Review Article

肥胖和心脏保护

卷 27, 期 2, 2020

页: [230 - 239] 页: 10

弟呕挨: 10.2174/0929867326666190325094453

价格: $65

摘要

肥胖症和糖尿病的发病率在全球范围内迅速增加。肥胖与代谢综合征是密切相关的,是不同心血管危险因素的基础,包括高血压和诱发缺血性心脏病的炎症过程,是导致心力衰竭最常见的原因。简要介绍了近年来在缺血/再灌注损伤机制和心脏保护机制方面的研究进展。对心脏保护的抵抗可能与肥胖的严重程度有关。观察到心力衰竭肥胖患者的临床状况优于瘦性心力衰竭患者,称为肥胖悖论。肥胖的心力衰竭患者似乎更年轻,这使得年龄在某些研究中成为最重要的混杂因素。关键问题表现为“肥胖悖论和炎症加剧的心力衰竭”。对于炎症性心衰加重,NLRP3炎性小体发挥重要作用,可能成为心衰状态的靶点。肥胖和心血管疾病领域的这些关键问题需要更多的研究,以确定哪些代谢变化对所谓的肥胖有益和有害影响至关重要。

关键词: 心力衰竭,炎症,局部缺血/再灌注损伤,代谢综合征,NLRP3炎性小体,肥胖悖论。

[1]
Drewnowski, A.; Darmon, N. The economics of obesity: dietary energy density and energy cost. Am. J. Clin. Nutr., 2005, 82(Suppl. 1), 265S-273S.
[http://dx.doi.org/10.1093/ajcn/82.1.265S] [PMID: 16002835]
[2]
Martínez, J.A. Mitochondrial oxidative stress and inflammation: an slalom to obesity and insulin resistance. J. Physiol. Biochem., 2006, 62(4), 303-306.
[http://dx.doi.org/10.1007/BF03165759] [PMID: 17615956]
[3]
Yudkin, J.S. Adipose tissue, insulin action and vascular disease: inflammatory signals. Int. J. Obes. Relat. Metab. Disord., 2003, 27(Suppl. 3), S25-S28.
[http://dx.doi.org/10.1038/sj.ijo.0802496] [PMID: 14704740]
[4]
Sack, M.N.; Murphy, E. The role of comorbidities in cardioprotection. J. Cardiovasc. Pharmacol. Ther., 2011, 16(3-4), 267-272.
[http://dx.doi.org/10.1177/1074248411408313] [PMID: 21821527]
[5]
Oosterlinck, W.; Herijgers, P. Cardiomyocyte changes in the metabolic syndrome and implications for endogeneous protective strategies. Expert Rev. Cardiovasc. Ther., 2014, 12(3), 331-343.
[http://dx.doi.org/10.1586/14779072.2014.893825] [PMID: 24575775]
[6]
Engeli, S.; Sharma, A.M. Role of adipose tissue for cardiovascular-renal regulation in health and disease. Horm. Metab. Res., 2000, 32(11-12), 485-499.
[http://dx.doi.org/10.1055/s-2007-978675] [PMID: 11246814]
[7]
Engeli, S.; Feldpausch, M.; Gorzelniak, K.; Hartwig, F.; Heintze, U.; Janke, J.; Möhlig, M.; Pfeiffer, A.F.; Luft, F.C.; Sharma, A.M. Association between adiponectin and mediators of inflammation in obese women. Diabetes, 2003, 52(4), 942-947.
[http://dx.doi.org/10.2337/diabetes.52.4.942] [PMID: 12663465]
[8]
Lamounier-Zepter, V.; Look, C.; Alvarez, J.; Christ, T.; Ravens, U.; Schunck, W.H.; Ehrhart-Bornstein, M.; Bornstein, S.R.; Morano, I. Adipocyte fatty acid-binding protein suppresses cardiomyocyte contraction: a new link between obesity and heart disease. Circ. Res., 2009, 105(4), 326-334.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.200501] [PMID: 19608978]
[9]
Ishimura, S.; Furuhashi, M.; Watanabe, Y.; Hoshina, K.; Fuseya, T.; Mita, T.; Okazaki, Y.; Koyama, M.; Tanaka, M.; Akasaka, H.; Ohnishi, H.; Yoshida, H.; Saitoh, S.; Miura, T. Circulating levels of fatty acid-binding protein family and metabolic phenotype in the general population. PLoS One, 2013, 8(11)e81318
[http://dx.doi.org/10.1371/journal.pone.0081318] [PMID: 24278421]
[10]
Berg, A.H.; Lin, Y.; Lisanti, M.P.; Scherer, P.E. Adipocyte differentiation induces dynamic changes in NF-kappaB expression and activity. Am. J. Physiol. Endocrinol. Metab., 2004, 287(6), E1178-E1188.
[http://dx.doi.org/10.1152/ajpendo.00002.2004] [PMID: 15251865]
[11]
Galic, S.; Oakhill, J.S.; Steinberg, G.R. Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol., 2010, 316(2), 129-139.
[http://dx.doi.org/10.1016/j.mce.2009.08.018] [PMID: 19723556]
[12]
Benetti, E.; Chiazza, F.; Patel, N.S.; Collino, M. The NLRP3 Inflammasome as a novel player of the intercellular crosstalk in metabolic disorders. Mediators Inflamm., 2013, 2013678627
[http://dx.doi.org/10.1155/2013/678627] [PMID: 23843683]
[13]
Mastrocola, R.; Collino, M.; Penna, C.; Nigro, D.; Chiazza, F.; Fracasso, V.; Tullio, F.; Alloatti, G.; Pagliaro, P.; Aragno, M. maladaptive modulations of NLRP3 inflammasome and cardioprotective pathways are involved in diet-induced exacerbation of myocardial ischemia/reperfusion injury in mice. Oxid. Med. Cell. Longev., 2016, 20163480637
[http://dx.doi.org/10.1155/2016/3480637] [PMID: 26788246]
[14]
Pavillard, L.E.; Cañadas-Lozano, D.; Alcocer-Gómez, E.; Marín-Aguilar, F.; Pereira, S.; Robertson, A.A.B.; Muntané, J.; Ryffel, B.; Cooper, M.A.; Quiles, J.L.; Bullón, P.; Ruiz-Cabello, J.; Cordero, M.D. NLRP3-inflammasome inhibition prevents high fat and high sugar diets-induced heart damage through autophagy induction. Oncotarget, 2017, 8(59), 99740-99756.
[http://dx.doi.org/10.18632/oncotarget.20763] [PMID: 29245937]
[15]
Toldo, S.; Abbate, A. The NLRP3 inflammasome in acute myocardial infarction. Nat. Rev. Cardiol., 2018, 15(4), 203-214.
[http://dx.doi.org/10.1038/nrcardio.2017.161] [PMID: 29143812]
[16]
Mastrocola, R.; Aragno, M.; Alloatti, G.; Collino, M.; Penna, C.; Pagliaro, P. Metaflammation: tissue-specific alterations of the NLRP3 inflammasome platform. Curr. Med. Chem., 2018, 25(11), 1294-1310.
[http://dx.doi.org/10.2174/0929867324666170407123522] [PMID: 28403789]
[17]
Stienstra, R.; Joosten, L.A.; Koenen, T.; van Tits, B.; van Diepen, J.A.; van den Berg, S.A.; Rensen, P.C.; Voshol, P.J.; Fantuzzi, G.; Hijmans, A.; Kersten, S.; Müller, M.; van den Berg, W.B.; van Rooijen, N.; Wabitsch, M.; Kullberg, B.J.; van der Meer, J.W.; Kanneganti, T.; Tack, C.J.; Netea, M.G. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab., 2010, 12(6), 593-605.
[http://dx.doi.org/10.1016/j.cmet.2010.11.011] [PMID: 21109192]
[18]
Mastrocola, R.; Penna, C.; Tullio, F.; Femminò, S.; Nigro, D.; Chiazza, F.; Serpe, L.; Collotta, D.; Alloatti, G.; Cocco, M.; Bertinaria, M.; Pagliaro, P.; Aragno, M.; Collino, M. Pharmacological inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways. Oxid. Med. Cell. Longev., 2016, 20165271251
[http://dx.doi.org/10.1155/2016/5271251] [PMID: 28053692]
[19]
Valle Raleigh, J.; Mauro, A.G.; Devarakonda, T.; Marchetti, C.; He, J.; Kim, E.; Filippone, S.; Das, A.; Toldo, S.; Abbate, A.; Salloum, F.N. Reperfusion therapy with recombinant human relaxin-2 (Serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism. Cardiovasc. Res., 2017, 113(6), 609-619.
[http://dx.doi.org/10.1093/cvr/cvw246] [PMID: 28073832]
[20]
Wang, Q.; Lin, P.; Li, P.; Feng, L.; Ren, Q.; Xie, X.; Xu, J. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway. Life Sci., 2017, 186, 50-58.
[http://dx.doi.org/10.1016/j.lfs.2017.08.004] [PMID: 28782532]
[21]
Luo, B.; Li, B.; Wang, W.; Liu, X.; Liu, X.; Xia, Y.; Zhang, C.; Zhang, Y.; Zhang, M.; An, F. Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model. Cardiovasc. Drugs Ther., 2014, 28(1), 33-43.
[http://dx.doi.org/10.1007/s10557-013-6498-1] [PMID: 24254031]
[22]
Wang, S.; Xie, X.; Lei, T.; Zhang, K.; Lai, B.; Zhang, Z.; Guan, Y.; Mao, G.; Xiao, L.; Wang, N. Statins attenuate activation of the nlrp3 inflammasome by oxidized LDL or TNFα in vascular endothelial cells through a PXR-dependent mechanism. Mol. Pharmacol., 2017, 92(3), 256-264.
[http://dx.doi.org/10.1124/mol.116.108100] [PMID: 28546421]
[23]
Kirwan, A.M.; Lenighan, Y.M.; O’Reilly, M.E.; McGillicuddy, F.C.; Roche, H.M. Nutritional modulation of metabolic inflammation. Biochem. Soc. Trans., 2017, 45(4), 979-985.
[http://dx.doi.org/10.1042/BST20160465] [PMID: 28710289]
[24]
Kim, Y.; Wang, W.; Okla, M.; Kang, I.; Moreau, R.; Chung, S. Suppression of NLRP3 inflammasome by γ-tocotrienol ameliorates type 2 diabetes. J. Lipid Res., 2016, 57(1), 66-76.
[http://dx.doi.org/10.1194/jlr.M062828] [PMID: 26628639]
[25]
Liu, Z.; Gan, L.; Xu, Y.; Luo, D.; Ren, Q.; Wu, S.; Sun, C. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. J. Pineal Res., 2017, 63(1)
[http://dx.doi.org/10.1111/jpi.12414] [PMID: 28398673]
[26]
Wada, T.; Ishikawa, A.; Watanabe, E.; Nakamura, Y.; Aruga, Y.; Hasegawa, H.; Onogi, Y.; Honda, H.; Nagai, Y.; Takatsu, K.; Ishii, Y.; Sasahara, M.; Koya, D.; Tsuneki, H.; Sasaoka, T. Eplerenone prevented obesity-induced inflammasome activation and glucose intolerance. J. Endocrinol., 2017, 235(3), 179-191.
[http://dx.doi.org/10.1530/JOE-17-0351] [PMID: 28855315]
[27]
Shao, B.Z.; Xu, Z.Q.; Han, B.Z.; Su, D.F.; Liu, C. NLRP3 inflammasome and its inhibitors: a review. Front. Pharmacol., 2015, 6, 262.
[http://dx.doi.org/10.3389/fphar.2015.00262] [PMID: 26594174]
[28]
Penna, C.; Mancardi, D.; Raimondo, S.; Geuna, S.; Pagliaro, P. The paradigm of postconditioning to protect the heart. J. Cell. Mol. Med., 2008, 12(2), 435-458.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00210.x] [PMID: 18182064]
[29]
Penna, C.; Mancardi, D.; Rastaldo, R.; Pagliaro, P. Cardioprotection: a radical view free radicals in pre and postconditioning. Biochim. Biophys. Acta, 2009, 1787(7), 781-793.
[http://dx.doi.org/10.1016/j.bbabio.2009.02.008] [PMID: 19248760]
[30]
Pagliaro, P.; Moro, F.; Tullio, F.; Perrelli, M.G.; Penna, C. Cardioprotective pathways during reperfusion: focus on redox signaling and other modalities of cell signaling. Antioxid. Redox Signal., 2011, 14(5), 833-850.
[http://dx.doi.org/10.1089/ars.2010.3245] [PMID: 20649460]
[31]
Penna, C.; Granata, R.; Tocchetti, C.G.; Gallo, M.P.; Alloatti, G.; Pagliaro, P. Endogenous cardioprotective agents: role in pre and postconditioning. Curr. Drug Targets, 2015, 16(8), 843-867.
[http://dx.doi.org/10.2174/1389450116666150309115536] [PMID: 25751010]
[32]
Lopaschuk, G.D.; Folmes, C.D.; Stanley, W.C. Cardiac energy metabolism in obesity. Circ. Res., 2007, 101(4), 335-347.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.150417] [PMID: 17702980]
[33]
Liu, B.; Clanachan, A.S.; Schulz, R.; Lopaschuk, G.D. Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ. Res., 1996, 79(5), 940-948.
[http://dx.doi.org/10.1161/01.RES.79.5.940] [PMID: 8888686]
[34]
Liu, B.; el Alaoui-Talibi, Z.; Clanachan, A.S.; Schulz, R.; Lopaschuk, G.D. Uncoupling of contractile function from mitochondrial TCA cycle activity and MVO2 during reperfusion of ischemic hearts. Am. J. Physiol., 1996, 270(1 Pt 2), H72-H80.
[http://dx.doi.org/10.1152/ajpheart.1996.270.1.H72] [PMID: 8769736]
[35]
Kantor, P.F.; Lucien, A.; Kozak, R.; Lopaschuk, G.D. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ. Res., 2000, 86(5), 580-588.
[http://dx.doi.org/10.1161/01.RES.86.5.580] [PMID: 10720420]
[36]
Pons, S.; Martin, V.; Portal, L.; Zini, R.; Morin, D.; Berdeaux, A.; Ghaleh, B. Regular treadmill exercise restores cardioprotective signaling pathways in obese mice independently from improvement in associated co-morbidities. J. Mol. Cell. Cardiol., 2013, 54, 82-89.
[http://dx.doi.org/10.1016/j.yjmcc.2012.11.010] [PMID: 23201226]
[37]
Apaijai, N.; Chattipakorn, S.C.; Chattipakorn, N. Roles of obese-insulin resistance and anti-diabetic drugs on the heart with ischemia-reperfusion injury. Cardiovasc. Drugs Ther., 2014, 28(6), 549-562.
[http://dx.doi.org/10.1007/s10557-014-6553-6] [PMID: 25283086]
[38]
Shinlapawittayatorn, K.; Chattipakorn, S.C.; Chattipakorn, N. The influence of obese insulin-resistance on the outcome of the ischemia/reperfusion insult to the heart. Curr. Med. Chem., 2018, 25(13), 1501-1509.
[http://dx.doi.org/10.2174/0929867324666170616105639] [PMID: 28618996]
[39]
Hamzeh, N.; Ghadimi, F.; Farzaneh, R.; Hosseini, S.K. Obesity, heart failure, and obesity paradox. J Tehran Heart Cent, 2017, 12(1), 1-5.
[PMID: 28469684]
[40]
Oreopoulos, A.; Padwal, R.; Kalantar-Zadeh, K.; Fonarow, G.C.; Norris, C.M.; McAlister, F.A. Body mass index and mortality in heart failure: a meta-analysis. Am. Heart J., 2008, 156(1), 13-22.
[http://dx.doi.org/10.1016/j.ahj.2008.02.014] [PMID: 18585492]
[41]
Badheka, A.O.; Rathod, A.; Kizilbash, M.A.; Garg, N.; Mohamad, T.; Afonso, L.; Jacob, S. Influence of obesity on outcomes in atrial fibrillation: yet another obesity paradox. Am. J. Med., 2010, 123(7), 646-651.
[http://dx.doi.org/10.1016/j.amjmed.2009.11.026] [PMID: 20609687]
[42]
Choy, B.; Hansen, E.; Moss, A.J.; McNitt, S.; Zareba, W.; Goldenberg, I. Relation of body mass index to sudden cardiac death and the benefit of implantable cardioverter-defibrillator in patients with left ventricular dysfunction after healing of myocardial infarction. Am. J. Cardiol., 2010, 105(5), 581-586.
[http://dx.doi.org/10.1016/j.amjcard.2009.10.041] [PMID: 20185000]
[43]
Horwich, T.B.; Fonarow, G.C.; Hamilton, M.A.; MacLellan, W.R.; Woo, M.A.; Tillisch, J.H. The relationship between obesity and mortality in patients with heart failure. J. Am. Coll. Cardiol., 2001, 38(3), 789-795.
[http://dx.doi.org/10.1016/S0735-1097(01)01448-6] [PMID: 11527635]
[44]
Pasini, E.; Aquilani, R.; Gheorghiade, M.; Dioguardi, F.S. Malnutrition, muscle wasting and cachexia in chronic heart failure: the nutritional approach. Ital. Heart J., 2003, 4(4), 232-235.
[PMID: 12784775]
[45]
Kalantar-Zadeh, K.; Block, G.; Horwich, T.; Fonarow, G.C. Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. J. Am. Coll. Cardiol., 2004, 43(8), 1439-1444.
[http://dx.doi.org/10.1016/j.jacc.2003.11.039] [PMID: 15093881]
[46]
Sugerman, H.J.; Sugerman, E.L.; Wolfe, L.; Kellum, J.M. Jr.; Schweitzer, M.A.; DeMaria, E.J. Risks and benefits of gastric bypass in morbidly obese patients with severe venous stasis disease. Ann. Surg., 2001, 234(1), 41-46.
[http://dx.doi.org/10.1097/00000658-200107000-00007] [PMID: 11460821]
[47]
Clerico, A.; Giannoni, A.; Vittorini, S.; Emdin, M. The paradox of low BNP levels in obesity. Heart Fail. Rev., 2012, 17(1), 81-96.
[http://dx.doi.org/10.1007/s10741-011-9249-z] [PMID: 21523383]
[48]
Lavie, C.J.; Sharma, A.; Alpert, M.A.; De Schutter, A.; Lopez-Jimenez, F.; Milani, R.V.; Ventura, H.O. Update on obesity and obesity paradox in heart failure. Prog. Cardiovasc. Dis., 2016, 58(4), 393-400.
[http://dx.doi.org/10.1016/j.pcad.2015.12.003] [PMID: 26721180]
[49]
Farré, N.; Aranyó, J.; Enjuanes, C.; Verdú-Rotellar, J.M.; Ruiz, S.; Gonzalez-Robledo, G.; Meroño, O.; de Ramon, M.; Moliner, P.; Bruguera, J.; Comin-Colet, J. Differences in neurohormonal activity partially explain the obesity paradox in patients with heart failure: The role of sympathetic activation. Int. J. Cardiol., 2015, 181, 120-126.
[http://dx.doi.org/10.1016/j.ijcard.2014.12.025] [PMID: 25497534]
[50]
Kalil, G.Z.; Haynes, W.G. Sympathetic nervous system in obesity-related hypertension: mechanisms and clinical implications. Hypertens. Res., 2012, 35(1), 4-16.
[http://dx.doi.org/10.1038/hr.2011.173] [PMID: 22048570]
[51]
Carbone, S.; Lavie, C.J.; Arena, R. Obesity and heart failure: focus on the obesity paradox. Mayo Clin. Proc., 2017, 92(2), 266-279.
[http://dx.doi.org/10.1016/j.mayocp.2016.11.001] [PMID: 28109619]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy