[1]
Owen, J. Comprehensive Polymer Science, 1st ed; Pergamon Press: New York, 1989.
[2]
Gil, E.S.; Hudson, S.M. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci., 2004, 29, 1173-1222.
[3]
Rodrigues, J.; Goncalves, J.; Mangrich, A.; Soldi, V.; Bertolino, J.; Pires, A. Thermal behavior and electrical conductivity of poly (vinyl pyridine)/copper complexes. Adv. Polym. Technol., 2000, 19, 113-119.
[4]
Rafique, U.; Mazhar, M.; Ali, S.; Khwaja, F. Analytical and electrical studies on poly(2-vinylpyridine) and its metal complexes. Synth. Met., 1996, 78, 73-77.
[5]
Atornigitjawat, P.; Runt, J. Ion conduction and polymer dynamics of poly(2-vinylpyridine)-lithium perchlorate. J. Phys. Chem., 2007, 111, 13483-13490.
[6]
Ratner, M.A.; Shriver, D.F. Ion transport in solvent-free polymers. Chem. Rev., 1988, 88, 109-124.
[7]
Da Silva, S.L.A.; De Barros, G.G. Ionic conductivity of swollen LDPE/poly(4-vinylpyridine) blend. Polym. Bull., 2002, 47, 579-585.
[8]
De Barros, G.G.; Sales, M.J.A.; De Britto, A.R.F. Low-density polyethylene modified by thermal polymerization of 4-vinylpyridine and methyl methacrylate: Structural studies. Polym. Eng. Sci., 1996, 36, 1125-1128.
[9]
Sales, M.J.A.; Barros, G.G. Effects of film thickness and inhibitor concentration on the sorption and thermal polymerization of acrylic acid in low-density polyethylene. J. Appl. Polym. Sci., 1993, 47, 1395-1399.
[10]
Ximenes, M.I.N.; Serra, O.A.; Barros, G.G. Eu3+ ions in the modified matrix polyethylene/poly (acrylic acid) fluorescence studies. Polym. Bull., 1992, 28, 61-68.
[11]
Sukhishvili, S.A.; Granic, S. Adsorbed Monomer Analog of a Common Polyelectrolyte. Phys. Rev. Lett., 1998, 80, 3646-3649.
[12]
Schmitz, K.S. Orientation effects for quaternized poly4-vinylpyridine adsorption onto an oxidized silicon surface. Macromolecules, 2000, 33, 2284-2285.
[13]
Kunz, M.S.; Shull, K.R.; Kellock, A.J. Colloidal gold dispersions in polymeric matrices. J. Colloid Interface Sci., 1993, 156, 240-249.
[14]
Shull, K.R.; Kellock, A.J. Metal particle adsorption and diffusion in a model polymer/metal composite system. J. Polym. Sci., Part B, Polym. Phys., 1995, 33, 1417-1422.
[15]
Kim, J.H.; Bae, S.H.; Chae, S.; Sohn, B.H. Inversion of diblock copolymer micelles by selective solvents for conversion of gold nanopatterns. Thin Solid Films, 2012, 520, 2022-2025.
[16]
Suntivich, R.; Choi, I.; Gupta, M.K.; Tsitsilianis, C.; Tsukruk, V. Gold nanoparticles grown on star-shaped block copolymer monolayers. Langmuir, 2011, 27, 10730-10738.
[17]
Lohmueller, T.; Bock, E.; Spatz, J.P. Synthesis of quasi-hexagonal ordered arrays of metallic nanoparticles with tuneable particle size. Adv. Mater., 2008, 20, 2297-2302.
[18]
Glass, R.; Moeller, M.; Spatz, J.P. Block copolymer micelle nanolithography. Nanotechnology, 2003, 14, 1153-1160.
[19]
Spatz, J.P.; Mossmer, S.; Hartmann, C.; Mooller, M.; Herzog, T.; Krieger, M.; Boyen, H.G.; Ziemann, P. Ordered deposition of inorganic clusters from micellar blockcopolymer films. Langmuir, 2000, 16, 407-415.
[20]
Ishizone, T.; Hirao, A.; Nakahama, S. Anionic polymerization of monomers containing functional groups. 6. Anionic block copolymerization of styrene derivatives para-substituted with electron-withdrawing groups. Macromolecules, 1993, 26, 6964-6975.
[21]
Chern, C.S. Emulsion polymerization mechanisms and kinetics. Prog. Polym. Sci., 2006, 31, 443-486.
[22]
Kawaguchi, S.; Ito, K. Dispersion polymerization. Adv. Polym. Sci., 2005, 175, 299-328.
[23]
Taylor, P. Ostwald ripening in emulsions. Adv. Colloid Interface Sci., 1998, 75, 107-163.
[24]
Jansen, T.G.T.; Meuldijk, J.; Lovell, P.A.; van Herk, A.M. On the miniemulsion polymerization of very hydrophobic monomers initiated by a completely water-insoluble initiator: Thermodynamics, kinetics, and mechanism. J. Polym. Sci. Part A Polym. Chem., 2016, 54, 2731-2745.
[25]
Xie, D.; Ren, X.; Xie, Y.; Zhang, X.; Liao, S. Large-scale synthesis of monodisperse red blood cell (RBC)-like polymer particles. ACS Macro Lett., 2016, 5, 174-176.
[26]
Peng, B.; Imhof, A. Surface morphology control of cross-linked polymer particles via dispersion polymerization. Soft Matter, 2015, 11, 3589-3598.
[27]
Willersinn, J.; Drechsler, M.; Antonietti, M.; Schmidt, B.V.K.J. Organized polymeric submicron particles via self-assembly and cross-Linking of double hydrophilic poly(ethylene oxide)-b-poly(N-vinylpyrrolidone) in aqueous solution. Macromolecules, 2016, 49, 5331-5341.
[28]
Epps, T.H. III.; O’Reilly, R.K. Block copolymers: Controlling nanostructure to generate functional materials-synthesis, characterization, and engineering. Chem. Sci., 2016, 7, 1674-1689.
[29]
Shen, H.; Eisenberg, A. Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H2O. Macromolecules, 2000, 33, 2561-2572.
[30]
Satoh, K.; Kamigaito, M. Stereospecific living radical polymerization: dual control of chain length and tacticity for precision polymer synthesis. Chem. Rev., 2009, 109, 5120-2156.
[31]
Levere, M.E.; Willoughby, I.; O’Donohue, S.; Wright, P.M.; Grice, A.J.; Fidge, C.; Becer, C.R.; Haddleton, D.M. Cu(0) mediated polymerization in toluene using online rapid GPC monitoring. J. Polym. Sci.Part A Polym. Chem., 2011, 49, 1753-1763.
[32]
Jenkins, A.D.; Jones, R.G.; Moad, G. Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization (IUPAC Recommendations 2010). Pure Appl. Chem., 2010, 82, 483-491.
[33]
Rosen, B.M.; Percec, V. Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization. Chem. Rev., 2009, 109, 5069-5119.
[34]
Wright, P.M.; Mantovani, G.; Haddleton, D.M. Polymerization of methyl acrylate mediated by copper (0)/Me6-TREN in hydrophobic media enhanced by phenols; Single electron transfer-living radical polymerization. J. Polym. Sci.Part A Polym. Chem., 2008, 46, 7376-7385.
[35]
Matyjaszewski, K.; Tsarevsky, N.V.; Braunecker, W.A.; Dong, H.C.; Huang, J.Y.; Jakubowski, W.; Kwak, Y.; Nicolay, R.; Tang, W.; Yoon, J.A. Role of Cu(0) in Controlled/“Living” Radical Polymerization. Macromolecules, 2007, 40, 7795-7806.
[36]
Wang, W.X.; Zhang, Z.B.; Cheng, Z.P.; Zhu, J.; Zhou, N.C.; Zhu, X.L. Favorable hydrogen bonding in room-temperature Cu (0)-mediated controlled radical polymerization of 4-vinylpyridine. Polym. Chem., 2012, 3, 2731-2734.
[37]
Tsarevsky, N.V.; Braunecker, W.A.; Brooks, S.J.; Matyjaszewski, K. Rational selection of initiating/catalytic systems for the copper-mediated atom transfer radical polymerization of basic monomers in protic media: ATRP of 4-vinylpyridine. Macromolecules, 2006, 39, 6817-6824.
[38]
Miura, Y.; Dote, H. Syntheses of 12-arm star polymers and star diblock copolymers by nitroxide-mediated radical polymerization using dendritic dodecafunctional macroinitiators. J. Polym. Sci. Part A Polym. Chem., 2005, 43, 3689-3700.
[39]
Thomas, D.B.; Convertine, A.J.; Hester, R.D.; Lowe, A.B.; McCormick, C.L. Hydrolytic susceptibility of dithioester chain transfer agents and implications in aqueous RAFT polymerizations. Macromolecules, 2004, 37, 1735-1741.
[40]
Diaz, T.; Fischer, A.; Jonquieres, A.; Brembilla, A.; Lochon, P. Controlled polymerization of functional monomers and synthesis of block copolymers using a β-phosphonylated nitroxide. Macromolecules, 2003, 36, 2235-2241.
[41]
Convertine, A.J.; Sumerlin, B.S.; Thomas, D.B.; Lowe, A.B.; McCormick, C.L. Synthesis of block copolymers of 2- and 4-vinylpyridine by RAFT polymerization. Macromolecules, 2003, 36, 4679-4681.
[42]
Lau, K.K.S.; Gleason, K.K. Initiated chemical vapor deposition (iCVD) of Poly(alkyl acrylates): An experimental study. Macromolecules, 2006, 39, 3688-3694.
[43]
Petruczok, C.; Gleason, K. Initiated Chemical Vapor Deposition-Based Method for Patterning Polymer and Metal Microstructures on Curved Substrates. Adv. Mater., 2012, 24, 6445-6450.
[44]
Fischer, A.; Brembilla, A.; Lochon, P. Nitroxide-mediated radical polymerization of 4-vinylpyridine: Study of the pseudo-living character of the reaction and influence of temperature and nitroxide concentration. Macromolecules, 1999, 32, 6069-6072.
[45]
Bohrisch, J.; Wendler, U.; Jaeger, W. Controlled radical polymerization of 4-vinylpyridine. Macromol. Rapid Commun., 1997, 18, 975-982.
[46]
Karandikar, P.; Gupta, M. Synthesis of functional particles by condensation and polymerization of monomer droplets in silicone oils. Langmuir, 2017, 33, 7701-7707.
[47]
Nishiyama, S.; Tajima, M.; Yoshida, Y. Photo-irradiation effects on poly(vinylpyridines). Colloids Surf. A Physicochem. Eng. Asp., 2008, 313-314, 479-483.
[48]
Elmaci, A.; Hacaloglu, J. Thermal degradation of poly(vinylpyridine)s. Polym. Degrad. Stabil., 2009, 94, 738-743.
[49]
Orhan, T.; Hacaloglu, J. Thermal degradation of poly(2-vinylpyridine) copolymers. Polym. Degrad. Stabil., 2013, 98, 356-360.
[50]
Lekesiz, T.O.; Kaleli, K.; Uyar, T.; Kayran, C.; Hacaloglu, J. Preparation and characterization of polystyrene-b-poly(2-vinylpyridine) coordinated to metal or metal ion nanoparticles. J. Anal. Appl. Pyrolysis, 2014, 106, 81-85.
[51]
Chan, W.K. Metal containing polymers with heterocyclic rigid main chains. Coord. Chem. Rev., 2007, 251, 2104-2118.
[52]
Cho, J.H.; Hong, J.K.; Char, K.; Caruso, F. Nanoporous block copolymermicelle/micelle multilayer films with dual optical properties. J. Am. Chem. Soc., 2006, 128, 9935-9942.
[53]
Wu, K.H.; Wang, Y.R.; Hwu, W.H. FTIR and TGA studies of poly(4-vinylpyridine-co-divinylbenzene)–Cu(II) complex. Polym. Degrad. Stabil., 2003, 79, 195-200.
[54]
Tamami, B. Borujeni. K.P. Poly(vinylpyridine) supported reagents: A review. Iran. Polym. J., 2009, 18, 191-206.
[55]
Cheng, Z.; Li, C.; Qiu, Y.; Chang, X.; Tan, G.; Ren, B. Effect of topology structure on the electrochemical behavior of hydrogen-bonded self-assembled poly(4-vinylpyridine)-ferrocenyl dendron complexes. J. Organomet. Chem., 2017, 846, 223-229.
[56]
Schulze, M.; Handge, U.A.; Abetz, V. Preparation and characterisation of open-celled foams using polystyrene-b-poly(4-vinylpyridine) and poly(4-methylstyrene)-b-poly(4-vinylpyridine) diblock copolymers. Polymer., 2017, 108, 400-412.
[57]
Pietsch, T.; Metwalli, E.; Roth, S.V.; Gebhardt, R.; Gindy, N.; Müller-Buschbaum, P.; Fahmi, A. Directing the self-assembly of mesostructured hybrid materials: effect of polymer concentration and solvent type. Macromol. Chem. Phys., 2009, 210, 864-878.
[58]
Gohy. J.F. Block Copolymer Micelles. In:. Block Copolymers II. Advances in
Polymer Science, Abetz V, Ed.; Springer, Heidelberg, Berlin. 2005, Vol.
190, pp. 65-136.
[59]
Hasegawa, S.; Ohashi, H.; Maekawa, Y.; Katakai, R.; Yoshida, M. Thermo- and pH-sensitive gel membranes based on poly-(acryloyl-L-proline methyl ester)-graft-poly(acrylic acid) for selective permeation of metal ions. Radiat. Phys. Chem., 2005, 72, 595-600.
[60]
Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2002, 54, 3-12.
[61]
Kikuchi, A.; Okano, T. Pulsatile drug release control using hydrogels. Adv. Drug Deliv. Rev., 2002, 54, 53-77.
[62]
Miyata, T.; Uragami, T.; Nakamae, K. Biomolecule-sensitive hydrogels. Adv. Drug Deliv. Rev., 2002, 54, 79-98.
[63]
Percot, A.; Zhu, X.X.; Lafleur, M. A simple FTIR spectroscopic method for the determination of the lower critical solution temperature of N-isopropylacrylamide copolymers and related hydrogels. J. Polym. Sci. Part B., 2000, 38, 907-915.
[64]
Harnish, B.; Robinson, J.T.; Pei, Z.; Ramström, O.; Yan, M. UV-cross-linked poly(vinylpyridine) thin films as reversibly responsive surfaces. Chem. Mater., 2005, 17, 4092-4096.
[65]
Zeng, B.; Yang, L.; Zheng, W.; Zhu, J.; Ma, X.; Liu, X.; Yuan, C.; Xu, Y.; Dai, L. Analysis of the formation process and performance of magnetic Fe3O4@Poly(4-vinylpyridine) absorbent prepared by in-situ synthesis. J. Mater. Sci. Technol., 2018, 34, 999-1007.
[66]
González-Navarrete, J.; Toral, M.I.; Leiva, A.; Yazdani-Pedram, M.; Ríos, H.E.; Briones-Olarán, X.; Urzúa, M.D. Adsorption of As (V) by poly (N-octyl-4-vinylpyridinium) bromide: Determination of As (V) by direct measurement of fluorescence on the solid phase. React. Funct. Polym., 2016, 109, 112-119.
[67]
Benabadji, K.I.; Mansri, A. Chromium removal using poly(4-vinylpyridinium)-modified treated clay salts. Desalination Water Treat., 2014, 52, 31-33.
[68]
Tavengwa, N.T.; Cukrowska, E.; Chimuka, L. Synthesis, adsorption and selectivity studies of N-propylquaternized magnetic poly(4-vinylpyridine) for hexavalent chromium. Talanta, 2013, 116, 670-677.
[69]
De Oliveira, T.F.; Ribeiro, E.S.; Segatelli, M.G.; Tarley, C.R.T. Enhanced sorption of Mn2+ ions from aqueous medium by inserting protoporphyrin as a pendant group in poly(vinylpyridine) network. Chem. Eng. J., 2013, 221, 275-282.
[70]
Zhou, L.F.; He, X.G.; Qiao, J.Q.; Lian, H.Z.; Ge, X.; Chen, H.Y. A practical interface designed for on-line polymer monolith microextraction: Synthesis and application of poly(4-vinylpyridine-co-ethylene glycol dimethacrylate) monolith. J. Chromatogr. A, 2012, 1256, 15-21.
[71]
Tao, W.H.; Li, A.M.; Long, C.; Qian, H.M. Poly(vinylpyridine) adsorbent for the removal of SIPA from its aqueous solution. Chin. Chem. Lett., 2009, 20, 604-607.
[72]
Toral, M.I.; González-Navarrete, J.; Leiva, A.; Ríos, H.E.; Urzúa, M.D. Chromium retention properties of N-alkyl quaternized poly(4-vinylpyridine). Eur. Polym. J., 2009, 45, 730-737.
[73]
Rivas, B.L.; Quilodran, B.; Quiroz, E. Trace metal ion retention properties of crosslinked poly(4-vinylpyridine) and poly (acrylic acid). J. Appl. Polym. Sci., 2004, 92, 2908-2916.
[74]
El-Hamshary, H.; El-Garawany, M.; Assubaie, F.N.; Al-Eed, M. Synthesis of poly(acrylamide-co-4-vinylpyridine) hydrogels and their application in heavy metal removal. J. Appl. Polym. Sci., 2003, 89, 2522-2526.
[75]
Wang, X.; Zhang, T.; Wang, X.; Huang, J. 4-Vinylpyridine-modified post-cross-linked resins and their adsorption of phenol and Rhodamine B. J. Colloid Interface Sci., 2018, 531, 394-403.
[76]
Caruso, U.; Centore, R.; Panunzi, B.; Roviello, A.; Tuzi, A. Grafting poly(4-vinylpyridine) with a second-order nonlinear optically active nickel(II) chromophore. Eur. J. Inorg. Chem., 2005, 2747-2753.
[77]
Bessbousse, H.; Zran, N.; Fauléau, J.; Godin, B.; Lemée, V.; Wade, T.; Clochard, M.C. Poly(4-vinylpyridine) radiografted PVDF track etched membranes as sensors for monitoring trace mercury in water. Radiat. Phys. Chem., 2016, 118, 48-54.
[78]
Ghadimi, H.; Tehrani, R.M.A.; Basirun, W.J.; Ab Aziz, N.J.; Mohamed, N.; Ab Ghani, S. Electrochemical determination of aspirin and caffeine at MWCNTs-poly-4-vinylpyridine composite modified electrode. J. Taiwan Inst. Chem. Eng, 2016, 65, 101-109.
[79]
Gohary, N.A.E.; Madbouly, A.; Nashar, R.N.E.; Mizaikoff, B. Synthesis and application of a molecularly imprinted polymer for the voltammetric determination of famciclovir. Biosens. Bioelectron., 2015, 65, 108-114.
[80]
Zhao, L.; Zhao, F.; Zeng, B. Preparation of surface-imprinted polymer grafted with water-compatible external layer via RAFT precipitation polymerization for highly selective and sensitive electrochemical determination of brucine. Biosens. Bioelectron., 2014, 60, 71-76.
[81]
Bhakta, S.A.; Benavidez, T.E.; Garcia, C.D. Immobilization of glucose oxidase to nanostructured films of polystyrene-block-poly(2-vinylpyridine). J. Colloid Interface Sci., 2014, 430, 351-356.
[82]
Li, Y.; Yang, M.; She, Y. Humidity sensitive properties of crosslinked and quaternized poly (4-vinylpyridine-co-butyl methacrylate). Sens. Actuators B., 2005, 107, 252-257.
[83]
Aydogdu, Y.; Erol, I.; Yakuphanoğlu, F.; Aydogu, A.; Ahmedzade, M. Electrical conductivity and optical properties of copolymers based on 4-vinylpyridine and tetralincyclobutylhydroxyethylmethacrylate. Synth. Met., 2003, 139, 327-334.
[84]
Soylemez, S.; Yoon, B.; Toppare, L.; Swager, T.M. Quaternized polymer-single-walled carbon nanotube scaffolds for a chemiresistive glucose sensor. ACS Sens., 2017, 2, 1123-1127.
[85]
Zhu, R.; Desroches, M.; Yoon, B.; Swager, T.M. Wireless oxygen sensors enabled by Fe(II)-polymer wrapped carbon nanotubes. ACS Sens., 2017, 2, 1044-1050.
[86]
Mao, Y.; Mei, Z.; Wen, J.; Li, G.; Tian, Y.; Zhou, B.; Tian, Y. Honeycomb structured porous films from a platinum porphyrin-grafted poly(styrene-co-4-vinylpyridine) copolymer as an optical oxygen sensor. Sens. Actuators B Chem., 2018, 257, 944-953.
[87]
Li, Y.; Zhao, H.; Jiao, M.; Yang, M. Sulphonated polystyrene-b-poly(4-vinylpyridine) with nanostructures induced by phase separation as promising humidity sensitive material. Actuator B. Chem., 2018, 257, 1118-1127.
[88]
Rahim, S.; Khalid, S.; Bhanger, M.I.; Shah, M.R.; Malik, M.I. Polystyrene-block-poly(2-vinylpyridine)-conjugated silvernanoparticles as colorimetric sensor for quantitative determination of Cartap in aqueous media and blood plasma. Sens. Actuators B Chem., 2018, 259, 878-887.
[89]
Wu, D.; Yu, Y.; Zhang, J.; Guo, L.; Kong, Y. Chiral Poly (ionic liquid) with nonconjugated backbone as a fluorescent enantioselective sensor for phenylalaninol and tryptophan. ACS Appl. Mater. Interfaces, 2018, 10, 23362-23368.
[90]
Huh, M.; Gauthier, M.; Yun, S.I. Monomolecular films of arborescent polystyrene-graft-poly(2-vinylpyridine) copolymers: Precursors to nanostructured carbon materials. Eur. Polym. J., 2017, 95, 575-580.
[91]
Allende-González, P.; Laguna-Bercero, M.Á.; Barrientos, L.; Valenzuela, M.L.; Díaz, C. Solid state tuning of tio2 morphology, crystal phase, and size through metal macromolecular complexes and its significance in the photocatalytic response. ACS Appl. Energy Mater, 2018, 1, 3159-3170.
[92]
Tarley, C.R.T.; Corazza, M.Z.; Somera, B.F.; Segatelli, M.G. Preparation of new ion-selective cross-linked poly (vinylimidazole-co-ethylene glycol dimethacrylate) using a double-imprinting process for the preconcentration of Pb2+ ions. J. Colloid Interface Sci., 2015, 450, 254-263.
[93]
Ling, J.L.W.; Khan, A.; Saad, B.; Ab Ghani, S. Electro polymerized 4-vinyl pyridine on 2B pencil graphite as ionophore for cadmium (II). Talanta, 2012, 88, 477-483.
[94]
Wang, Q.; Samitsu, S.; Ichinose, I. Ultrafiltration membranes composed of highly cross-linked cationic polymer gel: The network structure and superior separation performance. Adv. Mater., 2011, 23, 2004-2008.
[95]
Venault, A.; Trinh, K.M.; Chang, Y. A zwitterionic zP(4VP-r-ODA) copolymer for providing polypropylene membranes with improved hemocompatibility. J. Membr. Sci., 2016, 501, 68-78.
[96]
Liu, Z.; Cho, B.; Ouyang, T.; Feldman, B. Miniature amperometric self-powered continuous glucose sensor with linear response. Anal. Chem., 2012, 84, 3403-3409.
[97]
Xie, F.; Huang, C.; Wang, F.; Huang, L.; Weiss, R.A.; Leng, J.; Liu, Y. Carboxyl-terminated polybutadiene−poly(styrene-co-4-vinylpyridine) supramolecular thermoplastic elastomers and their shape memory behavior. Macromolecules, 2016, 49, 7322-7330.
[98]
Jeon, H.; Kim, D.J.; Park, M.S.; Ryu, D.Y.; Kim, J.H. Amphiphilic graft copolymer nanospheres: From colloidal self-assembly to CO2 capture membranes. ACS Appl. Mater. Interfaces, 2016, 8, 9454-9461.
[99]
Wang, H.; Lee, I.H.; Yan, M. A general method to determine ionization constants of responsive polymer thin films. J. Colloid Interface Sci., 2012, 365, 178-183.
[100]
Miller, T.; Van Colen, G.; Sander, B.; Golas, M.M.; Uezguen, S.; Weigandt, M.; Goepferich, A. Drug loading of polymeric micelles. Pharm. Res., 2013, 30, 584-595.
[101]
Wang, M.; Yan, F.; Zhao, L.; Zhang, Y.; Sorci, M. Preparation and characterization of a pH-responsive membrane carrier for meso-tetraphenylsulfonato porphyrin. RSC Advances, 2017, 7, 1687-1696.
[102]
Ma, B.; Ju, X.J.; Luo, F.; Liu, Y.Q.; Wang, Y.; Liu, Z.; Wang, W.; Xie, R.; Chu, L.Y. Facile fabrication of composite membranes with dual thermo- and pH-responsive characteristics. ACS Appl. Mater. Interfaces, 2017, 9, 14409-14421.
[103]
Ferro, L.; Scialdone, O.; Galia, A. Preparation of pH sensitive poly(vinilydenefluoride) porous membranes by grafting of acrylic acid assisted by supercritical carbon dioxide. J. Supercrit. Fluids, 2012, 66, 241-250.
[104]
Zhang, W.; Shi, L.; Ma, R.; An, Y.; Xu, Y.; Wu, K. Micellization of thermo- and pH-responsive triblock copolymer of poly (ethylene glycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide). Macromolecules, 2005, 38, 8850-8852.
[105]
Orlov, M.; Tokarev, I.; Scholl, A.; Doran, A.; Minko, S. pH-Responsive thin film membranes from poly(2-vinylpyridine): Water vapor-induced formation of a microporous Structure. Macromolecules, 2007, 40, 2086-2091.
[106]
Zhai, G. pH- and temperature-sensitive Microfiltration membranes from blends of poly (vinylidene fluoride)-graft-poly(4-vinylpyridine) and poly(N-isopropylacrylamide). J. Appl. Polym. Sci., 2006, 100, 4089-4097.
[107]
Strack, G.; McDonald, R.; Salter, W.B.; Simpson, K.; Volkov, D. Owens, J. Composite polytetrafluoroethylene-poly(4-vinylpyridine) membranes for protection against phosphonate-based cholinesterase inhibitors. J. Mater. Sci., 2017, 52, 12902-12912.
[108]
Shevate, R.; Karunakaran, M.; Kumar, M.; Peinemann, K.V. Polyanionic pH-responsive polystyrene-b-poly(4-vinylpyridine-N-oxide) isoporous membranes. J. Membr. Sci., 2016, 501, 161-168.
[109]
Li, D.; He, Q.; Cui, Y.; Li, J. Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4-vinylpyridine). Chem. Mater., 2007, 19, 412-417.
[110]
Xing, Z.; Tay, S.W.; Ng, Y.H.; Hong, L. Solar heat reflective coating formed of polystyrene chains bearing 4-vinylpyridine-rich end segments. Polymer., 2016, 87, 170-180.
[111]
Sharma, A.; Kroon, R.; Lewis, D.A.; Andersson, G.G.; Andersson, M.R. Poly(4-vinylpyridine): A new interface layer for organic solar cells. ACS Appl. Mater. Interfaces, 2017, 9, 10929-10936.
[112]
Li, Y.; Sun, Y. Poly(4-vinylpyridine): a polymeric ligand for mixed-mode protein chromatography. J. Chromatogr. A, 2014, 1373, 97-105.
[113]
Sun, Y.S.; Lin, C.F.; Luo, S.T. Two-dimensional nitrogen-enriched carbon nanosheets with surface-enhanced raman scattering. J. Phys. Chem. C, 2017, 121, 14795-14802.
[114]
Tiller, J.C.; Lee, S.B.; Lewis, K.; Klibanov, A.M. Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol. Bioeng., 2002, 79, 465-471.
[115]
Schlipköter, H.W. Possibilities of causal prophylaxis and therapy of pneumoconiosis. Arch. Environ. Health, 1970, 21, 181-191.
[116]
Zhao, J.; Liu, J.; Li, G. Long-term follow-up observations of the therapeutic effect of PVNO on human silicosis. Zentralbl. Bakteriol. Mikrobiol. Hyg. B, 1983, 178, 259-262.
[117]
Idec-Sadkowska, I.; Andrzejak, R.; Antonowicz-Juchniewicz, J.; Kaczmarek-Wdowiak, B. Trials of casual treatment of silicosis. Med. Pr., 2006, 57, 271-280.
[118]
Ghadimi, H.; Tehrani, R.M.A.; Ali, A.S.M.; Mohamed, N.; Ab Ghani, S. Sensitive voltammetric determination of paracetamol by poly(4-vinylpyridine)/multiwalled carbon nanotubes modified glassy carbon electrode. Anal. Chim. Acta, 2013, 765, 70-76.
[119]
Lacroix, P.G.; Lin, W.; Wong, G.K. Poly(vinylpyridine) and related polymers as guests for organotransition-metal-based NLO chromophores. Chem. Mater., 1995, 7, 1293-1298.
[120]
Malynych, S.; Luzinov, I.; Chumanov, G. Poly (vinyl pyridine) as a universal surface modifier for immobilization of nanoparticles. J. Phys. Chem. B, 2002, 106, 1280-1285.
[121]
Creutz, S.; Jérôme, R. Effectiveness of poly(vinylpyridine) block copolymers as stabilizers of aqueous titanium dioxide dispersions of a high solid content. Langmuir, 1999, 15, 7145-7156.
[122]
Su, Y.; Yan, R.; Dan, M.; Xu, J.; Wang, D.; Zhang, W.; Liu, S. Synthesis of hierarchical hollow silica microspheres containing surface nanoparticles employing the quasi-hard template of poly(4-vinylpyridine) microspheres. Langmuir, 2011, 27, 8983-8989.
[123]
Thickett, S.C.; Neto, C.; Harris, A.T. Biomimetic surface coatings for atmospheric water capture prepared by dewetting of polymer films. Adv. Mater., 2011, 23, 3718-3722.
[124]
Cho, H.; Park, H.; Russell, T.P.; Park, S. Precise placements of metal nanoparticles from reversible block copolymer nanostructures. J. Mater. Chem., 2010, 20, 5047-5051.
[125]
Koh, H.D. Changez, M.; Lee, J.S. Au/CdS hybrid nanoparticles in block copolymer micellar shells. Macromol. Rapid Commun., 2010, 31, 1798-1804.
[126]
Papp, S.; Korosi, L.; Gool, B.; Dederichs, T.; Mela, P.; Moller, M.; Dékány, I. Formation of gold nanoparticles in diblock copolymer micelles with various reducing agents: kinetic and thermodynamic studies. J. Therm. Anal. Calorim., 2010, 101, 865-872.
[127]
Elmaci, A.; Hacaloglu, J.; Kayran, C.; Sakellariou, G.; Hadjichristidis, N. Thermal decomposition of polystyrene-b-poly(2-vinylpyridine) coordinated to conanoparticles. Polym. Degrad. Stabil., 2009, 94, 2023-2027.
[128]
Akasaka, S.; Mori, H.; Osaka, T.; Mareau, V.H.; Hasegawa, H. Controlled introduction of metal nanoparticles into a microdomain structure. Macromolecules, 2009, 42, 1194-1202.
[129]
Sakamoto, N.; Harada, M.; Hashimoto, T. In situ and time-resolved SAXS studies of Pdnanoparticle formation in a template of block copolymer microdomain structures. Macromolecules, 2006, 39, 1116-1124.
[130]
Wang, W.; Zhao, J.; Yu, H.; Zhou, N.; Zhang, Z.; Zhu, X. Simultaneously improving controls over molecular weight and stereoregularity of Poly(4-vinylpyridine) via a hydrogen bonding-facilitated controlled radical polymerization. Polymer., 2013, 54, 3248-3253.
[131]
Lutz, J.F.; Jakubowski, W.; Matyjaszewski, K. Controlled/living radical polymerization of methacrylic monomers in the presence of lewis acids: Influence on tacticity. Macromol. Rapid Commun., 2004, 25, 486-492.
[132]
Miura, Y.; Satoh, T.; Narumi, A.; Nishizawa, O.; Okamoto, Y.; Kakuchi, T. Atom transfer radical polymerization of methyl methacrylate in fluoroalcohol: Simultaneous control of molecular weight and tacticity. Macromolecules, 2005, 38, 1041-1043.
[133]
Miura, Y.; Satoh, T.; Narumi, A.; Nishizawa, O.; Okamoto, Y.; Kakuchi, T. Synthesis of well-defined syndiotactic poly(methyl methacrylate) with low-temperature atom transfer radical polymerization in fluoro alcohol. J. Polym. Sci. Part A Polym. Chem., 2006, 44, 1436-1446.
[134]
Kamigaito, M.; Satoh, K. Stereospecific living radical polymerization for simultaneous control of molecular weight and tacticity. J. Polym. Sci. Part A Polym. Chem., 2006, 44, 6147-6158.
[135]
Liu, W.; Tang, K.; Guo, Y.; Koike, Y.; Okamoto, Y. Tacticity control in the radical polymerization of 2,2,2-trifluoroethyl methacrylate with fluoroalcohol. J. Fluor. Chem., 2003, 123, 147-151.
[136]
Liu, W.; Koike, Y.; Okamoto, Y. Stereochemistry of the radical polymerization of vinyl pentafluorobenzoate. Polymer., 2004, 45, 5491-5495.
[137]
Zhao, L.; Tsuchiya, K.; Inoue, Y. Fully-biodegradable poly(3-hydroxybutyrate)/poly(vinyl alcohol) blend films with compositional gradient. Macromol. Biosci., 2004, 4, 699-705.
[138]
Gibson, H.; Bailey, F. Chemical modification of polymers. Borohydride reducing agents derived from anion exchange resins. J. Chem. Soc. Chem. Commun., 1977, 815a.
[139]
Hutchins, R.; Natale, N.; Taffer, I. Cyanoborohydride supported on an anion exchange resin as a selective reducing agent. J. Chem. Soc. Chem. Commun., 1978, 1088-1089.
[140]
Amaratunga, W.; Fréchet, J.M. Polymeric reagents VII. Polystyryldiphenylphosphine tetrahydroborate copper I: A new recyclable reducing agent. Polymer Prepr., 1981, 22, 151-152.
[141]
Lakouraj, M.; Tajbakhsh, M.; Mahalli, M. Ionene-Bound Borohydrides: Efficient, selective, and versatile Polymer-Supported reducing agents. Monatsh. Chem., 2007, 139, 117-123.
[142]
Caiqin, Q.; Ling, X.; Yumin, D.; Xiaowen, S.; Jiawei, C. A new cross-linked quaternized-chitosan resin as the support of borohydride reducing agent. React. Funct. Polym., 2002, 50, 165-171.
[143]
Goudgaon, N.; Wadgaonkar, P.; Kabalka, G. The Reduction of α,β-Unsaturated Nitroalkenes to Nitroalkanes with Borohydride Supported on an Ion Exchange Resin. Synth. Commun., 1989, 19, 805-811.
[144]
Min Yoon, N.; Bae Park, K.; Soo Gyoung, Y. Chemoselective reduction of carbonyl compounds with borohydride exchange resin in alcoholic solvents. Tetrahedron Lett., 1983, 24, 5367-5370.
[145]
Kabalka, G.; Wadgaonkar, P.; Chatla, N. The Reduction of Azides with Borohydride Supported on an Ion Exchange Resin. Synth. Commun., 1990, 20, 293-299.
[146]
Bacquet, M.; Salunkhe, M.; Caze, C. Influence of a spacer on the kinetics of reduction of carbonyl compounds with porous borohydride exchange resin. React. Polym., 1992, 18, 185-190.
[147]
Hallensleben, M.L. Preparation of poly (4-vinylpyridine borane) and its action as polymeric reducing reagent. J. Polym. Sci. Symp, 1974, 47, 1-9.
[148]
Katritzky, A.R. Infrared absorption of heteroaromatic and benzenoid six-membered monocyclic nuclei. Part VI. Pyridine–boron complexes. J. Chem. Soc., 1959, 2049.
[149]
Firouzabadi, H.; Tamami, B.; Goudarzian, N. Cross-linked polyvinylpyridine supported zinc borohydride as a highly chemoselective reducing agent. Synth. Commun., 1991, 21, 2275-2285.
[150]
Tamami, B.; Goudarzian, N. Polymer supported zinc borohydride: a stable, efficient, selective, and regenerable reducing agent for variety of organic compounds. Iran. J. Chem. Chem. Eng, 1996, 15, 63-71.
[151]
Tamami, B.; Goudarzian, N. Polymer supported ziroconium borohydride: a stable, efficient and regenerable reducing agent. J. Chem. Soc. Chem. Commun., 1994, 1079.
[152]
Khaligh, N.G. Poly(1,4-butyl-bis-vinylpyridinium) borohydride as a new stable and efficient reducing agent in organic synthesis. C. R. Chim., 2013, 16, 721-727.
[153]
Khaligh, N.G.; Ghasem-Abadi, P.G.; Mihankhah, T. Poly(n-butyl-4-vinylpyridinium) borohydride as a new stable and efficient reducing agent in organic synthesis. C. R. Chim., 2014, 17, 23-29.
[154]
Seyden-Penne, J. Reductions by the alumino- and borohydrides in organic synthesis, 2nd ed; Wiley-VCH: New York, 1997.
[155]
Gribble, G.; Ferguson, D. Reactions of sodium borohydride in acidic media. Selective reduction of aldehydes with sodium triacetoxyborohydride. J. Chem. Soc. Chem. Commun., 1975, 535-536.
[156]
Pribyl, J.; Fletcher, B.; Steckle, W.; Taylor-Pashow, K.; Shehee, T.; Benicewicz, B. Photoinitiated polymerization of 4-vinylpyridine on polyHIPE foam surface toward improved Pu separations. Anal. Chem., 2017, 89, 5174-5178.
[157]
Pribyl, J.G.; Taylor-Pashow, K.M.L.; Shehee, T.C.; Benicewicz, B.C. High-Capacity Poly(4-vinylpyridine) Grafted PolyHIPE Foams for Efficient Plutonium Separation and Purification. ACS Omega, 2018, 3, 8181-8189.
[158]
Ogawa, H.; Nishikawa, Y.; Takenaka, M.; Fujiwara, A.; Nakanishi, Y.; Tsujii, Y.; Takata, M.; Kanaya, T. Visualization of individual images in patterned organic-inorganic multilayers using GISAXS-CT. Langmuir, 2017, 33, 4675-4681.
[159]
Sun, Y.S.; Lin, C.F.; Luo, S.T.; Su, C.Y. Block-copolymer-templated hierarchical porous carbon nanostructures with nitrogen-rich functional groups for molecular sensing. ACS Appl. Mater. Interfaces, 2017, 9, 31235-31244.
[160]
Venault, A.; Lai, M.W.; Jhong, J.F.; Yeh, C.C.; Yeh, L.C.; Chang, Y. Superior Bioinert Capability of Zwitterionic Poly(4-vinylpyridine propylsulfobetaine) Withstanding Clinical Sterilization for Extended Medical Applications. ACS Appl. Mater. Interfaces, 2018, 10, 17771-17783.
[161]
Olah, G.A.; Mathew, T.; Goeppert, A.; Török, B.; Bucsi, I.; Li, X.Y.; Wang, Q.; Martinez, E.R.; Batamack, P.; Aniszfeld, R.; Prakash, G.K. Ionic liquid and solid HF equivalent amine-poly(hydrogenfluoride) complexes effecting efficient environmentally friendly isobutane-isobutylene alkylation. J. Am. Chem. Soc., 2005, 127, 5964-5969.
[162]
Prakash, G.K.S.; Colmenares, J.C.; Batamack, P.T.; Mathew, T.; Olah, G.A. Poly(4-vinylpyridine) catalyzed selective methanolysis of methyl and methylene bromides. Tetrahedron Lett., 2009, 50, 6016-6018.
[163]
Tai, A.; Iwaoka, Y.; Ito, H. Regioselective monoacylation of 2-O-α-D-glucopyranosyl-L-ascorbic acid by a polymer catalyst in N,N-dimethylformamide. Carbohydr. Res., 2011, 346, 2511-2514.
[164]
Shirini, F.; Khaligh, N.G. Poly(4-vinylpyridine) catalyzed chemoselective O-TMS protection of alcohols and phenols and N-Boc protection of amines. J. Iran. Chem. Soc, 2012, 9, 495-502.
[165]
Albadi, J.; Mansournezhad, A.; Darvishi-Paduk, M. Poly(4-vinylpyridine): As a green, efficient and commercial available basic catalyst for the synthesis of chromene derivatives. Chin. Chem. Lett., 2013, 24, 208-210.
[166]
Li, Q.; Tao, W.; Li, A.; Zhou, Q.; Shuang, C. Poly (4-vinylpyridine) catalyzed isomerization of maleic acid to fumaric acid. Appl. Catal. A Gen., 2014, 484, 148-153.
[167]
Khaligh, N.G.; Abbo, H.S.; Titinchi, S.J.J. Synthesis of N-methyl imines in the presence of poly(N-vinylpyridine) as a reusable solid base catalyst by a mechanochemical process. Res. Chem. Intermed., 2017, 43, 901-910.
[168]
Tansukawat, N.D.; See, A.E.; Jiranuntarat, S.; Joshua, R.; Corbin, J.R.; Schomaker, J.M. Method for small-scale production of deuterochloroform. J. Org. Chem., 2018, 83, 8739-8742.
[169]
Caporusso, A.M.; Innocenti, P.; Aronica, L.A.; Vitulli, G.; Gallina, R.; Biffis, A.; Zecca, M.; Corain, B. Functional resins in palladium catalysis: promising materials for Heck reaction in aprotic polar solvents. J. Catal., 2005, 234, 1-13.
[170]
Evangelisti, C.; Panziera, N.; Pertici, P.; Vitulli, G.; Salvadori, P.; Battocchio, C.; Polzonetti, G. Palladium nanoparticles supported on polyvinylpyridine: Catalytic activity in Heck-type reactions and XPS structural studies. J. Catal., 2009, 262, 287-293.
[171]
Yu, K.; Sommer, W.; Richardson, J.M.; Weck, M.; Jones, C.W. Evidence that SCS pincer Pd(II) complexes are only precatalysts in Heck catalysis and the implications for catalyst recovery and reuse. Adv. Synth. Catal., 2005, 347, 161-171.
[172]
Mennecke, K.; Solodenko, W.; Kirschning, A. Carbon-carbon cross-coupling reactions under continuous flow conditions using Poly(vinylpyridine) doped with Palladium. Synthesis, 2008, 1589-1599.
[173]
Solodenko, W.; Mennecke, K.; Vogt, C.; Gruhl, S.; Kirschning, A. Polyvinylpyridine, a versatile solid phase for coordinative immobilisation of Palladium precatalysts - Applications in Suzuki-Miyaura reactions. Synthesis, 2006, 1873-1881.
[174]
Shi, P.; Gao, C.; He, X.; Sun, P.; Zhang, W. Multicompartment nanoparticles of poly(4-vinylpyridine) graft block terpolymer: Synthesis and application as scaffold for efficient Au nanocatalyst. Macromolecules, 2015, 48, 1380-1389.
[175]
Yang, L.; Zhang, M.; Lan, Y.; Zhang, W. Hollow shell–corona microspheres with a mesoporous shell as potential microreactors for Au-catalyzed aerobic oxidation of alcohols. New J. Chem., 2010, 34, 1355-1364.
[176]
Schrinner, M.; Proch, S.; Mei, Y.; Kempe, R.; Miyajima, N.; Ballauff, M. Stable Bimetallic Gold–Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes: Synthesis, Characterization, and Application for the Oxidation of Alcohols. Adv. Mater., 2008, 20, 1928-1933.
