Generic placeholder image

International Journal of Sensors, Wireless Communications and Control

Editor-in-Chief

ISSN (Print): 2210-3279
ISSN (Online): 2210-3287

Research Article

Spectral Efficient and Reliable Irregular QC-LDPC Channel Coding Scheme for 5G Vehicular Applications

Author(s): Komal Arora*, Jaswinder Singh and Yogeshwar Singh Randhawa

Volume 10, Issue 6, 2020

Page: [907 - 914] Pages: 8

DOI: 10.2174/2210327909666190319144338

Price: $65

Abstract

Background and Objective: Today’s wireless systems i.e. 4G systems are facing major issues of spectral inefficiency, and unreliability for high speed applications. To address these issues, 5G systems have chosen LDPC codes and replaced earlier used Turbo Codes for the purpose of Channel encoding. This paper proposes a design method for Irregular QC- LDPC codes with better spectral efficiency and reliability that too at higher speed.

Methods: This paper describes the analysis of LDPC codes and their comparison with different encoding techniques. Also, it describes the design method for Irregular QC- LDPC codes and elaborates its applications in high-pace vehicular 5G scenario.

Conclusion: This paper focuses on the design method for irregular QC-LDPC codes and using MATLAB simulations illustrated that these codes have better reliability and spectral efficiency as compared with conventional LDPC codes in high-speed environments.

Keywords: 5G, channel coding, irregular QC-LDPC, MATLAB, spectral inefficiency, turbo codes.

Graphical Abstract

[1]
Alabady SA, Salleh MF, Al-Turjman F. A novel approach of error detection and correction for efficient energy in wireless networks. Multimedia Tools Appl 2019; 78(2): 1345-73.
[2]
Shannon CE. A mathematical theory of communication. Bell Syst Tech J 1948; 27(3): 379-423.
[http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x]
[3]
INFSCO-ICT-216203 FP7 DAVINCI Project. Available from:. citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.477.405
[4]
Peng R, Chen R-R. Application of nonbinary LDPC codes for communication over fading channels using higher order modulations Proc IEEE Global Commun Conf (GLOBECOM) San Francisco, CA, USA 2005; pp 1-5.
[5]
Declercq D, Colas M, Gelle G. Regular GF(2q)-LDPC coded modulation for higher order QAM-AWGN channels Proc Int Symp Inf Theory Appl (ISITA) Parma, Italy 2004; pp 1-6.
[6]
Hu XY, Eleftheriou E, Arnold DM. Regular and irregular progressive edge-growth Tanner graphs. IEEE Trans Inf Theory 2005; 51(1): 386-98.
[http://dx.doi.org/10.1109/TIT.2004.839541]
[7]
Zeng L, Lan L, Tai YY, Song S, Lin S, Abdel-Ghaffar K. Constructions of nonbinary quasi-cyclic LDPC codes: A finite field approach. IEEE Trans Commun 2008; 56(4): 545-54.
[http://dx.doi.org/10.1109/TCOMM.2008.060024]
[8]
Zeng L, Lan L, Tai YY, Song S, Lin S, Abdel-Ghaffar K. Construction of nonbinary cyclic, quasi-cyclic and regular LDPC codes: A finite geometry approach. IEEE Trans Commun 2008; 56(3): 378-87.
[http://dx.doi.org/10.1109/TCOMM.2008.060025]
[9]
Zhou B, Kang J, Song S, Lin S, Abdel-Ghaffar K, Xu M. Construction of non-binary quasi-cyclic LDPC codes by arrays and array dispersions. IEEE Trans Commun 2009; 57(6): 1652-62.
[http://dx.doi.org/10.1109/TCOMM.2009.06.070313]
[10]
Li J, Liu K, Lin S, Abdel-Ghaffar K. A matrix-theoretic approach to the construction of non-binary quasi-cyclic LDPC codes. IEEE Trans Commun 2015; 63(4): 1057-68.
[http://dx.doi.org/10.1109/TCOMM.2015.2403856]
[11]
Lin S, Costello DJ. Error Control Coding: Fundamentals and Applications. 2nd ed. Upper Saddle River, NJ: Prentice-Hall 2004.
[12]
MacKay DJC, Wilson ST, Wilson MCD. Comparison of constructions of irregular Gallager codes. IEEE Trans Commun 1999; 47(10): 1449-54.
[http://dx.doi.org/10.1109/26.795809]
[13]
Davey MC, MacKay DJC. Low-density parity check codes over GF(q). IEEE Commun Lett 1998; 2(6): 165-7.
[http://dx.doi.org/10.1109/4234.681360]
[14]
Tanner RM. A recursive approach to low complexity codes. IEEE Trans Inf Theory 1981; IT-27(5): 533-47.
[http://dx.doi.org/10.1109/TIT.1981.1056404]
[15]
Karimi M, Banihashem AH. On characterization of elementary trapping sets of variable-regular LDPC codes. IEEE Trans Inf Theory 2014; 60(9): 5188-203.
[http://dx.doi.org/10.1109/TIT.2014.2334657]
[16]
Gallager RG. Low density parity check codes. IEEE Trans Inf Theory 1964; 10: 172-2.
[http://dx.doi.org/10.1109/TIT.1964.1053651]
[17]
MacKay DJC, Neal RM. Near Shannon limit performance of low density parity check codes. Electron Lett 1996; 32(18): 1645-6.
[http://dx.doi.org/10.1049/el:19961141]
[18]
Xu J, Chen L, Djurdjevic I, Zeng LQ. Construction of low density parity check codes by superposition. IEEE Trans Commun 2005; 243-51.
[http://dx.doi.org/10.1109/TCOMM.2004.841966]
[19]
Ammar B, Honary B, Kou Y, Xu J, Lin S. Construction of low density parity check codes based on balanced incomplete block designs. IEEE Trans Inf Theory 2004; 50(6)
[http://dx.doi.org/10.1109/TIT.2004.828144]
[20]
Ma C, Wang Q, Zhao M. LDPC codes based on the space of symmetric matrices over finite fields. IEEE Trans Inf Theory 2017; 63(7): 4332-43.
[http://dx.doi.org/10.1109/TIT.2017.2685501]
[21]
Zhao S, Ma X. Construction of high-performance array-based non-binary LDPC codes with moderate rates. IEEE Commun Lett 2016; 20(1)
[http://dx.doi.org/10.1109/LCOMM.2015.2494581]
[22]
Zhou B, Kang J, Ying YT, Lin S, Ding Z. High performance non-binary quasi-cyclic LDPC codes on euclidean geometries. IEEE Trans Commun 2018; 57(5)
[23]
Kudekar S, Richardson T. Design of low-density parity check codes for 5G new radio. IEEE Commun Mag 2018; 56(3): 28-34.
[http://dx.doi.org/10.1109/MCOM.2018.1700839]
[24]
Shao W, Sha J, Zhang C. Dispersed array LDPC codes and decoder architecture for nand flash memory. IEEE Trans Circuits Syst, II Express Briefs 2018; 65(8): 1014-8.
[http://dx.doi.org/10.1109/TCSII.2017.2783438]
[25]
Dehghan A, Banihashemi AH. On the tanner graph cycle distribution of random LDPC, random protograph-based LDPC, and random quasi-cyclic LDPC code ensembles. IEEE Trans Inf Theory 2018; 64(6): 4438-51.
[http://dx.doi.org/10.1109/TIT.2018.2805906]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy