Generic placeholder image

International Journal of Sensors, Wireless Communications and Control

Editor-in-Chief

ISSN (Print): 2210-3279
ISSN (Online): 2210-3287

Research Article

Dynamic Sliding Mode Control Based on Fractional Calculus Subject to Uncertain Delay Based Chaotic Pneumatic Robot

Author(s): Sara Gholipour, Heydar Toosian Shandiz, Mobin Alizadeh, Sara Minagar and Javad Kazemitabar*

Volume 10, Issue 3, 2020

Page: [413 - 420] Pages: 8

DOI: 10.2174/2210327909666190319142505

Price: $65

Abstract

Background & Objective: This paper considers the chattering problem of sliding mode control in the presence of delay in robot manipulator causing chaos in such electromechanical systems. Fractional calculus was used in order to produce a novel sliding mode to eliminate chatter. To realize the control of a class of chaotic systems in master-slave configuration, a novel fractional dynamic sliding mode control scheme is presented and examined on the delay based chaotic robot. Also, the stability of the closed-loop system is guaranteed by Lyapunov stability theory.

Methods: A control scheme is proposed for reducing the chattering problem in finite time tracking and robust in presence of system matched disturbances.

Results: Moreover, delayed robot motions are sorted out for qualitative and quantitative study. Finally, numerical simulations illustrate feasibility of the proposed control method.

Conclusion: The control scheme is viable.

Keywords: Bifurcation diagram, chaotic robot system, fractional dynamic sliding mode, lyapunov exponent, poincaré map, time delay.

Graphical Abstract

[1]
Utkin V, Guldner J, Shi J. Sliding mode control in electro-mechanical systems. London: Taylor and Francis,2nd edition 1999.
[2]
Elmali H, Olgac N. Robust output tracking control of non-linear MIMO systems via sliding mode technique. J Automatica 1992; 28(1): 145-51.
[http://dx.doi.org/10.1016/0005-1098(92)90014-7]
[3]
Slotin JJE, Sastry SS. Tracking Control of nonlinear systems using sliding surfaces with application to robot manipulator. Int J Control 1983; 38: 931-8.
[4]
Hajatipour M, Farrokhi M. Chattering free with noise reduction in sliding-mode observers using frequency domain analysis. J Process Contr 2010; 20(8): 912-21.
[http://dx.doi.org/10.1016/j.jprocont.2010.06.015]
[5]
Ho HF, Wong YK, Rad AB. Adaptive fuzzy sliding mode control with chattering elimination for nonlinear SISO systems. J Simul Model Pract Theory 2009; 17(7): 1199-210.
[http://dx.doi.org/10.1016/j.simpat.2009.04.004]
[6]
Hoon L, Utkin V. Chattering suppression methods in sliding mode control system. Annu Rev Contr 2007; 31(2): 179-88.
[http://dx.doi.org/10.1016/j.arcontrol.2007.08.001]
[7]
Ramírez HS. On the dynamical sliding mode control of nonlinear systems. Int J Control 1993; 57(5): 1039-61.
[http://dx.doi.org/10.1080/00207179308934429]
[8]
Dourla V, Pandey S, Junghare AS. Design and analysis of dynamic sliding mode control for magnetic levitation system. 2017 4th International Conference on Power, Control & Embedded Systems (ICPCES). Allahabad, India.
[9]
Wang Z, Bao W, Li H. Second-order dynamic sliding-mode control for nonminimum phase under actuated hypersonic vehicles. IEEE Trans Ind Electron 2017; 64(4): 3105-12.
[http://dx.doi.org/10.1109/TIE.2016.2633530]
[10]
Sinekli ES, Coban R. Dynamic integral sliding mode control of an electromechanical system. 2017 International Conference on Mechanical, System and Control Engineering (ICMSC), St Petersburg, Russia
[http://dx.doi.org/10.1109/ICMSC.2017.7959463]
[11]
Rabah K, Ladaci S. A novel fractional order adaptive sliding mode Controller design for chaotic Arneodo systems synchronization. 2017 6th International Conference on Systems and Control (ICSC), Batna, Algeria
[http://dx.doi.org/10.1109/ICoSC.2017.7958717]
[12]
Ansarifar GR, Davilu H, Talebi HA. Gain scheduled dynamic sliding mode control for nuclear steam generators. Prog Nucl Energy 2011; 53: 651-63.
[http://dx.doi.org/10.1016/j.pnucene.2011.04.029]
[13]
Podlubny I. Fractional differential equations. San Diego, CA: Academic Press 1999.
[14]
Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. 1st ed. Amsterdam: Elsevier 2006.
[15]
Oldham KB, Spanier J. The fractional calculus In: Academic Press, A subsidiary of Harcourt Brace Jovanovich, Publishers, New York . 1974.
[16]
Li CP, Qian DL, Chen YQ. On Riemann-Liouville and Caputo derivatives Disc Dyn Nature Society 562494. 2011; p. 15.
[17]
Li CP, Deng WH. Remarks on fractional derivatives. Math Comput 2007; 187(2): 777-84.
[18]
Valrio D, Costa J. Tuning of fractional PID controllers with Ziegler-Nichols-type rules. Signal Processing 2006; 86: 2771-84.
[http://dx.doi.org/10.1016/j.sigpro.2006.02.020]
[19]
Efe MO. Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm. IEEE Trans Syst Man Cybern B Cybern 2008; 38(6): 1561-70.
[http://dx.doi.org/10.1109/TSMCB.2008.928227 ] [PMID: 19022726]
[20]
Vinagre BM, Calder AJ. On fractional sliding mode control. Proceedings 7th Controlo, Lisbon, Portugal, 2006.
[21]
Delavari H, Ghaderi R, Ranjbar A, Momani S. Reply to “Comments on “Fuzzy fractional order sliding mode controller for nonlinear systems, Commun Nonlinear Sci Numer Simulat 15 (2010) 963-78””. Commun Nonlin Sci Numer Simulat 2012; 17(10): 4010-4.
[22]
Gholipour SP. Chaos synchronization of fractional-order chaotic lorenz-stenflo system via fractional sliding mode control. Int Symp Adv Sci Tech 5th SASTech 21 Mashhad, Iran, May 12-17 2011.
[23]
Gholipour SPH, Toosian SM, Nabizadeh K. Control of fractional Stochastic chaos with fractional sliding mode. Proceedings FDA’12 the 5th IFAC workshop Frac Diff Appl 3. Nanjing, China.
[24]
Raynaud HF, Inoh AZ. State-space representation for fractional-order controllers. Automatica 2000; 36: 1017-21.
[http://dx.doi.org/10.1016/S0005-1098(00)00011-X]
[25]
Chen YQ, Ahna HS, Podlubny I. Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Process 2006; 86: 2611-8.
[http://dx.doi.org/10.1016/j.sigpro.2006.02.011]
[26]
Sprott JC. Chaos and time-series analysis. Oxford University Press 2003.
[27]
Predrag C. Classical and Quantum Chaos, Chaos ebook 2004.
[28]
E. Ott. Chaos in Dynamical Systems. Cambridge University Press 2002.
[29]
Argyris JH. An exploration of chaos: An introduction for natural scientists and engineers. North-Holland 1994.
[30]
Verhulst F. Nonlinear differential equations and dynamical systems. Springer Verlag 1990.
[http://dx.doi.org/10.1007/978-3-642-97149-5]
[31]
Moon FC. Chaotic and Fractal Dynamics. Wiley-VCH 1992.
[http://dx.doi.org/10.1002/9783527617500]
[32]
Li Y, Asakura T. Occurrence of trajectory chaos and its stabilizing control due to dead time of a pneumatic manipulator. JSME Int J Series C 2005; 48: 640-8.
[http://dx.doi.org/10.1299/jsmec.48.640]
[33]
Asakura T, Konja T. Control design of synchronizing chaos in 2-link pneumatic manipulator. IEEE Conf Tencon 2004; 4: 617-20.
[http://dx.doi.org/10.1109/TENCON.2004.1415008]
[34]
Kaygisiz B, Erkmen A, Erkmen I. Detection of transition to chaos during stability roughness smoothing of a robot arm. IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerland.
[35]
Nazari M, Rafiee G, Jafari AH, Golpayegani SMR. Supervisory chaos control of a two-link rigid robot arm using OGY method, Cyber intelligent syst Conf CIS. IEEE Press 2008; pp. 41-6.
[36]
Talebi SP, Werner S, Mandic DP. Distributed adaptive filtering of α-stable signals. IEEE Signal Process Lett 2018; 25(10): 1450-4.
[http://dx.doi.org/10.1109/LSP.2018.2862639]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy