[1]
Koelle, M.R.; Talbot, W.S.; Segraves, W.A.; Bender, M.T.; Cherbas, P.; Hogness, D.S. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell, 1991, 67, 59-77.
[2]
Oro, A.E.; McKeown, M.; Evans, R.M. Relationship between the product of the Drosophila ultraspiracle locus and the vertebrate retinoid X receptor. Nature, 1990, 347, 298-301.
[3]
Henrich, V.C.; Sliter, T.J.; Lubahn, D.B.; MacIntyre, A.; Gilbert, L.I. A steroid/thyroid hormone receptor superfamily member in Drosophila melanogaster that shares extensive sequence similarity with a mammalian homologue. Nucleic Acids Res., 1990, 18, 4143-4148.
[4]
Shea, M.J.; King, D.L.; Conboy, M.J.; Mariani, B.D.; Kafatos, F.C. Proteins that bind to Drosophila chorion cis-regulatory elements: a new C2H2 zinc finger protein and a C2C2 steroid receptor-like component. Genes Dev., 1990, 4, 1128-1140.
[5]
Yao, T.P.; Forman, B.M.; Jiang, Z.; Cherbas, L.; Chen, J.D.; McKeown, M.; Cherbas, P.; Evans, R.M. Functional ecdysone receptor is the product of EcR and ultra spiracle genes. Nature, 1993, 366, 476-479.
[6]
Riddiford, L.M.; Cherbas, P.; Truman, J.W. Ecdysone receptors and their biological actions. Vitam. Horm., 2000, 60, 1-73.
[7]
Cynthia, L.; Elisabeth, M.; Paulien, P.; Jozef, B. The ecdysone receptor complex is essential for the reproductive success in the female desert locust, Schistocerca gregaria. Sci. Rep., 2019, 9, 15.
[8]
Farkaš, R.; Sláma, K. Insect biochem. Effect of bisacylhydrazine ecdysteroid mimics (RH-5849 and RH-5992) on chromosomal puffing, imaginal disc proliferation and pupariation in larvae of Drosophila melanogaster. Mol. Biol., 1999, 29, 1015-1027.
[9]
Carmichael, J.A.; Lawrence, M.C.; Graham, L.D.; Pilling, P.A.; Epa, V.C.; Noyce, L.; Lovrecz, G.; Winkler, D.A.; Pawlak-Skrzecz, A.; Eaton, R.E.; Hannan, G.N.; Hill, R.J. The X-ray structure of a hemipteran ecdysone receptor ligand-binding domain: comparison with a lepidopteran ecdysone receptor ligand-binding domain and implications for insecticide design. J. Biol. Chem., 2005, 280, 22258-22269.
[10]
Yadav, R.P.; Ibrahim, K.S.; Gurusubramanian, G.; Kumar, N.S. In silico docking studies of non-azadirachtin limonoids against ecdysone receptor of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Med. Chem. Res., 2015, 24, 2621-2631.
[11]
Schmutterer, H. The neem tree: Azadirachta indica A. Juss and other meliaceous plants: sources of unique natural products for integrated pest management, medicine, industry, and other purposes; Wiley: New York, 1995, pp. 1-696.
[12]
Gill, J.S.; Lewis, C.T. Systemic action of an insect feeding deterrent. Nature, 1971, 232, 402-403.
[13]
Ruscoe, C.N.E. Growth disruption effects of an insect antifeedant. Nat. New Biol., 1972, 236, 159-160.
[14]
Butterworth, J.H.; Morgan, E.D. Isolation of a substance that suppresses feeding in locusts. Chem. Commun., 1968, 1, 23.
[15]
Smith, S.L.; Mitchell, M.J. Effects of Azadirachtin on insect cytochrome P-450 dependent ecdysone 20-monooxygenase activity. Biochem. Biophys. Res. Commun., 1988, 154, 559-563.
[16]
Mitchell, M.J.; Smith, S.L.; Johnson, S.; Morgan, D. Effects of the neem tree compounds Azadirachtin, Salannin, Nimbin, and 6-Desacetylnimbin on ecdysone 20-monooxygenase activity. Arch. Insect Biochem. Physiol., 1997, 35, 199-209.
[17]
Boulahbel, B.; Aribi, N.; Kilani-Morakchi, S.; Soltani, N. Insecticidal activity of Azadirachtin on Drosophila melanogaster and recovery of normal status by exogenous 20-hydroxyecdysone. Afr. Entomol., 2015, 23(1), 224-234.
[18]
Nunes, M.L.; Carlini, C.R.; Marinowic, D.; Neto, F.K.; Fiori, H.H.; Scotta, M.C.; Zanella, P.L.Á.; Soder, R.B.; da Costa, J.C. Microcephaly and Zika virus: a clinical and epidemiological analysis of the current outbreak in Brazil. J. Pediatr., 2016, 92, 230-240.
[19]
Maria-Lucia, C.L.; Alessandra, L.C.; Paloma, A.V.; Tania, B.T.; Adriana, S.F.; Suely, F.P.; Onildo, T.S.; Clara, L.R.; Cristiana, M.N.C. Clinical, neuroimaging, and neurophysiological findings in children with microcephaly related to congenital Zika virus infection. Int. J. Environ. Res. Public Health, 2019, 16(3), 309-317.
[20]
Kraeme, M.U.G.; Cummings, D.A.T.; Funk, S.R.; Reiner, C. Reconstruction and prediction of viral disease epidemics. Epidemiol. Infect., 2019, 147e34
[21]
de Magalhães, C.S.; Barbosa, H.J.C.; Dardene, L.E. A genetic algorithm for the ligand-protein docking problem. Genet. Evol. Comput., 2004, 2004, 368-379.
[22]
Elton, A.S.C.; Daniel, A.B.O.; Sergio, A.S.; Farias, R.G.; João, B.L.M. Structure and electronic properties of azadiracthin. J. Mol. Model., 2014, 20, 1-7.
[23]
Arêas, E.P.G.; Pascutti, P.G.; Schreier, S.; Mundim, K.C.; Bisch, P.M. Molecular dynamics simulations of signal sequences at a membrane/water interface. J. Phys. Chem., 1995, 99, 14885-14892.
[24]
Pascutti, P.G.; El-Jaik, L.J.; Mundim, K.C.; Ito, A.S.; Bisch, P.M. Molecular dynamics simulation of α-melanocyte stimulating hormone in a water-membrane model interface. Eur. Biophys. J., 1999, 28, 499-509.
[25]
Pascutti, P.G.; Mundim, K.C.; Ito, A.S.; Bisch, P.M. Polarization effects on peptide conformations at water-membrane interface by molecular dynamics simulations. J. Comput. Chem., 1999, 20, 971-982.
[26]
Frisch, M.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Others,
Gaussian 09, revision a. 02, gaussian, Inc., Wallingford,
CT,, 2009.
[27]
Chai, J.D.; Head-Gordon, M. Long-range corrected double-hybrid density functionals. J. Chem. Phys., 2008, 128084106
[28]
Kabaleeswaran, V.; Rajan, S.S.; Govindachari, T.R.; Gopalakrishnan, G. Crystal and molecular structure of azadirachtin-A. Curr. Sci., 1994, 66, 362-364.