[177]
Biffis, A.; Cunial, S.; Spontoni, P.; Prati, L. Microgel-stabilized gold nanoclusters: Powerful “quasi-homogeneous” catalysts for the aerobic oxidation of alcohols in water. J. Catal., 2007, 251, 1-6.
[178]
Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J. Am. Chem. Soc., 2005, 127, 9374-9375.
[179]
Pulko, I.; Krajnc, P. High internal phase emulsion templating - a path to hierarchically porous functional polymers. Macromol. Rapid Commun., 2012, 33, 1731-1746.
[180]
Silverstein, M.S. PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog. Polym. Sci., 2014, 39, 199-234.
[181]
Brown, J.F.; Krajnc, P.; Cameron, N.R. PolyHIPE supports in batch and flow through Suzuki cross-coupling reactions. Ind. Eng. Chem. Res., 2005, 44, 8565-8572.
[182]
Koler, A.; Paljevac, M.; Cmager, N.; Iskra, J.; Kolar, M.; Krajnc, P. Poly(4-vinylpyridine) polyHIPEs as catalysts for cycloaddition click reaction. Polymer., 2017, 126, 402-407.
[183]
Sahiner, N.; Turhan, T.; Lyon, L.A. ILC (ionic liquid colloids) based on p(4-VP) (poly(4-vinyl pyridine)) microgels: Synthesis, characterization and use in hydrogen production. Energy, 2014, 66, 256-263.
[184]
Sahiner, N.; Yildiz, S. Preparation of superporous poly(4-vinylpyridine) cryogel and their templated metal nanoparticle composites for H2 production via hydrolysis reactions. Fuel Process. Technol., 2014, 126, 324-331.
[185]
Oliveira, A.A.; Teixeira, I.F.; Leandro, P.; Ribeiro, E.L.; Lorencon, E.; Ardisson, J.D.; Fernandez-Outon, L.; Waldemar, A.A.; Macedo, F.; Moura, C.C. Magnetic amphiphilic nanocomposites produced via chemical vapor deposition of CH4 on Fe–Mo/nano-Al2O3. Appl. Catal. A., 2013, 456, 126-134.
[186]
Teixeira, I.F.; Oliveira, A.A.; Christofani, T.; Moura, C.C. Biphasic oxidation promoted by magnetic amphiphilic nanocomposites undergoing a reversible emulsion process. J. Mater. Chem. A., 2013, 1, 10203-10208.
[187]
De Souza, W.F.; Guimaraes, I.; Guerreiro, M.C.; Oliveira, L.C.A. Catalytic oxidation of sulfur and nitrogen compounds from diesel fuel. Appl. Catal. A., 2009, 360, 205-209.
[188]
Vít, Z.; Gulková, D.; Kaluža, L.; Kupčík, J. Pd–Pt catalysts on mesoporous SiO2–Al2O3 with superior activity for HDS of 4,6-dimethyldibenzothiophene: Effect of metal loading and support composition. Appl. Catal. B, 2015, 179, 44-53.
[189]
Ali, M.F.; Al-Malki, A.; El-Ali, B.; Martinie, G.; Siddiqui, M.N. Deep desulphurization of gasoline and diesel fuels using non-hydrogen consuming techniques. Fuel, 2006, 85, 1354-1363.
[190]
Zhao, H.; Baker, G.A. Oxidative desulfurization of fuels using ionic liquids: A review. Front. Chem. Sci. Eng, 2015, 9, 262-279.
[191]
Zhu, W.; Li, H.; Jiang, X.; Yan, Y.; Lu, J.; Xia, J. Oxidative desulfurization of fuels catalyzed by peroxotungsten and peroxomolybdenum complexes in ionic liquids. Energy Fuels, 2007, 21, 2514-2516.
[192]
Piccinino, D.; Abdalghani, I.; Botta, G.; Crucianelli, M.; Passacantando, M.; Di Vacri, M.L.; Saladino, R. Preparation of wrapped carbon nanotubes poly(4-vinylpyridine)/MTO based heterogeneous catalysts for the oxidative desulfurization (ODS) of model and synthetic diesel fuel. Appl. Catal. B Environ, 2017, 200, 392-401.
[193]
Tarasevich, M.R.; Sadkowski, A.; Yeager, E. In omprehensive Treatise of
Electrochemistry, B. E. Conway, J. O. M. Bockris, E. Yeager, S. U. M.
Kahn, R. E. White, Eds.; Plenum: New York. 1983, Vol. 7, pp 301-398.
[194]
Adzic, R.R. In Electrocatalysis., J. Lipkowski, P. N. Ross, Eds.; Wiley-VCH:
New York. 1998, pp 197-242.
[195]
Kim, J.; Gewirth, A.A. Electrocatalysis of peroxide reduction by Au-stabilized, Fe-containing poly(vinylpyridine) films. J. Phys. Chem. B, 2005, 109, 9684-9690.
[196]
Guo, W.; Wang, G.; Wang, Q.; Dong, W.; Yang, M.; Huang, X.; Yu, J.; Shi, Z. A hierarchical Fe3O4@P4VP@MoO2(acac)2 nanocomposite: Controlled synthesis and green catalytic application. J. Mol. Catal. Chem., 2013, 378, 344-349.
[197]
Liu, X.Q.; Guan, Y.P.; Ma, Z.Y.; Liu, H.Z. Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization. Langmuir, 2004, 20, 10278-10282.
[198]
Turmanova, S.; Vassilev, K.; Boneva, S. Preparation, structure and properties of metal–copolymer complexes of poly-4-vinylpyridine radiation-grafted onto polymer films. React. Funct. Polym., 2008, 68, 759-767.
[199]
Albadi, J.; Shirini, F.; Abasi, J.; Armand, N.; Motaharizadeh, T. A green, efficient and recyclable poly(4-vinylpyridine)-supported copper iodide catalyst for the synthesis of coumarin derivatives under solvent-free conditions. C. R. Chim., 2013, 16, 407-411.
[200]
Senge, M.O.; Davis, M.J. Porphyrin (porphine)‒A neglected parent compound with potential. J. Porphyr. Phthalocyanines, 2010, 14, 557-567.
[201]
Barron, P.M.; Wray, C.A.; Hu, C.; Guo, Z.; Choe, W. A bioinspired synthetic approach for building metal‒organic frameworks with accessible metal centers. Inorg. Chem., 2010, 49, 10217-10219.
[202]
Liu, W.; Groves, J.T. Manganese porphyrins catalyze selective C‒H bond halogenations. J. Am. Chem. Soc., 2010, 132, 12847-12849.
[203]
Zagal, J.H.; Griveau, S.; Silva, J.F.; Nyokong, T.; Bedioui, F. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord. Chem. Rev., 2010, 254, 2755-2791.
[204]
Dunbar, A.D.F.; Brittle, S.; Richardson, T.H.; Hutchinson, J.; Hunter, C.A. Detection of volatile organic compounds using porphyrin derivatives. J. Phys. Chem. B, 2010, 114, 11679-11702.
[205]
Wang, H.L.; Sun, Q.; Chen, M.; Miyake, J.; Qian, D.J. Layer-by-Layer assembly and characterization of multilayers of a manganese porphyrin linked poly(4-vinylpyridinium) derivative and poly (styrenesulfonic acid-o-maleic) acid. Langmuir, 2011, 27, 9880-9889.
[206]
Wang, S.; Zhang, M.; Zhang, W. Yolk-Shell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catal., 2011, 1, 207-211.
[207]
Wen, F.; Zhang, W.; Wei, G.; Wang, Y.; Zhang, J.; Zhang, M.; Shi, L. Synthesis of noble metal nanoparticles embedded in the shell layer of core−shell poly(styrene-co-4-vinylpyridine) micospheres and their application in catalysis. Chem. Mater., 2008, 20, 2144-2150.
[208]
Wang, S.; Zhang, M.; Wang, D.; Zhang, W.; Liu, S. Synthesis of hollow mesoporous silica microspheres through surface sol–gel process on polystyrene-co-poly(4-vinylpyridine) core–shell microspheres. Microporous Mesoporous Mater., 2011, 139, 1-7.
[209]
Khanal, A.; Inoue, Y.; Yada, M.; Nakashima, K. Synthesis of silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure. J. Am. Chem. Soc., 2007, 129, 1534-1535.
[210]
Pathak, S.; Greci, M.T.; Kwong, R.C.; Mercado, K.; Prakash, G.K.S.; Olah, G.A.; Thompson, M.E. Synthesis and applications of palladium-coated poly(vinylpyridine) nanospheres. Chem. Mater., 2000, 12, 1985-1989.
[211]
Wang, H.; Thia, L.; Li, N.; Ge, X.; Liu, Z.; Wang, X. Selective electro-oxidation of glycerol over Au supported on extended poly(4-vinylpyridine) functionalized graphene. Appl. Catal. B Environ, 2015, 166-167, 25-31.
[212]
Zhang, Z.; Sèbea, G.; Wang, X.; Tam, K.C. Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts. Carbohydr. Polym., 2018, 182, 61-68.
[213]
Fan, S.; Luan, Y.; Wang, J.; Gao, H.; Zhang, X.; Wang, G. Monodispersed poly(4-vinylpyridine) spheres supported Fe(III) material: An efficient and reusable catalyst for benzylic oxidation. J. Mol. Catal.A Chem., 2015, 404-405, 186-192.
[214]
Jumde, R.P.; Marelli, M.; Scotti, N.; Mandoli, A.; Psaro, R.; Evangelisti, C. Ultrafine palladium nanoparticles immobilized into poly(4-vinylpyridine)-based porous monolith for continuous-flow Mizoroki–Heck reaction. J. Mol. Catal. A Chem., 2016, 414, 55-61.
[215]
Xi, X.; Liu, Y.; Shi, J.; Cao, S. Palladium complex of poly (4-vinylpyridine-co-acrylic acid) for homogeneous hydrogenation of aromatic nitro compounds. J. Mol. Catal. A Chem., 2003, 192, 1-7.
[216]
Hung-Low, F.; Uzcátegui, G.C.; Ortega, M.C.; Rivas, A.B.; Yanez, J.E.; Alvarez, J.; Pardey, A.J.; Longo, C. Hydroesterification and hydroformylation of 1-hexene catalyzed by rhodium complexes immobilized on poly(4-vinylpyridine). Catal. Today, 2005, 107-108, 273-281.
[217]
Stamenova, R.; Tsvetanov, C.B.; Vasssilev, K.G.; Tanielyan, S.K. Ivanov, Polymer-supported molybdenum and vanadium catalysts for epoxidation of alkenes by alkyl hydroperoxides. J. Appl. Polym. Sci., 1991, 42, 807-812.
[218]
Cao, L.J.; Wang, G.; Shi, L.; Yang, M.; Sun, D.B. Preparation and catalytic Application of Poly 4-Vinylpyridine Microspheres. J. Appl. Polym. Sci., 2010, 116, 3178-3183.
[219]
Khaligh, N.G.; Shirini, F. Preparation, characterization and use of poly(4-vinylpyridinium) hydrogen sulfate salt as an eco-benign, efficient and reusable solid acid catalyst for the chemoselective 1,1-diacetate protection and deprotection of aldehydes. J. Mol. Catal. A Chem., 2011, 348, 20-29.
[220]
Khaligh, N.G.; Shirini, F. Ultrasound assisted the chemoselective 1,1-diacetate protection and deprotection of aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate salt as an eco-benign, efficient and reusable solid acid catalyst. Ultrason. Sonochem., 2013, 20, 19-25.
[221]
Jiang, Y.X.; Chen, X.M.; Mo, Y.F.; Tong, Z.F. Preparation and properties of Al-PILC supported SO42−/TiO2 superacid catalyst. J. Mol. Catal. A Chem., 2004, 213, 231-234.
[222]
Borah, K.J.; Borah, R. Poly(4-vinylpyridine)-supported sulfuric acid: an efficient solid acid catalyst for the synthesis of coumarin derivatives under solvent-free conditions. Monatsh. Chem., 2011, 142, 1253-1257.
[224]
Khaligh, N.G. Poly(4-vinylpyridinium) hydrogen sulfate: an efficient catalyst for the synthesis of xanthene derivatives under solvent-free conditions. Catal. Sci. Technol., 2012, 2, 2211-2215.
[225]
Wu, L.; Zhang, J.; Fang, L.; Yang, C.; Yan, F. Silica chloride catalyzed synthesis of 14-aryl-14H-dibenzo[a,i]xanthene-8,13-diones. Dyes Pigm, 2010, 86, 93-96.
[226]
Ko, S.; Yao, C.F. Heterogeneous catalyst: Amberlyst-15 catalyzes the synthesis of 14-substituted-14H-dibenzo[a,j]xanthenes under solvent-free conditions. Tetrahedron Lett., 2006, 47, 8827-8829.
[227]
Shaterian, H.R.; Ghashang, M.; Hassankhani, A. One-pot synthesis of aryl 14H-dibenzo[a,j]xanthene leuco-dye derivatives. Dyes Pigm, 2008, 76, 564-568.
[228]
Wu, L.Q.; Wu, Y.F.; Yang, C.G.; Yang, L.M.; Yang, L.J. Silica supported perchloric acid: an efficient catalyst for the synthesis of 14-aryl-14H-dibenzo[a,i]xanthene-8,13-diones. J. Braz. Chem. Soc., 2010, 21, 941-945.
[229]
Khaligh, N.G. Poly(4-vinylpyridinium) hydrogen sulfate: A novel and efficient catalyst for the synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes under conventional heating and ultrasound irradiation. Ultrason. Sonochem., 2012, 19, 736-739.
[230]
Nagarapu, L.; Kantevari, S.; Mahankhali, V.C.; Apuri, S. Potassium dodecatungstocobaltate trihydrate (K5CoW12O40.3H2O): A mild and efficient reusable catalyst for the synthesis of aryl-14H-dibenzo[a.j]xanthenes under conventional heating and microwave irradiation. Catal. Commun., 2007, 8, 1173-1177.
[231]
Madhav, J.V.; Reddy, V.T.; Reddy, P.N.; Reddy, M.N.; Kuarm, S.; Crooks, P.A.; Rajitha, B. Cellulose sulfuric acid: An efficient biodegradable and recyclable solid acid catalyst for the one-pot synthesis of aryl-14H-dibenzo[a.j]xanthenes under solvent-free conditions. J. Mol. Catal. A Chem., 2009, 304, 85-87.
[232]
Khaligh, N.G. Ultrasound-assisted one-pot synthesis of substituted coumarins catalyzed by poly(4-vinylpyridinium) hydrogen sulfate as an efficient and reusable solid acid catalyst. Ultrason. Sonochem., 2013, 20, 1062-1068.
[233]
Banothu, J.; Bavantula, R.; Crooks, P.A. Poly(4-Vinylpyridinium) hydrogen sulfate catalyzed an efficient and ecofriendly protocol for the one-pot multicomponent synthesis of 1,8-acridinediones in aqueous medium; J. Chem, 2013. 6 pages
[235]
Khaligh, N.G. Three‐component, one‐pot synthesis of benzo[f]indenoquinoline derivatives catalyzed by poly(4‐vinylpyridinium) hydrogen sulfate. Chin. J. Catal., 2014, 35, 474-480.
[236]
Wang, X.S.; Zhou, J.; Yang, K.; Li, Y.L. Efficient method for the synthesis of 2-(3-arylbenzo[f]quinolin-2-yl)ethanol derivatives through an unusual ring-opening of THF-involved reaction. Tetrahedron Lett., 2011, 52, 612-614.
[238]
Bhargava, G.; Mohan, C.; Mahajan, M.P. Lewis acid promoted imino Diels–Alder reactions of 5-dienyl pyrimidinones with N-aryl/naphthyl imines: synthesis of novel quinoline/benzoquinoline derivatives. Tetrahedron, 2008, 64, 3017-3024.
[240]
Janardhan, B.; Rajitha, B.; Crooks, P.A. Poly(4-vinyl pyridinium)hydrogen sulfate: An efficient heterogeneous catalyst for the one-pot synthesis of polyhydroquinolines via unsymmetrical Hantzsch reaction in aqueous medium. J. Saudi Chem. Soc., 2014, 18, 722-727.
[241]
Janardhan, B.; Rajitha, B.; Crooks, P.A. Poly(4-vinylpyridinium)hydrogen sulfate: An efficient and recyclable Bronsted acid catalyst for the synthesis of fused 3,4-dihydropyrimidin-2(1H)-ones and thiones. J. Saudi Chem. Soc., 2016, 20, S221-S226.
[243]
To, Q.H.; Lee, Y.R.; Kim, S.H. Efficient one-pot synthesis of acridinediones by indium (III) triflate-catalyzed reactions of β-enaminones, aldehydes, and cyclic 1,3-dicarbonyls. Bull. Korean Chem. Soc., 2012, 33, 1170-1176.
[244]
Wang, X.S.; Zhang, M.M.; Jiang, H.; Yao, C.S.; Tu, S.J. Three-component green synthesis of N-arylquinoline derivatives in ionic liquid [Bmim+][BF4−]: reactions of arylaldehyde, 3-arylamino-5,5-dimethylcyclohex-2-enone, and active methylene compounds. Tetrahedron, 2007, 63, 4439-4449.
[245]
Kumar, A.; Maurya, R.A. Synthesis of polyhydroquinoline derivatives through unsymmetric Hantzsch reaction using organocatalysts. Tetrahedron, 2007, 63, 1946-1952.
[248]
Wang, J.; Zong, Y.; Fu, R.; Niu, Y.; Yue, G.; Quan, Z.; Wang, X.; Pan, Y. Poly(4-vinylpyridine) supported acidic ionic liquid: A novel solid catalyst for the efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones under ultrasonic irradiation. Ultrason. Sonochem., 2014, 21, 29-34.
[249]
Li, W.Y.; Zong, Y.X.; Wang, J.K.; Niu, Y.Y. Sulfonated poly(4-vinylpyridine) heteropolyacid salts: A reusable green solid catalyst for Mannich reaction. Chin. Chem. Lett., 2014, 25, 575-578.
[250]
Shirini, F.; Goli Jolodar, O. Introduction of N-sulfonic acid poly(4-vinylpyridinum) chloride as an efficient and reusable catalyst for the chemoselective 1,1-diacetate protection and deprotection of aldehydes. J. Mol. Catal. A Chem., 2012, 356, 61-69.
[251]
Shirini, F.; Khaligh, N.G.; Goli Jolodar, O. N-Sulfonic acid poly(4-vinylpyridinium) chloride: an efficient and reusable solid acid catalyst in N-Boc protection of amines. J. Iran. Chem. Soc, 2013, 10, 181-188.
[252]
Shirini, F.; Khaligh, N.G.; Jolodar, O.G. An efficient and practical synthesis of bis(indolyl)methanes catalyzed by N-sulfonic acid poly(4-vinylpyridinium) chloride. Dyes Pigm, 2013, 98, 290-296.
[253]
Shirini, F.; Abedini, M.; Pourhasan, R. N-sulfonic acid poly(4-vinylpyridinium) chloride: A novel polymeric and reusable catalyst for the preparation of xanthenes derivatives. Dyes Pigm, 2013, 99, 250-255.
[254]
Shirini, F.; Abedini, M. Pourhasan-Kisomi. R. N-Sulfonic acid poly(4-vinylpyridinium) chloride as a highly efficient and reusable catalyst for the Biginelli reaction. Chin. Chem. Lett., 2014, 25, 111-114.
[255]
Moghaddas, M.; Davoodnia, A.; Heravi, M.M.; Tavakoli-Hoseini, N. Sulfonated carbon catalyzed Biginelli reaction for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and –thiones. Chin. J. Catal., 2012, 33, 706-710.
[256]
Javad Kalbasi, R.; Massah, A.R.; Daneshvarnejad, B. Preparation and characterization of bentonite/PS-SO3H nanocomposites as an efficient acid catalyst for the Biginelli reaction. Appl. Clay Sci., 2012, 55, 1-9.
[257]
Mahdavinia, G.H.; Sepehrian, H. MCM-41 anchored sulfonic acid (MCM-41-RSO3H): a mild, reusable and highly efficient heterogeneous catalyst for the Biginelli reaction. Chin. Chem. Lett., 2008, 19, 1435-1439.
[258]
Narahari, R.; Reguri, B.R.; Gudaparthi, O.; Mukkanti, K. Synthesis of dihydropyrimidinones via Biginelli multi-component reaction. Tetrahedron Lett., 2012, 53, 1543-1545.
[259]
Quan, Z.J.; Da, Y.X.; Zhang, Z.; Wang, X.C. PS–PEG–SO3H as an efficient catalyst for 3,4-dihydropyrimidones via Biginelli reaction. Catal. Commun., 2009, 10, 1146-1148.
[260]
Tamaddon, F.; Moradi, S. Controllable selectivity in Biginelli and Hantzsch reactions using nano-ZnO as a structure base catalyst. J. Mol. Catal. A Chem., 2013, 370, 117-122.
[261]
Moosavi-Zarea, A.R.; Zolfigol, M.A.; Noroozizadeh, E.; Zarei, M.; Karamian, R.; Asadbegy, M. Synthesis and characterization of acetic acid functionalized poly(4-vinylpyridinium) salt as new catalyst for the synthesis ofspiropyran derivatives and their biological activity. J. Mol. Catal. Chem., 2016, 425, 217-228.
[262]
Kiasat, A.R.; Mouradzadegun, A.; Saghanezhad, S.J. Poly (4‐vinylpyridinium butane sulfonic acid) hydrogen sulfate: An efficient, heterogeneous poly (ionic liquid), solid acid catalyst for the one‐pot preparation of 1‐amidoalkyl‐2‐naphthols and substituted quinolines under solvent‐free conditions. Chin. J. Catal., 2013, 34, 1861-1868.
[263]
Khaligh, N.G. Preparation, characterization and use of poly(4-vinylpyridinium) perchlorate as a new, efficient, and versatile solid phase catalyst for acetylation of alcohols, phenols and amines. J. Mol. Catal. A Chem., 2012, 363-364, 90-100.
[264]
Procopiou, P.A.; Baugh, S.P.D.; Flack, S.S.; Inglis, G.G.A. An extremely powerful acylation reaction of alcohols with acid anhydrides catalyzed by trimethylsilyl trifluoromethanesulfonate. J. Org. Chem., 1998, 63, 2342-2347.
[265]
Chakraborti, A.K.; Gulhane, R. Indium (III) chloride as a new, highly efficient, and versatile catalyst for acylation of phenols, thiols, alcohols, and amines. Tetrahedron Lett., 2003, 44, 6749-6753.
[266]
Moghadama, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Abdolmanaf Taghavi, S. Highly efficient and selective acetylation of alcohols and phenols with acetic anhydride catalyzed by a high-valent tin(IV) porphyrin, Sn(TPP)(BF4)2. J. Mol. Catal. A Chem., 2007, 274, 217-223.
[267]
Parac-Vogt, T.N.; Deleersnyder, K.; Binnemans, K. Lanthanide(III) Tosylates as new acylation catalysts. Eur. J. Org. Chem., 2005, 1810-1815.
[268]
Khaligh, N.G.; Shirini, F. Introduction of poly(4-vinylpyridinium) perchlorate as a new, efficient, and versatile solid acid catalyst for one-pot synthesis of substituted coumarins under ultrasonic irradiation. Ultrason. Sonochem., 2013, 20, 26-31.
[269]
Khaligh, N.G. Poly(4‐vinylpyridinium) perchlorate as an efficient solid acid catalyst for the chemoselective preparation of 1,1‐diacetates from aldehydes under solvent‐free conditions. Chin. J. Catal., 2014, 35, 329-334.
[270]
Shirini, F.; Esmaeeli‐Ranjbar, S.; Seddighi, M. Poly(4‐vinylpyridinium) perchlorate as an efficient and recyclable catalyst for the synthesis of biscoumarins and bisindoles. Chin. J. Catal., 2014, 35, 1017-1023.
[271]
Kocienski, P.J. Protecting Groups, 3rd ed; Georg Thieme Verlag: Stuttgart, 2004.
[272]
Sartori, G.; Ballani, R.; Bigi, F.; Bosica, G.; Maggi, R.; Right, P. Protection (and deprotection) of functional groups in organic synthesis by heterogeneous catalysis. Chem. Rev., 2004, 104, 199-250.
[273]
Khaligh, N.G.; Hazarkhani, H. The chemoselective N-Boc protection of amines in the presence of solid-supported perchloric acid as an efficient and reusable solid acid. Monatsh. Chem., 2014, 145, 1975-1980.
[274]
Khaligh, N.G. Synthesis of xanthene derivatives in the presence of poly(4-vinylpyridinium) perchlorate as a solid acid under grinding and solvent-free conditions. Polycycl. Aromat. Compd., 2014, 34, 493-503.
[275]
Khaligh, N.G. Ghasem‐Abadi. P.G. N‐Sulfonic acid poly(4‐vinylpyridinum) hydrogen sulfate as a novel, efficient, and reusable solid acid catalyst for acylation under solvent‐free conditions. Chin. J. Catal., 2014, 35, 1126-1135.
[276]
Khaligh, N.G.; Shirini, F. N-Sulfonic acid poly(4-vinylpyridinium) hydrogen sulfate as an efficient and reusable solid acid catalyst for one-pot synthesis of xanthene derivatives in dry media under ultrasound irradiation. Ultrason. Sonochem., 2015, 22, 397-403.
[277]
Shakibaei, G.I.; Mirzaei, P.; Bazgir, A. Dowex-50W promoted synthesis of 14-aryl-14H-dibenzo[a,j]xanthene and 1,8-dioxo-octahydroxanthene derivatives under solvent-free conditions. Appl. Catal. A Gen., 2007, 325, 188-192.
[278]
Khaligh, N.G. Investigation of the catalytic activity of poly(4-vinylpyridine) supported iodine as a new, efficient and recoverable catalyst for regioselective ring opening of epoxides. RSC Advances, 2012, 2, 3321-3327.
[279]
Khaligh, N.G.; Taraneh Mihankhah, T.; Johan, M.R. Efficient chemical fixation of CO2 into cyclic carbonates using poly(4-vinylpyridine) supported iodine as an eco-friendly and reusable heterogeneous catalyst. Heteroatom Chem., 2018, 29, e21418.