Review Article

人血清白蛋白识别药物的结构基础

卷 27, 期 30, 2020

页: [4907 - 4931] 页: 25

弟呕挨: 10.2174/0929867326666190320105316

价格: $65

摘要

背景:人血清白蛋白(HSA)是血浆中最丰富的蛋白质,是一种单体多结构域大分子,具有至少9个内源性和外源性配体结合位点。 HSA具有出色的配体结合能力,可作为许多化合物(包括大多数酸性药物)的储库和载体。 因此,HSA有可能影响药物的药代动力学和药效学。 目的:在本综述中,将详细分析和讨论药物与HSA多个位点结合的结构决定因素。 此外,分析和讨论了对支持药物识别,递送和功效的变构和竞争机制的见解。 结论:由于多种因素可调节药物与HSA的结合(例如,同时给药竞争相同结合位点的药物,配体与变构偶联的裂隙结合,遗传遗传疾病和翻译后修饰),配体与HSA的结合至关重要,不仅在生理条件下,而且在药物治疗管理上。

关键词: 人血清白蛋白,药物载体,药物识别,结构基础,药物结合的变构调节,药物结合的竞争性调节。

[1]
Goodman, L.S.; Brunton, L.L.; Chabner, B.; Knollmann, B.C. Goodman & Gilman’s Pharmacological Basis of Therapeutics; McGraw-Hill: New York, 2011.
[2]
di Masi, A.; Trezza, V.; Leboffe, L.; Ascenzi, P. Human plasma lipocalins and serum albumin: plasma alternative carriers? J. Control. Release, 2016, 228, 191-205.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.049] [PMID: 26951925]
[3]
Lindup, W.E.; Orme, M.C. Clinical pharmacology: plasma protein binding of drugs. Br. Med. J. (Clin. Res. Ed.), 1981, 282(6259), 212-214.
[http://dx.doi.org/10.1136/bmj.282.6259.212] [PMID: 6779954]
[4]
Schmidt, S.; Gonzalez, D.; Derendorf, H. Significance of protein binding in pharmacokinetics and pharmacodynamics. J. Pharm. Sci., 2010, 99(3), 1107-1122.
[http://dx.doi.org/10.1002/jps.21916] [PMID: 19852037]
[5]
Ascenzi, P.; Fanali, G.; Fasano, M.; Pallottini, V.; Trezza, V. Clinical relevance of drug binding to plasma proteins. J. Mol. Struct., 2014, 1077, 4-13.
[http://dx.doi.org/10.1016/j.molstruc.2013.09.053]
[6]
D’Arcy, P.F.; McElnay, J.C. Drug interactions involving the displacement of drugs from plasma protein and tissue binding sites. Pharmacol. Ther., 1982, 17(2), 211-220.
[http://dx.doi.org/10.1016/0163-7258(82)90012-2] [PMID: 6757977]
[7]
Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: from bench to bedside. Mol. Aspects Med., 2012, 33(3), 209-290.
[http://dx.doi.org/10.1016/j.mam.2011.12.002] [PMID: 22230555]
[8]
Rimac, H.; Debeljak, Ž.; Bojić, M.; Miller, L. Displacement of drugs from human serum albumin: from molecular interactions to clinical significance. Curr. Med. Chem., 2017, 24(18), 1930-1947.
[http://dx.doi.org/10.2174/0929867324666170202152134] [PMID: 28155602]
[9]
Ghuman, J.; Zunszain, P.A.; Petitpas, I.; Bhattacharya, A.A.; Otagiri, M.; Curry, S. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol., 2005, 353(1), 38-52.
[http://dx.doi.org/10.1016/j.jmb.2005.07.075] [PMID: 16169013]
[10]
Wang, Z.M.; Ho, J.X.; Ruble, J.R.; Rose, J.; Rüker, F.; Ellenburg, M.; Murphy, R.; Click, J.; Soistman, E.; Wilkerson, L.; Carter, D.C. Structural studies of several clinically important oncology drugs in complex with human serum albumin. Biochim. Biophys. Acta, 2013, 1830(12), 5356-5374.
[http://dx.doi.org/10.1016/j.bbagen.2013.06.032] [PMID: 23838380]
[11]
Ferraro, G.; Massai, L.; Messori, L.; Merlino, A. Cisplatin binding to human serum albumin: a structural study. Chem. Commun. (Camb.), 2015, 51(46), 9436-9439.
[http://dx.doi.org/10.1039/C5CC01751C] [PMID: 25873085]
[12]
Zhang, Y.; Lee, P.; Liang, S.; Zhou, Z.; Wu, X.; Yang, F.; Liang, H. Structural basis of non-steroidal anti-inflammatory drug diclofenac binding to human serum albumin. Chem. Biol. Drug Des., 2015, 86(5), 1178-1184.
[http://dx.doi.org/10.1111/cbdd.12583] [PMID: 25958880]
[13]
Sakurama, K.; Kawai, A.; Tuan Giam Chuang, V.; Kanamori, Y.; Osa, M.; Taguchi, K.; Seo, H.; Maruyama, T.; Imoto, S.; Yamasaki, K.; Otagiri, M. Analysis of the binding of aripiprazole to human serum albumin: the importance of a chloro-group in the chemical structure. ACS Omega, 2018, 3(10), 13790-13797.
[http://dx.doi.org/10.1021/acsomega.8b02057] [PMID: 30411049]
[14]
Kawai, A.; Yamasaki, K.; Enokida, T.; Miyamoto, S.; Otagiri, M. Crystal structure analysis of human serum albumin complexed with sodium 4-phenylbutyrate. Biochem. Biophys. Rep., 2018, 13, 78-82.
[http://dx.doi.org/10.1016/j.bbrep.2018.01.006] [PMID: 29387812]
[15]
He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358(6383), 209-215.
[http://dx.doi.org/10.1038/358209a0] [PMID: 1630489]
[16]
Curry, S.; Mandelkow, H.; Brick, P.; Franks, N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Biol., 1998, 5(9), 827-835.
[http://dx.doi.org/10.1038/1869] [PMID: 9731778]
[17]
Sugio, S.; Kashima, A.; Mochizuki, S.; Noda, M.; Kobayashi, K. Crystal structure of human serum albumin at 2.5 a resolution. Protein Eng., 1999, 12(6), 439-446.
[http://dx.doi.org/10.1093/protein/12.6.439] [PMID: 10388840]
[18]
Curry, S. Beyond expansion: structural studies on the transport roles of human serum albumin. Vox Sang., 2002, 83(Suppl. 1), 315-319.
[http://dx.doi.org/10.1111/j.1423-0410.2002.tb05326.x] [PMID: 12617161]
[19]
Fasano, M.; Curry, S.; Terreno, E.; Galliano, M.; Fanali, G.; Narciso, P.; Notari, S.; Ascenzi, P. The extraordinary ligand binding properties of human serum albumin. IUBMB Life, 2005, 57(12), 787-796.
[http://dx.doi.org/10.1080/15216540500404093] [PMID: 16393781]
[20]
Curry, S. Lessons from the crystallographic analysis of small molecule binding to human serum albumin. Drug Metab. Pharmacokinet., 2009, 24(4), 342-357.
[http://dx.doi.org/10.2133/dmpk.24.342] [PMID: 19745561]
[21]
Ascenzi, P.; Fasano, M. Allostery in a monomeric protein: the case of human serum albumin. Biophys. Chem., 2010, 148(1-3), 16-22.
[http://dx.doi.org/10.1016/j.bpc.2010.03.001] [PMID: 20346571]
[22]
Varshney, A.; Sen, P.; Ahmad, E.; Rehan, M.; Subbarao, N.; Khan, R.H. Ligand binding strategies of human serum albumin: how can the cargo be utilized? Chirality, 2010, 22(1), 77-87.
[http://dx.doi.org/10.1002/chir.20709] [PMID: 19319989]
[23]
Peters, T., Jr, Ed.; All about Albumin: Biochemistry, Genetics and Medical Applications; Academic Press: San Diego, London, 1996.
[24]
Mao, H.; Hajduk, P.J.; Craig, R.; Bell, R.; Borre, T.; Fesik, S.W. Rational design of diflunisal analogues with reduced affinity for human serum albumin. J. Am. Chem. Soc., 2001, 123(43), 10429-10435.
[http://dx.doi.org/10.1021/ja015955b] [PMID: 11673972]
[25]
Hein, K.L.; Kragh-Hansen, U.; Morth, J.P.; Jeppesen, M.D.; Otzen, D.; Møller, J.V.; Nissen, P. Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin. J. Struct. Biol., 2010, 171(3), 353-360.
[http://dx.doi.org/10.1016/j.jsb.2010.03.014] [PMID: 20347991]
[26]
Vallianatou, T.; Lambrinidis, G.; Tsantili-Kakoulidou, A. In silico prediction of human serum albumin binding for drug leads. Expert Opin. Drug Discov., 2013, 8(5), 583-595.
[http://dx.doi.org/10.1517/17460441.2013.777424] [PMID: 23461733]
[27]
Yang, F.; Zhang, Y.; Liang, H. Interactive association of drugs binding to human serum albumin. Int. J. Mol. Sci., 2014, 15(3), 3580-3595.
[http://dx.doi.org/10.3390/ijms15033580] [PMID: 24583848]
[28]
Zsila, F. Circular dichroism spectroscopic detection of ligand binding induced subdomain IB specific structural adjustment of human serum albumin. J. Phys. Chem. B, 2013, 117(37), 10798-10806.
[http://dx.doi.org/10.1021/jp4067108] [PMID: 24004247]
[29]
Zsila, F. Subdomain IB is the third major drug binding region of human serum albumin: toward the three-sites model. Mol. Pharm., 2013, 10(5), 1668-1682.
[http://dx.doi.org/10.1021/mp400027q] [PMID: 23473402]
[30]
Bhattacharya, A.A.; Grüne, T.; Curry, S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J. Mol. Biol., 2000, 303(5), 721-732.
[http://dx.doi.org/10.1006/jmbi.2000.4158] [PMID: 11061971]
[31]
Kaneko, K.; Chuang, V.T.; Minomo, A.; Yamasaki, K.; Bhagavan, N.V.; Maruyama, T.; Otagiri, M. Histidine146 of human serum albumin plays a prominent role at the interface of subdomains IA and IIA in allosteric ligand binding. IUBMB Life, 2011, 63(4), 277-285.
[http://dx.doi.org/10.1002/iub.457] [PMID: 21488149]
[32]
Ascenzi, P.; di Masi, A.; Leboffe, L.; Alberio, T.; Fanali, G.; Fasano, M. Molecular phylogenetic analyses of albuminoids reveal the molecular evolution of allosteric properties. IUBMB Life, 2013, 65(6), 544-549.
[http://dx.doi.org/10.1002/iub.1164] [PMID: 23568641]
[33]
Ascenzi, P.; di Masi, A.; Fanali, G.; Fasano, M. Heme-based catalytic properties of human serum albumin. Cell Death Discov., 2015, 1, 15025.
[http://dx.doi.org/10.1038/cddiscovery.2015.25] [PMID: 27551458]
[34]
di Masi, A.; Leboffe, L.; Trezza, V.; Fanali, G.; Coletta, M.; Fasano, M.; Ascenzi, P. Drugs modulate allosterically heme-Fe-recognition by human serum albumin and heme-fe-mediated reactivity. Curr. Pharm. Des., 2015, 21(14), 1837-1847.
[http://dx.doi.org/10.2174/1381612821666150302114430] [PMID: 25732555]
[35]
Bhattacharya, A.A.; Curry, S.; Franks, N.P. Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures. J. Biol. Chem., 2000, 275(49), 38731-38738.
[http://dx.doi.org/10.1074/jbc.M005460200] [PMID: 10940303]
[36]
Zunszain, P.A.; Ghuman, J.; McDonagh, A.F.; Curry, S. Crystallographic analysis of human serum albumin complexed with 4Z, 15E-bilirubin-IXalpha. J. Mol. Biol., 2008, 381(2), 394-406.
[http://dx.doi.org/10.1016/j.jmb.2008.06.016] [PMID: 18602119]
[37]
Zhu, L.; Yang, F.; Chen, L.; Meehan, E.J.; Huang, M. A new drug binding subsite on human serum albumin and drug-drug interaction studied by X-ray crystallography. J. Struct. Biol., 2008, 162(1), 40-49.
[http://dx.doi.org/10.1016/j.jsb.2007.12.004] [PMID: 18258455]
[38]
Lejon, S.; Cramer, J.F.; Nordberg, P. Structural basis for the binding of naproxen to human serum albumin in the presence of fatty acids and the GA module. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2008, 64(Pt 2), 64-69.
[http://dx.doi.org/10.1107/S174430910706770X] [PMID: 18259051]
[39]
Yang, F.; Bian, C.; Zhu, L.; Zhao, G.; Huang, Z.; Huang, M. Effect of human serum albumin on drug metabolism: structural evidence of esterase activity of human serum albumin. J. Struct. Biol., 2007, 157(2), 348-355.
[http://dx.doi.org/10.1016/j.jsb.2006.08.015] [PMID: 17067818]
[40]
Sudlow, G.; Birkett, D.J.; Wade, D.N. The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol., 1975, 11(6), 824-832.
[PMID: 1207674]
[41]
Sudlow, G.; Birkett, D.J.; Wade, D.N. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol., 1976, 12(6), 1052-1061.
[PMID: 1004490]
[42]
Carter, D.C.; Ho, J.X. Structure of serum albumin. Adv. Protein Chem., 1994, 45, 153-203.
[http://dx.doi.org/10.1016/S0065-3233(08)60640-3] [PMID: 8154369]
[43]
Yamasaki, K.; Maruyama, T.; Yoshimoto, K.; Tsutsumi, Y.; Narazaki, R.; Fukuhara, A.; Kragh-Hansen, U.; Otagiri, M. Interactive binding to the two principal ligand binding sites of human serum albumin: effect of the neutral-to-base transition. Biochim. Biophys. Acta, 1999, 1432(2), 313-323.
[http://dx.doi.org/10.1016/S0167-4838(99)00098-9] [PMID: 10407153]
[44]
Petitpas, I.; Bhattacharya, A.A.; Twine, S.; East, M.; Curry, S. Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site I. J. Biol. Chem., 2001, 276(25), 22804-22809.
[http://dx.doi.org/10.1074/jbc.M100575200] [PMID: 11285262]
[45]
Hamilton, J.A. Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us. Prog. Lipid Res., 2004, 43(3), 177-199.
[http://dx.doi.org/10.1016/j.plipres.2003.09.002] [PMID: 15003394]
[46]
Ascenzi, P.; Tundo, G.R.; Fanali, G.; Coletta, M.; Fasano, M. Warfarin modulates the nitrite reductase activity of ferrous human serum heme-albumin. J. Biol. Inorg. Chem., 2013, 18(8), 939-946.
[http://dx.doi.org/10.1007/s00775-013-1040-2] [PMID: 24037275]
[47]
Fanali, G.; Fasano, M.; Ascenzi, P.; Zingg, J.M.; Azzi, A. α-Tocopherol binding to human serum albumin. Biofactors, 2013, 39(3), 294-303.
[http://dx.doi.org/10.1002/biof.1070] [PMID: 23355326]
[48]
Johansson, J.S.; Zou, H.; Tanner, J.W. Bound volatile general anesthetics alter both local protein dynamics and global protein stability. Anesthesiology, 1999, 90(1), 235-245.
[http://dx.doi.org/10.1097/00000542-199901000-00030] [PMID: 9915333]
[49]
Enokida, T.; Yamasaki, K.; Okamoto, Y.; Taguchi, K.; Ishiguro, T.; Maruyama, T.; Seo, H.; Otagiri, M. Tyrosine411 and Argi-nine410 of human serum albumin play an important role in the binding of sodium 4-phenylbutyrate to site II. J. Pharm. Sci., 2016, 105(6), 1987-1994.
[http://dx.doi.org/10.1016/j.xphs.2016.03.012] [PMID: 27113474]
[50]
Yamasaki, K.; Enokida, T.; Taguchi, K.; Miyamura, S.; Kawai, A.; Miyamoto, S.; Maruyama, T.; Seo, H.; Otagiri, M. Species differences in the binding of sodium 4-phenylbutyrate to serum albumin. J. Pharm. Sci., 2017, 106(9), 2860-2867.
[http://dx.doi.org/10.1016/j.xphs.2017.04.025] [PMID: 28456727]
[51]
Simard, J.R.; Zunszain, P.A.; Hamilton, J.A.; Curry, S. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. J. Mol. Biol., 2006, 361(2), 336-351.
[http://dx.doi.org/10.1016/j.jmb.2006.06.028] [PMID: 16844140]
[52]
Fanali, G.; Bocedi, A.; Ascenzi, P.; Fasano, M. Modulation of heme and myristate binding to human serum albumin by anti-HIV drugs. An optical and NMR spectroscopic study. FEBS J., 2007, 274(17), 4491-4502.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05978.x] [PMID: 17725715]
[53]
Fanali, G.; Cao, Y.; Ascenzi, P.; Trezza, V.; Rubino, T.; Parolaro, D.; Fasano, M. Binding of δ9-tetrahydrocannabinol and diazepam to human serum albumin. IUBMB Life, 2011, 63(6), 446-451.
[http://dx.doi.org/10.1002/iub.466] [PMID: 21557446]
[54]
Bocedi, A.; De Sanctis, G.; Ciaccio, C.; Tundo, G.R.; Di Masi, A.; Fanali, G.; Nicoletti, F.P.; Fasano, M.; Smulevich, G.; Ascenzi, P.; Coletta, M. Reciprocal allosteric modulation of carbon monoxide and warfarin binding to ferrous human serum heme-albumin. PLoS One, 2013, 8(3), e58842.
[http://dx.doi.org/10.1371/journal.pone.0058842] [PMID: 23555601]
[55]
Di Muzio, E.; Polticelli, F.; Trezza, V.; Fanali, G.; Fasano, M.; Ascenzi, P. Imatinib binding to human serum albumin modulates heme association and reactivity. Arch. Biochem. Biophys., 2014, 560, 100-112.
[http://dx.doi.org/10.1016/j.abb.2014.07.001] [PMID: 25057771]
[56]
Hawkins, D.; Pinckard, R.N.; Farr, R.S. Acetylation of human serum albumin by acetylsalicylic acid. Science, 1968, 160(3829), 780-781.
[http://dx.doi.org/10.1126/science.160.3829.780] [PMID: 5651209]
[57]
Pinckard, R.N.; Hawkins, D.; Farr, R.S. In vitro acetylation of plasma proteins, enzymes and DNA by aspirin. Nature, 1968, 219(5149), 68-69.
[http://dx.doi.org/10.1038/219068a0] [PMID: 4173352]
[58]
Hawkins, D.; Pinckard, R.N.; Crawford, I.P.; Farr, R.S. Structural changes in human serum albumin induced by ingestion of acetylsalicylic acid. J. Clin. Invest., 1969, 48(3), 536-542.
[http://dx.doi.org/10.1172/JCI106011] [PMID: 5773090]
[59]
Walker, J.E. Lysine residue 199 of human serum albumin is modified by acetylsalicyclic acid. FEBS Lett., 1976, 66(2), 173-175.
[http://dx.doi.org/10.1016/0014-5793(76)80496-6] [PMID: 955075]
[60]
Burch, J.W.; Blazer-Yost, B. Acetylation of albumin by low doses of aspirin. Thromb. Res., 1981, 23(4-5), 447-452.
[http://dx.doi.org/10.1016/0049-3848(81)90205-X] [PMID: 7324005]
[61]
Honma, K.; Nakamura, M.; Ishikawa, Y. Acetylsalicylate-human serum albumin interaction as studied by NMR spectroscopy--antigenicity-producing mechanism of acetylsalicylic acid. Mol. Immunol., 1991, 28(1-2), 107-113.
[http://dx.doi.org/10.1016/0161-5890(91)90093-Y] [PMID: 2011121]
[62]
Gresner, P.; Dolník, M.; Waczulíková, I.; Bryszewska, M.; Sikurová, L.; Watala, C. Increased blood plasma hydrolysis of acetylsalicylic acid in type 2 diabetic patients: a role of plasma esterases. Biochim. Biophys. Acta, 2006, 1760(2), 207-215.
[http://dx.doi.org/10.1016/j.bbagen.2005.11.018] [PMID: 16442234]
[63]
Petitpas, I.; Petersen, C.E.; Ha, C.E.; Bhattacharya, A.A.; Zunszain, P.A.; Ghuman, J.; Bhagavan, N.V.; Curry, S. Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proc. Natl. Acad. Sci. USA, 2003, 100(11), 6440-6445.
[http://dx.doi.org/10.1073/pnas.1137188100] [PMID: 12743361]
[64]
Yang, J.; Ha, C.E.; Bhagavan, N.V. Site-directed mutagenesis study of the role of histidine residues in the neutral-to-basic transition of human serum albumin. Biochim. Biophys. Acta, 2005, 1724(1-2), 37-48.
[http://dx.doi.org/10.1016/j.bbagen.2005.03.020] [PMID: 15913893]
[65]
Esteban-Fernández, D.; Verdaguer, J.M.; Ramírez-Camacho, R.; Palacios, M.A.; Gómez-Gómez, M.M. Accumulation, fractionation, and analysis of platinum in toxicologically affected tissues after cisplatin, oxaliplatin, and carboplatin administration. J. Anal. Toxicol., 2008, 32(2), 140-146.
[http://dx.doi.org/10.1093/jat/32.2.140] [PMID: 18334097]
[66]
Will, J.; Wolters, D.A.; Sheldrick, W.S. Characterisation of cisplatin binding sites in human serum proteins using hyphenated multidimensional liquid chromatography and ESI tandem mass spectrometry. Chem. Med. Chem., 2008, 3(11), 1696-1707.
[http://dx.doi.org/10.1002/cmdc.200800151] [PMID: 18855968]
[67]
Hu, W.; Luo, Q.; Wu, K.; Li, X.; Wang, F.; Chen, Y.; Ma, X.; Wang, J.; Liu, J.; Xiong, S.; Sadler, P.J. The anticancer drug cisplatin can cross-link the interdomain zinc site on human albumin. Chem. Commun. (Camb.), 2011, 47(21), 6006-6008.
[http://dx.doi.org/10.1039/c1cc11627d] [PMID: 21526258]
[68]
Messori, L.; Merlino, A. Cisplatin binding to proteins: a structural perspective. Coord. Chem. Rev., 2016, 315, 67-89.
[http://dx.doi.org/10.1021/ic500360f]]
[69]
Diana, F.J.; Veronich, K.; Kapoor, A.L. Binding of nonsteroidal anti-inflammatory agents and their effect on binding of racemic warfarin and its enantiomers to human serum albumin. J. Pharm. Sci., 1989, 78(3), 195-199.
[http://dx.doi.org/10.1002/jps.2600780304] [PMID: 2724076]
[70]
Chuang, V.T.; Otagiri, M. How do fatty acids cause allosteric binding of drugs to human serum albumin? Pharm. Res., 2002, 19(10), 1458-1464.
[http://dx.doi.org/10.1023/A:1020496314081] [PMID: 12425462]
[71]
van der Vusse, G.J. Albumin as fatty acid transporter. Drug Metab. Pharmacokinet., 2009, 24(4), 300-307.
[http://dx.doi.org/10.2133/dmpk.24.300] [PMID: 19745557]
[72]
Yamasaki, K.; Chuang, V.T.; Maruyama, T.; Otagiri, M. Albumin-drug interaction and its clinical implication. Biochim. Biophys. Acta, 2013, 1830(12), 5435-5443.
[http://dx.doi.org/10.1016/j.bbagen.2013.05.005] [PMID: 23665585]
[73]
Otagiri, M. A molecular functional study on the interactions of drugs with plasma proteins. Drug Metab. Pharmacokinet., 2005, 20(5), 309-323.
[http://dx.doi.org/10.2133/dmpk.20.309] [PMID: 16272748]
[74]
Tesseromatis, C.; Alevizou, A. The role of the protein-binding on the mode of drug action as well the interactions with other drugs. Eur. J. Drug Metab. Pharmacokinet., 2008, 33(4), 225-230.
[http://dx.doi.org/10.1007/BF03190876] [PMID: 19230595]
[75]
Otagiri, M.; Chuang, V.T. Pharmaceutically important pre- and posttranslational modifications on human serum albumin. Biol. Pharm. Bull., 2009, 32(4), 527-534.
[http://dx.doi.org/10.1248/bpb.32.527] [PMID: 19336879]
[76]
Yang, F.; Lee, P.; Ma, Z.; Ma, L.; Yang, G.; Wu, X.; Liang, H. Regulation of amantadine hydrochloride binding with IIA subdomain of human serum albumin by fatty acid chains. J. Pharm. Sci., 2013, 102(1), 84-92.
[http://dx.doi.org/10.1002/jps.23336] [PMID: 23108589]
[77]
Spector, A.A.; Fletcher, J.E. In: Transport of fatty acid in the circulation. Disturbances in Lipid and Lipoprotein Me-tabolism; Dietschy, J.M.; Gotto, A.M; Ontko, J.A., Ed.; Bethesda American Physiological Society , 1978; pp. 229-249.
[78]
Brodersen, R.; Andersen, S.; Vorum, H.; Nielsen, S.U.; Pedersen, A.O. Multiple fatty acid binding to albumin in human blood plasma. Eur. J. Biochem., 1990, 189(2), 343-349.
[http://dx.doi.org/10.1111/j.1432-1033.1990.tb15495.x] [PMID: 2338079]
[79]
Richieri, G.V.; Kleinfeld, A.M. Unbound free fatty acid levels in human serum. J. Lipid Res., 1995, 36(2), 229-240.
[PMID: 7751810]
[80]
Simard, J.R.; Zunszain, P.A.; Ha, C.E.; Yang, J.S.; Bhagavan, N.V.; Petitpas, I.; Curry, S.; Hamilton, J.A. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 2005, 102(50), 17958-17963.
[http://dx.doi.org/10.1073/pnas.0506440102] [PMID: 16330771]
[81]
Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. Competition of drugs to serum albumin in combination therapy. Biopolymers, 2004, 74(3), 256-262.
[http://dx.doi.org/10.1002/bip.20031] [PMID: 15150801]
[82]
Seedher, N.; Kanojia, M. Fluorescence spectroscopic study for competitive binding of antidiabetic drugs and endogenous substances on serum albumin. Drug Metabol. Drug Interact., 2013, 28(2), 107-114.
[http://dx.doi.org/10.1515/dmdi-2012-0044] [PMID: 23612595]
[83]
Rolan, P.E. Plasma protein binding displacement interactions--why are they still regarded as clinically important? Br. J. Clin. Pharmacol., 1994, 37(2), 125-128.
[http://dx.doi.org/10.1111/j.1365-2125.1994.tb04251.x] [PMID: 8186058]
[84]
Kuchimanchi, K.R.; Ahmed, M.S.; Johnston, T.P.; Mitra, A.K. Binding of cosalane--a novel highly lipophilic anti-HIV agent--to albumin and glycoprotein. J. Pharm. Sci., 2001, 90(5), 659-666.
[http://dx.doi.org/10.1002/1520-6017(200105)90:5<659:AID-JPS1022>3.0.CO;2-8] [PMID: 11288110]
[85]
Cui, Y.F.; Bai, G.Y.; Li, C.G.; Ye, C.H.; Liu, M.L. Analysis of competitive binding of ligands to human serum albumin using NMR relaxation measurements. J. Pharm. Biomed. Anal., 2004, 34(2), 247-254.
[http://dx.doi.org/10.1016/S0731-7085(03)00579-X] [PMID: 15013138]
[86]
Cao, Y.; Nicoletti, F.P.; De Sanctis, G.; Bocedi, A.; Ciaccio, C.; Gullotta, F.; Fanali, G.; Tundo, G.R.; di Masi, A.; Fasano, M.; Smulevich, G.; Ascenzi, P.; Coletta, M. Evidence for pH-dependent multiple conformers in iron(II) heme-human serum albumin: spectroscopic and kinetic investigation of carbon monoxide binding. J. Biol. Inorg. Chem., 2012, 17(1), 133-147.
[http://dx.doi.org/10.1007/s00775-011-0837-0] [PMID: 21894504]
[87]
di Masi, A.; Gullotta, F.; Bolli, A.; Fanali, G.; Fasano, M.; Ascenzi, P. Ibuprofen binding to secondary sites allosterically modulates the spectroscopic and catalytic properties of human serum heme-albumin. FEBS J., 2011, 278(4), 654-662.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07986.x] [PMID: 21205199]
[88]
Fanali, G.; Pariani, G.; Ascenzi, P.; Fasano, M. Allosteric and binding properties of Asp1-Glu382 truncated recombinant human serum albumin--an optical and NMR spectroscopic investigation. FEBS J., 2009, 276(8), 2241-2250.
[http://dx.doi.org/10.1111/j.1742-4658.2009.06952.x] [PMID: 19298387]
[89]
Petersen, C.E.; Ha, C.E.; Jameson, D.M.; Bhagavan, N.V. Mutations in a specific human serum albumin thyroxine binding site define the structural basis of familial dysalbuminemic hyperthyroxinemia. J. Biol. Chem., 1996, 271(32), 19110-19117.
[http://dx.doi.org/10.1074/jbc.271.32.19110] [PMID: 8702585]
[90]
Leboffe, L.; di Masi, A.; Trezza, V.; Polticelli, F.; Ascenzi, P. Human serum albumin: A modulator of cannabinoid drugs. IUBMB Life, 2017, 69(11), 834-840.
[http://dx.doi.org/10.1002/iub.1682] [PMID: 28976704]
[91]
Zunszain, P.A.; Ghuman, J.; Komatsu, T.; Tsuchida, E.; Curry, S. Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Struct. Biol., 2003, 3, 6.
[http://dx.doi.org/10.1186/1472-6807-3-6] [PMID: 12846933]
[92]
Fanali, G.; Fesce, R.; Agrati, C.; Ascenzi, P.; Fasano, M. Allosteric modulation of myristate and Mn(III)heme binding to human serum albumin. Optical and NMR spectroscopy characterization. FEBS J., 2005, 272(18), 4672-4683.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04883.x] [PMID: 16156788]
[93]
Nicoletti, F.P.; Howes, B.D.; Fittipaldi, M.; Fanali, G.; Fasano, M.; Ascenzi, P.; Smulevich, G. Ibuprofen induces an allosteric conformational transition in the heme complex of human serum albumin with significant effects on heme ligation. J. Am. Chem. Soc., 2008, 130(35), 11677-11688.
[http://dx.doi.org/10.1021/ja800966t] [PMID: 18681435]
[94]
Ascenzi, P.; Bocedi, A.; Notari, S.; Fanali, G.; Fesce, R.; Fasano, M. Allosteric modulation of drug binding to human serum albumin. Mini Rev. Med. Chem., 2006, 6(4), 483-489.
[http://dx.doi.org/10.2174/138955706776361448] [PMID: 16613585]
[95]
Ascenzi, P.; Fasano, M. Abacavir modulates peroxynitrite-mediated oxidation of ferrous nitrosylated human serum heme-albumin. Biochem. Biophys. Res. Commun., 2007, 353(2), 469-474.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.041] [PMID: 17188651]
[96]
Meneghini, C.; Leboffe, L.; Bionducci, M.; Fanali, G.; Meli, M.; Colombo, G.; Fasano, M.; Ascenzi, P.; Mobilio, S. The five-to-six-coordination transition of ferric human serum heme-albumin is allosterically-modulated by ibuprofen and warfarin: a combined XAS and MD study. PLoS One, 2014, 9(8), e104231.
[http://dx.doi.org/10.1371/journal.pone.0104231] [PMID: 25153171]
[97]
Ascenzi, P.; Bocedi, A.; Gioia, M.; Fanali, G.; Fasano, M.; Coletta, M. Warfarin inhibits allosterically the reductive nitrosylation of ferric human serum heme-albumin. J. Inorg. Biochem., 2017, 177, 63-75.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.08.030] [PMID: 28926756]
[98]
Ascenzi, P.; Colasanti, M.; Persichini, T.; Muolo, M.; Polticelli, F.; Venturini, G.; Bordo, D.; Bolognesi, M. Re-evaluation of amino acid sequence and structural consensus rules for cysteine-nitric oxide reactivity. Biol. Chem., 2000, 381(7), 623-627.
[http://dx.doi.org/10.1515/BC.2000.081] [PMID: 10987371]
[99]
Sampath, V.; Zhao, X.J.; Caughey, W.S. Anesthetic-like interactions of nitric oxide with albumin and hemeproteins. A mechanism for control of protein function. J. Biol. Chem., 2001, 276(17), 13635-13643.
[http://dx.doi.org/10.1074/jbc.M006588200] [PMID: 11278308]
[100]
Domenici, E.; Bertucci, C.; Salvadori, P.; Wainer, I.W. Use of a human serum albumin-based high-performance liquid chromatography chiral stationary phase for the investigation of protein binding: detection of the allosteric interaction between warfarin and benzodiazepine binding sites. J. Pharm. Sci., 1991, 80(2), 164-166.
[http://dx.doi.org/10.1002/jps.2600800216] [PMID: 2051322]
[101]
Fitos, I.; Simonyi, M. Stereoselective effect of phenprocoumon enantiomers on the binding of benzodiazepines to human serum albumin. Chirality, 1992, 4(1), 21-23.
[http://dx.doi.org/10.1002/chir.530040106] [PMID: 1642965]
[102]
Quinlan, G.J.; Evans, T.W.; Gutteridge, J.M. Oxidative damage to plasma proteins in adult respiratory distress syndrome. Free Radic. Res., 1994, 20(5), 289-298.
[http://dx.doi.org/10.3109/10715769409145628] [PMID: 8069386]
[103]
Anraku, M.; Kitamura, K.; Shinohara, A.; Adachi, M.; Suenga, A.; Maruyama, T.; Miyanaka, K.; Miyoshi, T.; Shiraishi, N.; Nonoguchi, H.; Otagiri, M.; Tomita, K. Intravenous iron administration induces oxidation of serum albumin in hemodialysis patients. Kidney Int., 2004, 66(2), 841-848.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00813.x] [PMID: 15253741]
[104]
Anraku, M.; Kitamura, K.; Shintomo, R.; Takeuchi, K.; Ikeda, H.; Nagano, J.; Ko, T.; Mera, K.; Tomita, K.; Otagiri, M. Effect of intravenous iron administration frequency on AOPP and inflammatory biomarkers in chronic hemodialysis patients: a pilot study. Clin. Biochem., 2008, 41(14-15), 1168-1174.
[http://dx.doi.org/10.1016/j.clinbiochem.2008.07.007] [PMID: 18692036]
[105]
Himmelfarb, J.; McMonagle, E. Albumin is the major plasma protein target of oxidant stress in uremia. Kidney Int., 2001, 60(1), 358-363.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00807.x] [PMID: 11422772]
[106]
Musante, L.; Bruschi, M.; Candiano, G.; Petretto, A.; Dimasi, N.; Del Boccio, P.; Urbani, A.; Rialdi, G.; Ghiggeri, G.M. Characterization of oxidation end product of plasma albumin ‘in vivo’. Biochem. Biophys. Res. Commun., 2006, 349(2), 668-673.
[http://dx.doi.org/10.1016/j.bbrc.2006.08.079] [PMID: 16949044]
[107]
Nagumo, K.; Tanaka, M.; Chuang, V.T.; Setoyama, H.; Watanabe, H.; Yamada, N.; Kubota, K.; Tanaka, M.; Matsushita, K.; Yoshida, A.; Jinnouchi, H.; Anraku, M.; Kadowaki, D.; Ishima, Y.; Sasaki, Y.; Otagiri, M.; Maruyama, T. Cys34-cysteinylated human serum albumin is a sensitive plasma marker in oxidative stress-related chronic diseases. PLoS One, 2014, 9(1), e85216.
[http://dx.doi.org/10.1371/journal.pone.0085216] [PMID: 24416365]
[108]
Anraku, M.; Kragh-Hansen, U.; Kawai, K.; Maruyama, T.; Yamasaki, Y.; Takakura, Y.; Otagiri, M. Validation of the chloramine-T induced oxidation of human serum albumin as a model for oxidative damage in vivo. Pharm. Res., 2003, 20(4), 684-692.
[http://dx.doi.org/10.1023/A:1023219420935] [PMID: 12739779]
[109]
Mera, K.; Anraku, M.; Kitamura, K.; Nakajou, K.; Maruyama, T.; Otagiri, M. The structure and function of oxidized albumin in hemodialysis patients: Its role in elevated oxidative stress via neutrophil burst. Biochem. Biophys. Res. Commun., 2005, 334(4), 1322-1328.
[http://dx.doi.org/10.1016/j.bbrc.2005.07.035] [PMID: 16054887]
[110]
Mera, K.; Anraku, M.; Kitamura, K.; Nakajou, K.; Maruyama, T.; Tomita, K.; Otagiri, M. Oxidation and carboxy methyl lysine-modification of albumin: possible involvement in the progression of oxidative stress in hemodialysis patients. Hypertens. Res., 2005, 28(12), 973-980.
[http://dx.doi.org/10.1291/hypres.28.973] [PMID: 16671336]
[111]
Oettl, K.; Stauber, R.E. Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br. J. Pharmacol., 2007, 151(5), 580-590.
[http://dx.doi.org/10.1038/sj.bjp.0707251] [PMID: 17471184]
[112]
Baraka-Vidot, J.; Guerin-Dubourg, A.; Bourdon, E.; Rondeau, P. Impaired drug-binding capacities of in vitro and in vivo glycated albumin. Biochimie, 2012, 94(9), 1960-1967.
[http://dx.doi.org/10.1016/j.biochi.2012.05.017] [PMID: 22627382]
[113]
Anraku, M.; Chuang, V.T.; Maruyama, T.; Otagiri, M. Redox properties of serum albumin. Biochim. Biophys. Acta, 2013, 1830(12), 5465-5472.
[http://dx.doi.org/10.1016/j.bbagen.2013.04.036] [PMID: 23644037]
[114]
Gutteridge, J.M. Antioxidant properties of the proteins caeruloplasmin, albumin and transferrin. A study of their activity in serum and synovial fluid from patients with rheumatoid arthritis. Biochim. Biophys. Acta, 1986, 869(2), 119-127.
[http://dx.doi.org/10.1016/0167-4838(86)90286-4] [PMID: 3942755]
[115]
Christodoulou, J.; Sadler, P.J.; Tucker, A. 1H NMR of albumin in human blood plasma: drug binding and redox reactions at Cys34. FEBS Lett., 1995, 376(1-2), 1-5.
[http://dx.doi.org/10.1016/0014-5793(95)01231-2] [PMID: 8521951]
[116]
Kragh-Hansen, U.; Chuang, V.T.; Otagiri, M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol. Pharm. Bull., 2002, 25(6), 695-704.
[http://dx.doi.org/10.1248/bpb.25.695] [PMID: 12081132]
[117]
Dhubhghaill, O.M.N.; Sadler, P.J.; Tucker, A. Drug-induced reactions of bovine serum albumin: 1H NMR studies of gold binding and cysteine release. J. Am. Chem. Soc., 1992, 114, 1118-1120.
[http://dx.doi.org/10.1021/ja00029a067]
[118]
Roberts, J.R.; Xiao, J.; Schliesman, B.; Parsons, D.J.; Shaw, C.F. III Kinetics and mechanism of the reaction between serum albumin and auranofin (and its isopropyl analogue) in vitro. Inorg. Chem., 1996, 35(2), 424-433.
[http://dx.doi.org/10.1021/ic9414280] [PMID: 11666224]
[119]
Nakajou, K.; Watanabe, H.; Kragh-Hansen, U.; Maruyama, T.; Otagiri, M. The effect of glycation on the structure, function and biological fate of human serum albumin as revealed by recombinant mutants. Biochim. Biophys. Acta, 2003, 1623(2-3), 88-97.
[http://dx.doi.org/10.1016/j.bbagen.2003.08.001] [PMID: 14572906]
[120]
Anguizola, J.A.; Basiaga, S.B.; Hage, D.S. Effects of fatty acids and glycation on drug interactions with human serum albumin. Curr. Metabolomics, 2013, 1(3), 239-250.
[http://dx.doi.org/10.2174/2213235X1130100005] [PMID: 24349966]
[121]
Mereish, K.A.; Rosenberg, H.; Cobby, J. Glucosylated albumin and its influence on salicylate binding. J. Pharm. Sci., 1982, 71(2), 235-238.
[http://dx.doi.org/10.1002/jps.2600710223] [PMID: 7062252]
[122]
Okabe, N.; Hashizume, N. Drug binding properties of glycosylated human serum albumin as measured by fluorescence and circular dichroism. Biol. Pharm. Bull., 1994, 17(1), 16-21.
[http://dx.doi.org/10.1248/bpb.17.16] [PMID: 8148809]
[123]
Shaklai, N.; Garlick, R.L.; Bunn, H.F. Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J. Biol. Chem., 1984, 259(6), 3812-3817.
[PMID: 6706980]
[124]
Gajahi Soudahome, A.; Catan, A.; Giraud, P.; Assouan Kouao, S.; Guerin-Dubourg, A.; Debussche, X.; Le Moullec, N.; Bourdon, E.; Bravo, S.B.; Paradela-Dobarro, B.; Álvarez, E.; Meilhac, O.; Rondeau, P.; Couprie, J. Glycation of human serum albumin impairs binding to the glucagon-like peptide-1 analogue liraglutide. J. Biol. Chem., 2018, 293(13), 4778-4791.
[http://dx.doi.org/10.1074/jbc.M117.815274] [PMID: 29414771]
[125]
Tsuchiya, S.; Sakurai, T.; Sekiguchi, S. Nonenzymatic glucosylation of human serum albumin and its influence on binding capacity of sulfonylureas. Biochem. Pharmacol., 1984, 33(19), 2967-2971.
[http://dx.doi.org/10.1016/0006-2952(84)90595-1] [PMID: 6487349]
[126]
Joseph, K.S.; Anguizola, J.; Jackson, A.J.; Hage, D.S. Chromatographic analysis of acetohexamide binding to glycated human serum albumin. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(28), 2775-2781.
[http://dx.doi.org/10.1016/j.jchromb.2010.08.021] [PMID: 20829128]
[127]
Joseph, K.S.; Hage, D.S. Characterization of the binding of sulfonylurea drugs to HSA by high-performance affinity chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(19), 1590-1598.
[http://dx.doi.org/10.1016/j.jchromb.2010.04.019] [PMID: 20435530]
[128]
Joseph, K.S.; Anguizola, J.; Hage, D.S. Binding of tolbutamide to glycated human serum albumin. J. Pharm. Biomed. Anal., 2011, 54(2), 426-432.
[http://dx.doi.org/10.1016/j.jpba.2010.09.003] [PMID: 20880646]
[129]
Matsuda, R.; Anguizola, J.; Joseph, K.S.; Hage, D.S. High-performance affinity chromatography and the analysis of drug interactions with modified proteins: binding of gliclazide with glycated human serum albumin. Anal. Bioanal. Chem., 2011, 401(9), 2811-2819.
[http://dx.doi.org/10.1007/s00216-011-5382-8] [PMID: 21922305]
[130]
Matsuda, R.; Anguizola, J.; Joseph, K.S.; Hage, D.S. Analysis of drug interactions with modified proteins by high-performance affinity chromatography: binding of glibenclamide to normal and glycated human serum albumin. J. Chromatogr. A, 2012, 1265, 114-122.
[http://dx.doi.org/10.1016/j.chroma.2012.09.091] [PMID: 23092871]
[131]
Anguizola, J.; Joseph, K.S.; Barnaby, O.S.; Matsuda, R.; Alvarado, G.; Clarke, W.; Cerny, R.L.; Hage, D.S. Development of affinity microcolumns for drug-protein binding studies in personalized medicine: interactions of sulfonylurea drugs with in vivo glycated human serum albumin. Anal. Chem., 2013, 85(9), 4453-4460.
[http://dx.doi.org/10.1021/ac303734c] [PMID: 23544441]
[132]
Jackson, A.J.; Anguizola, J.; Pfaunmiller, E.L.; Hage, D.S. Use of entrapment and high-performance affinity chromatography to compare the binding of drugs and site-specific probes with normal and glycated human serum albumin. Anal. Bioanal. Chem., 2013, 405(17), 5833-5841.
[http://dx.doi.org/10.1007/s00216-013-6981-3] [PMID: 23657448]
[133]
Anguizola, J.; Matsuda, R.; Barnaby, O.S.; Hoy, K.S.; Wa, C.; DeBolt, E.; Koke, M.; Hage, D.S. Review: glycation of human serum albumin. Clin. Chim. Acta, 2013, 425, 64-76.
[http://dx.doi.org/10.1016/j.cca.2013.07.013] [PMID: 23891854]
[134]
Rabbani, N.; Tabrez, S.; Islam, B.U.; Rehman, M.T.; Alsenaidy, A.M.; Al Ajmi, M.F.; Khan, R.A.; Alsenaidy, M.A.; Khan, M.S. Characterization of colchicine binding with normal and glycated albumin: in vitro and molecular docking analysis. J. Biomol. Struct. Dyn., 2017, 30, 1-10.
[http://dx.doi.org/10.1080/07391102.2017.1389661]] [PMID: 28990867]
[135]
Grandison, M.K.; Boudinot, F.D. Age-related changes in protein binding of drugs: implications for therapy. Clin. Pharmacokinet., 2000, 38(3), 271-290.
[http://dx.doi.org/10.2165/00003088-200038030-00005] [PMID: 10749520]
[136]
Larsen, M.T.; Kuhlmann, M.; Hvam, M.L.; Howard, K.A. Albumin-based drug delivery: harnessing nature to cure disease. Mol. Cell. Ther., 2016, 4, 3.
[http://dx.doi.org/10.1186/s40591-016-0048-8] [PMID: 26925240]
[137]
Kratz, F. DOXO-EMCH (INNO-206): the first albumin-binding prodrug of doxorubicin to enter clinical trials. Expert Opin. Investig. Drugs, 2007, 16(6), 855-866.
[http://dx.doi.org/10.1517/13543784.16.6.855] [PMID: 17501697]
[138]
Kratz, F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control. Release, 2008, 132(3), 171-183.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.010] [PMID: 18582981]
[139]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy