Clarke, I.D.; Terasaki, M.; Bonn, V.E.; Hawkins, C.; Squire, J.; Dirks, P.B. Identification of a cancer stem cell in human brain tumors. Cancer Res., 2003, 63, 5821-5828.
[53]
Biddle, A.; Liang, X.; Gammon, L.; Fazil, B.; Harper, L.J.; Emich, H.; Costea, D.E.; Mackenzie, I.C. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res., 2011, 71, 5317-5326.
[54]
Da Silva-Diz, V.; Simon-Extremera, P.; Bernat-Peguera, A.; De Sostoa, J.; Urpí, M.; Penín, R.M.; Sidelnikova, D.P.; Bermejo, O.; Vinals, J.M.; Rodolosse, A.; Gonzalez-Suarez, E.; Moruno, A.G.; Pujana, M.A.; Esteller, M.; Villanueva, A.; Vinals, F.; Munoz, P. Cancer stem-like cells act via distinct signaling pathways in promoting late stages of malignant progression. Cancer Res., 2016, 76, 1245-1259.
[55]
Zhang, Q.; Shi, S.; Yen, Y.; Brown, J.; Ta, J.Q.; Le, A.D. A subpopulation of CD133(+) cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett., 2010, 289, 151-160.
[56]
Favaro, R.; Appolloni, I.; Pellegatta, S.; Sanga, A.B.; Pagella, P.; Gambini, E.; Pisati, F.; Ottolenghi, S.; Foti, M.; Finocchiaro, G.; Malatesta, P.; Nicolis, S.K. Sox2 is required to maintain cancer stem cells in a mouse model of high-grade oligodendroglioma. Cancer Res., 2014, 74, 1833-1844.
[57]
Li, X.; Xu, Y.; Chen, Y.; Chen, S.; Jia, X.; Sun, T.; Liu, Y.; Li, X.; Xiang, R.; Li, N. SOX2 promotes tumor metastasis by stimulating epithelial-to-mesenchymal transition via regulation of WNT/β-catenin signal network. Cancer Lett., 2013, 336, 379-389.
[58]
Liu, X.; Qiao, B.; Zhao, T.; Hu, F.; Lam, A.K.; Tao, Q. Sox2 promotes tumor aggressiveness and epithelial‑mesenchymal transition in tongue squamous cell carcinoma. Int. J. Mol. Med., 2018, 42, 1418-1426.
[59]
Cimadamore, F.; Amador-Arjona, A.; Chen, C.; Huang, C.T.; Terskikh, A.V. SOX2-LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors. Proc. Natl. Acad. Sci. USA, 2013, 110, E3017-E3026.
[60]
Tsuji, T.; Ibaragi, S.; Hu, G.F. Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res., 2009, 69, 7135-7139.
[61]
Thiery, J.P.; Acloque, H.; Huang, R.Y.J.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139, 871-890.
[62]
Polyak, K.; Weinberg, R.A. Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat. Rev. Cancer, 2009, 9, 265-273.
[63]
Zha, L.; Zhang, J.; Tang, W.; Zhang, N.; He, M.; Guo, Y.; Wang, Z. HMGA2 elicits EMT by activating the Wnt/β-catenin pathway in gastric cancer. Dig. Dis. Sci., 2013, 58, 724-733.
[64]
Wu, Y.; Ginther, C.; Kim, J.; Mosher, N.; Chung, S.; Slamon, D.; Vadgama, J.V. Expression of Wnt3 activates Wnt/ -catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol. Cancer Res., 2012, 10, 1597-1606.
[65]
Chen, Y.; Shi, L.; Zhang, L.; Li, R.; Liang, J.; Yu, W.; Sun, L.; Yang, X.; Wang, Y.; Zhang, Y.; Shang, Y. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J. Biol. Chem., 2008, 283, 17969-17978.
[66]
Kregel, S.; Kiriluk, K.J.; Rosen, A.M.; Cai, Y.; Reyes, E.E.; Otto, K.B.; Tom, W.; Paner, G.P.; Szmulewitz, R.Z.; Vander Griend, D.J. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer. PLoS One, 2013, 8, e53701.
[67]
Fang, X.; Yu, W.; Li, L.; Shao, J.; Zhao, N.; Chen, Q.; Ye, Z.; Lin, S.C.; Zheng, S.; Lin, B. ChIP-Seq and functional analysis of the SOX2 gene in colorectal cancers. Omi. A. J. Integr. Biol., 2010, 14, 369-384.
[68]
Singh, S.; Trevino, J.; Bora-Singhal, N.; Coppola, D.; Haura, E.; Altiok, S.; Chellappan, S.P. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol. Cancer, 2012, 11, 73.
[69]
Lin, F.; Lin, P.; Zhao, D.; Chen, Y.; Xiao, L.; Qin, W.; Li, D.; Chen, H.; Zhao, B.; Zou, H.; Zheng, X.; Yu, X. Sox2 targets cyclinE, p27 and survivin to regulate androgen-independent human prostate cancer cell proliferation and apoptosis. Cell Prolif., 2012, 45, 207-216.
[70]
Takanaga, H.; Tsuchida-Straeten, N.; Nishide, K.; Watanabe, A.; Aburatani, H.; Kondo, T. Gli2 is a novel regulator of Sox2 expression in telencephalic neuroepithelial cells. Stem Cells, 2009, 27, 165-174.
[71]
Gangemi, R.M.R.; Griffero, F.; Marubbi, D.; Perera, M.; Capra, M.C.; Malatesta, P.; Ravetti, G.L.; Zona, G.L.; Daga, A.; Corte, G. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells, 2009, 27, 40-48.
[72]
Clement, V.; Sanchez, P.; de Tribolet, N.; Radovanovic, I.; Ruiz i Altaba, A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol., 2007, 17, 165-172.
[73]
Rousso, S.Z.; Schyr, R.B.H.; Gur, M.; Zouela, N.; Kot-Leibovich, H.; Shabtai, Y.; Koutsi-Urshanski, N.; Baldessari, D.; Pillemer, G.; Niehrs, C.; Fainsod, A. Negative autoregulation of Oct3/4 through Cdx1 promotes the onset of gastrulation. Dev. Dyn., 2011, 240, 796-807.
[74]
Béland, M.; Pilon, N.; Houle, M.; Oh, K.; Sylvestre, J-R.; Prinos, P.; Lohnes, D. Cdx1 autoregulation is governed by a novel Cdx1-LEF1 transcription complex. Mol. Cell. Biol., 2004, 24, 5028-5038.
[75]
Fang, X.; Yoon, J.G.; Li, L.; Yu, W.; Shao, J.; Hua, D.; Zheng, S.; Hood, L.; Goodlett, D.R.; Foltz, G.; Lin, B. The SOX2 response program in glioblastoma multiforme: An integrated ChIP-Seq, expression microarray, and microRNA analysis. BMC Genomics, 2011, 12, 11.
[76]
Cox, J.L.; Wilder, P.J.; Gilmore, J.M.; Wuebben, E.L.; Washburn, M.P.; Rizzino, A. The SOX2-interactome in brain cancer cells identifies the requirement of MSI2 and USP9X for the growth of brain tumor cells. PLoS One, 2013, 8, e62857.
[77]
Alonso, M.M.; Diez-Valle, R.; Manterola, L.; Rubio, A.; Liu, D.; Cortes-Santiago, N.; Urquiza, L.; Jauregi, P.; de Munain, A.L.; Sampron, N.; Aramburu, A.; Tejada-Solís, S.; Vicente, C.; Odero, M.D.; Bandrés, E.; García-Foncillas, J.; Idoate, M.A.; Lang, F.F.; Fueyo, J.; Gomez-Manzano, C. Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PLoS One, 2011, 6, e26740.
[78]
Bass, A.J.; Watanabe, H.; Mermel, C.H.; Yu, S.; Perner, S.; Verhaak, R.G.; Kim, S.Y.; Wardwell, L.; Tamayo, P.; Gat-Viks, I.; Ramos, A.H.; Woo, M.S.; Weir, B.A.; Getz, G.; Beroukhim, R.; O’Kelly, M.; Dutt, A.; Rozenblatt-Rosen, O.; Dziunycz, P.; Komisarof, J.; Chirieac, L.R.; Lafargue, C.J.; Scheble, V.; Wilbertz, T.; Ma, C.; Rao, S.; Nakagawa, H.; Stairs, D.B.; Lin, L.; Giordano, T.J.; Wagner, P.; Minna, J.D.; Gazdar, A.F.; Zhu, C.Q.; Brose, M.S.; Cecconello, I.; Ribeiro, U.; Marie, S.K.; Dahl, O.; Shivdasani, R.A.; Tsao, M.S.; Rubin, M.A.; Wong, K.K.; Regev, A.; Hahn, W.C.; Beer, D.G.; Rustgi, A.K.; Meyerson, M. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat. Genet., 2009, 41, 1238-1242.
[79]
Xiang, R.; Liao, D.; Cheng, T.; Zhou, H.; Shi, Q.; Chuang, T.S.; Markowitz, D.; Reisfeld, R.A.; Luo, Y. Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer. Br. J. Cancer, 2011, 104, 1410-1417.
[80]
Chen, S.; Xu, Y.; Chen, Y.; Li, X.; Mou, W.; Wang, L.; Liu, Y.; Reisfeld, R.A.; Xiang, R.; Lv, D.; Li, N. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells. PLoS One, 2012, 7, e36326.
[81]
Rudin, C.M.; Durinck, S.; Stawiski, E.W.; Poirier, J.T.; Modrusan, Z.; Shames, D.S.; Bergbower, E.A.; Guan, Y.; Shin, J.; Guillory, J.; Rivers, C.S.; Foo, C.K.; Bhatt, D.; Stinson, J.; Gnad, F.; Haverty, P.M.; Gentleman, R.; Chaudhuri, S.; Janakiraman, V.; Jaiswal, B.S.; Parikh, C.; Yuan, W.; Zhang, Z.; Koeppen, H.; Wu, T.D.; Stern, H.M.; Yauch, R.L.; Huffman, K.E.; Paskulin, D.D.; Illei, P.B.; Varella-Garcia, M.; Gazdar, A.F.; De Sauvage, F.J.; Bourgon, R.; Minna, J.D.; Brock, M.V.; Seshagiri, S. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat. Genet., 2012, 44, 1111-1116.
[82]
Yokota, E.; Yamatsuji, T.; Takaoka, M.; Haisa, M.; Takigawa, N.; Miyake, N.; Ikeda, T.; Mori, T.; Ohno, S.; Sera, T.; Fukazawa, T.; Naomoto, Y. Targeted silencing of SOX2 by an artificial transcription factor showed antitumor effect in lung and esophageal squamous cell carcinoma. Oncotarget, 2017, 8, 103063-103076.
[83]
Zheng, J.; Xu, L.; Pan, Y.; Yu, S.; Wang, H.; Kennedy, D.; Zhang, Y. Sox2 Modulates motility and enhances progression of colorectal cancer via the Rho-ROCK signaling pathway. Oncotarget, 2017, 8, 98635-98645.
[84]
Otsubo, T.; Akiyama, Y.; Hashimoto, Y.; Shimada, S.; Goto, K.; Yuasa, Y. MicroRNA-126 inhibits Sox2 expression and contributes to gastric carcinogenesis. PLoS One, 2011, 6, e16617.
[85]
Otsubo, T.; Akiyama, Y.; Yanagihara, K.; Yuasa, Y. SOX2 Is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis. Br. J. Cancer, 2008, 98, 824-831.
[86]
Uozaki, H.; Barua, R.R.; Minhua, S.; Ushiku, T.; Hino, R.; Shinozaki, A.; Sakatani, T.; Fukayama, M. Transcriptional factor typing with SOX2, HNF4aP1, and CDX2 closely relates to tumor invasion and epstein-barr virus status in gastric cancer. Int. J. Clin. Exp. Pathol., 2011, 4, 230-240.
[87]
Tsukamoto, T.; Inada, K.; Tanaka, H.; Mizoshita, T.; Mihara, M.; Ushijima, T.; Yamamura, Y.; Nakamura, S.; Tatematsu, M. Down-regulation of a gastric transcription factor, Sox2, and ectopic expression of intestinal homeobox genes, Cdx1 and Cdx2: Inverse correlation during progression from gastric/intestinal-mixed to complete intestinal metaplasia. J. Cancer Res. Clin. Oncol., 2004, 130, 135-145.
[88]
Neumann, J.; Bahr, F.; Horst, D.; Kriegl, L.; Engel, J.; Luque, R.M.; Gerhard, M.; Kirchner, T.; Jung, A. SOX2 expression correlates with lymph-node metastases and distant spread in right-sided colon cancer. BMC Cancer, 2011, 11, 518.
[89]
Jia, X.; Li, X.; Xu, Y.; Zhang, S.; Mou, W.; Liu, Y.; Liu, Y.; Lv, D.; Liu, C.H.; Tan, X.; Xiang, R.; Li, N. SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J. Mol. Cell Biol., 2011, 3, 230-238.
[90]
Oppel, F.; Müller, N.; Schackert, G.; Hendruschk, S.; Martin, D.; Geiger, K.D.; Temme, A. SOX2-RNAi attenuates S-phase entry and induces RhoA-dependent switch to protease-independent amoeboid migration in human glioma cells. Mol. Cancer, 2011, 10, 137.
[91]
Stolzenburg, S.; Rots, M.G.; Beltran, A.S.; Rivenbark, A.G.; Yuan, X.; Qian, H.; Strahl, B.D.; Blancafort, P. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res., 2012, 40, 6725-6740.
[92]
Lee, S.H.; Oh, S.Y.; Do, S.I.; Lee, H.J.; Kang, H.J.; Rho, Y.S.; Bae, W.J.; Lim, Y.C. SOX2 regulates self-renewal and tumorigenicity of stem-like cells of head and neck squamous cell carcinoma. Br. J. Cancer, 2014, 111, 2122-2130.
[93]
Yang, S.; Zheng, J.; Xiao, X.; Xu, T.; Tang, W.; Zhu, H.; Yang, L.; Zheng, S.; Dong, K.; Zhou, G.; Wang, Y. SOX2 promotes tumorigenicity and inhibits the differentiation of I-type neuroblastoma cells. Int. J. Oncol., 2015, 46, 317-323.
[94]
Jiang, X.D.; Luo, G.; Wang, X.H.; Chen, L.L.; Ke, X.; Li, Y. Expression of Oct4 and Sox2 and their clinical significance in tongue squamous cell carcinoma. Zhonghua Kou Qiang Yi Xue Za Zhi, 2017, 52, 27-33.
[95]
Zhu, F.; Qian, W.; Zhang, H.; Liang, Y.; Wu, M.; Zhang, Y.; Zhang, X.; Gao, Q.; Li, Y. SOX2 is a marker for stem-like tumor cells in bladder cancer. Stem Cell Reports, 2017, 9, 429-437.
[96]
Li, Q.; Liu, F.; Zhang, Y.; Fu, L.; Wang, C.; Chen, X.; Guan, S.; Meng, X. Association of SOX2&NestinDNA amplification and protein expression with clinical features and overall survival in non-small cell lung cancer: A systematic review and meta-analysis. Oncotarget, 2016, 7, 34520-34531.
[97]
Oliviero, G.; Munawar, N.; Watson, A.; Streubel, G.; Manning, G.; Bardwell, V.; Bracken, A.P.; Cagney, G. The variant polycomb repressor complex 1 component PCGF1 interacts with a pluripotency sub-network that includes DPPA4, a regulator of embryogenesis. Sci. Rep., 2015, 5, 18388.
[98]
Xu, C.; Xie, D.; Yu, S.C.; Yang, X.J.; He, L.R.; Yang, J.; Ping, Y.F.; Wang, B.; Yang, L.; Xu, S.L.; Cui, W.; Wang, Q.L.; Fu, W.J.; Liu, Q.; Qian, C.; Cui, Y.H.; Rich, J.N.; Kung, H.F.; Zhang, X.; Bian, X.W. β-catenin/POU5F1/SOX2 transcription factor complex mediates IGF-I receptor signaling and predicts poor prognosis in lung adenocarcinoma. Cancer Res., 2013, 73, 3181-3189.
[99]
Foshay, K.M.; Gallicano, G.I. Regulation of Sox2 by STAT3 initiates commitment to the neural precursor cell fate. Stem Cells Dev., 2008, 17, 269-278.
[100]
Tanimura, N.; Saito, M.; Ebisuya, M.; Nishida, E.; Ishikawa, F. Stemness-related factor Sall4 interacts with transcription factors Oct-3/4 and Sox2 and occupies Oct-Sox elements in mouse embryonic stem cells. J. Biol. Chem., 2013, 288, 5027-5038.
[101]
Wei, Z.; Yang, Y.; Zhang, P.; Andrianakos, R.; Hasegawa, K.; Lyu, J.; Chen, X.; Bai, G.; Liu, C.; Pera, M.; Lu, W. Klf4 interacts directly with Oct4 and Sox2 to promote reprogramming. Stem Cells, 2009, 27, 2969-2978.
[102]
Schmidt, R.; Plath, K. The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation. Genome Biol., 2012, 13, 251.
[103]
Aota, S.I.; Nakajima, N.; Sakamoto, R.; Watanabe, S.; Ibaraki, N.; Okazaki, K. Pax6 autoregulation mediated by direct interaction of Pax6 protein with the head surface ectoderm-specific enhancer of the mouse Pax6 gene. Dev. Biol., 2003, 257, 1-13.
[104]
Ravasi, T.; Suzuki, H.; Cannistraci, C.V.; Katayama, S.; Bajic, V.B.; Tan, K.; Akalin, A.; Schmeier, S.; Kanamori-Katayama, M.; Bertin, N.; Carninci, P.; Daub, C.O.; Forrest, A.R.R.; Gough, J.; Grimmond, S.; Han, J.H.; Hashimoto, T.; Hide, W.; Hofmann, O.; Kawaji, H.; Kubosaki, A.; Lassmann, T.; van Nimwegen, E.; Ogawa, C.; Teasdale, R.D.; Tegnér, J.; Lenhard, B.; Teichmann, S.A.; Arakawa, T.; Ninomiya, N.; Murakami, K.; Tagami, M.; Fukuda, S.; Imamura, K.; Kai, C.; Ishihara, R.; Kitazume, Y.; Kawai, J.; Hume, D.A.; Ideker, T.; Hayashizaki, Y. An atlas of combinatorial transcriptional regulation in mouse and man. Cell, 2010, 140, 744-752.
[105]
Fukushima, H.; Ogura, K.; Wan, L.; Lu, Y.; Li, V.; Gao, D.; Liu, P.; Lau, A.W.; Wu, T.; Kirschner, M.W.; Inuzuka, H.; Wei, W. SCF-mediated cdh1 degradation defines a negative feedback system that coordinates cell-cycle progression. Cell Reports, 2013, 4, 803-816.
[106]
Trowe, M.O.; Zhao, L.; Weiss, A.C.; Christoffels, V.; Epstein, D.J.; Kispert, A. Inhibition of Sox2-dependent activation of shh in the ventral diencephalon by Tbx3 is required for formation of the neurohypophysis. Development, 2013, 140, 2299-2309.