Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Tamarix articulata (T. articulata) - An Important Halophytic Medicinal Plant with Potential Pharmacological Properties

Author(s): Abdullah M. Alnuqaydan* and Bilal Rah

Volume 20, Issue 4, 2019

Page: [285 - 292] Pages: 8

DOI: 10.2174/1389201020666190318120103

Price: $65

Abstract

Background: Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.

Methods: Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.

Results: Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.

Conclusion: In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.

Keywords: Tamarix articulata, cancer, phytochemicals, biological properties, medicinal plant, anti-bacterial activity.

Graphical Abstract

[1]
Adewusi, E.A.; Afolayan, A.J. A review of natural products with hepatoprotective activity. J. Med. Plants Res., 2010, 4(13), 1318-1334.
[2]
Deshwal, N.; Sharma, A.K.; Sharma, P. Review on hepatoprotective plants. Int. J. Pharm. Sci. Rev. Res., 2011, 7(1), 15-26.
[3]
Gupta, S.S. Prospects and perspectives of natural plant products in medicine. Indian J. Pharmacol., 1994, 26(1), 1-12.
[4]
Raskin, I.; Ribnicky, D.M.; Komarnytsky, S.; Ilic, N.; Poulev, A.; Borisjuk, N.; Brinker, A.; Moreno, D.A.; Ripoll, C.; Yakoby, N. Plants and human health in the twenty-first century. Trends Biotechnol., 2002, 20(12), 522-531.
[5]
Savithramma, N.; Rao, M.L.; Suhrulatha, D. Screening of medicinal plants for secondary metabolites. Middle East J. Sci. Res., 2011, 8(3), 579-584.
[6]
Stewart, J.L.; Brandis, D. The Forest Flora of North-west and Central India: a handbook of the indigenous trees and shrubs of those countries; WH Allen & Company, 1874.
[7]
Kaisoon, O.; Siriamornpun, S.; Weerapreeyakul, N.; Meeso, N. Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Funct. Foods, 2011, 3(2), 88-99.
[8]
Tahraoui, A.; El-Hilaly, J.; Israili, Z.H.; Lyoussi, B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J. Ethnopharmacol., 2007, 110(1), 105-117.
[9]
Eddouks, M.; Maghrani, M.; Lemhadri, A.; Ouahidi, M.L.; Jouad, H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J. Ethnopharmacol., 2002, 82(2-3), 97-103.
[10]
Mohsin, R.; Choudhary, M.I. Medicinal plants with anticonvulsant activities. In: Studies in Natural Products Chemistry; Elsevier, 2000; Vol. 22, pp. 507-553.
[11]
Merzouki, A.; Ed-Derfoufi, F.; Mesa, J.M. Contribution to the knowledge of Rifian traditional medicine. II: Folk medicine in Ksar Lakbir district (NW Morocco). Fitoterapia, 2000, 71(3), 278-307.
[12]
El-Ansari, M.A.; Nawwar, M.A.M.; el-Dein, A.; el-Sherbeiny, D.A.; El-Sissi, H.I. Sulphated kaemperol 7, 4′-dimethyl ether and a quercetin isoferulylglucuronide from the flowers of Tamarix aphylla. Phytochemistry, 1976, 15(1), 231-232.
[13]
Merfort, I.; Buddrus, J.; Nawwar, M.A.M.; Lambert, J. A triterpene from the bark of Tamarix aphylla. Phytochemistry, 1992, 31(11), 4031-4032.
[14]
Nawwar, M.A.M.; Hussein, S.A.M.; Ayoub, N.A.; Hofmann, K.; Linscheid, M.; Harms, M.; Wende, K.; Lindequist, U. Aphyllin, the first isoferulic acid glycoside and other phenolics from Tamarix aphylla flowers. Die Pharmazie-An Int. J. Pharm. Sci., 2009, 64(5), 342-347.
[15]
Rastogi, R.P.; Mehrotra, B.N. Isolation and structure determination of a new ellagitannin from the galls of Tamarix aphylla. Compend. Indian Med. Plants, NISCOM. New Delhi, 1994, 5, 828.
[16]
Ishak, M.S.; El Sissi, H.I.; Nawwar, M.A.M.; El Sherbieny, A.E.A. Tannins and polyphenolics of the galls of Tamarix aphylla “Part I”. Planta Med., 1972, 21(03), 246-253.
[17]
Kiso, Y.; Tohkin, M.; Hikino, H.; Hattori, M.; Sakamoto, T.; Namba, T. Mechanism of antihepatotoxic activity of glycyrrhizin, I: Effect on free radical generation and lipid peroxidation. Planta Med., 1984, 50(04), 298-302.
[18]
Mattson, M.P. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp. Gerontol., 2009, 44(10), 625-633.
[19]
Gutteridge, J.M. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem., 1995, 41(12), 1819-1828.
[20]
Valko, M.; Rhodes, C.; Moncol, J.; Izakovic, M.M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biologic. Interact., 2006, 160(1), 1-40.
[21]
Murphy, M.P.; Holmgren, A.; Larsson, N.-G.R.; Halliwell, B.; Chang, C.J.; Kalyanaraman, B.; Rhee, S.G.; Thornalley, P.J.
Partridge, L.; Gems, D. Unraveling the biological roles of reactive oxygen species. Cell Metab., 2011, 13(4), 361-366.
[22]
Akinmoladun, A.C.; Ibukun, E.O.; Afor, E.; Obuotor, E.M.; Farombi, E.O. Phytochemical constituent and antioxidant activity of extract from the leaves of Ocimum gratissimum. Sci. Res. Essays, 2007, 2(5), 163-166.
[23]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[24]
Boulaaba, M.; Tsolmon, S.; Ksouri, R.; Han, J.; Kawada, K.; Smaoui, A.; Abdelly, C.; Isoda, H. Anticancer effect of Tamarix gallica extracts on human colon cancer cells involves Erk1/2 and p38 action on G 2/M cell cycle arrest. Cytotechnology, 2013, 65(6), 927-936.
[25]
Hebi, M.; Farid, O.; Ajebli, M.; Eddouks, M. Potent antihyperglycemic and hypoglycemic effect of Tamarix articulata Vahl. in normal and streptozotocin-induced diabetic rats. Biomed. Pharmacother., 2017, 87, 230-239.
[26]
Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov., 2007, 6(1), 29-40.
[27]
Nascimento, G.G.F.; Locatelli, J.; Freitas, P.C.; Silva, G.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz. J. Microbiol., 2000, 31(4), 247-256.
[28]
Johann, S.; Pizzolatti, M.G.; Donnici, C.U.L.; Resende, M.A.D. Antifungal properties of plants used in Brazilian traditional medicine against clinically relevant fungal pathogens. Braz. J. Microbiol., 2007, 38(4), 632-637.
[29]
Wright, G.D.; Sutherland, A.D. New strategies for combating multidrug-resistant bacteria. Trends Mol. Med., 2007, 13(6), 260-267.
[30]
Amina Tabet, A.B. Antioxidant and Antibacterial Activities of Two Algerian Halophytes. Int. J. Pharm. Sci. Rev. Res., 2018, 50(1), 114-121.
[31]
Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol., 2008, 46(2), 409-420.
[32]
Sukhthankar, M.G. Molecular targets of green tea catechin, egcg, on human colorectal carcinogenesis. 2009, 12 at https://trace.tennessee.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1705&context=utk_graddiss
[33]
Russo, M.; Spagnuolo, C.; Tedesco, I.; Russo, G.L. Phytochemicals in cancer prevention and therapy: Truth or dare? Toxins, 2010, 2(4), 517-551.
[34]
Qian, B.; Nag, S.A.; Su, Y.; Voruganti, S.; Qin, J-J.; Zhang, R.; Cho, W. miRNAs in cancer prevention and treatment and as molecular targets for natural product anticancer agents. Curr. Cancer Drug Targets, 2013, 13(5), 519-541.
[35]
Lowery, A.J.; Miller, N.; McNeill, R.E.; Kerin, M.J. MicroRNAs as prognostic indicators and therapeutic targets: Potential effect on breast cancer management. Clin. Cancer Res., 2008, 14(2), 360-365.
[36]
Srivastava, S.K.; Arora, S.; Averett, C.; Singh, S.; Singh, A.P. Modulation of microRNAs by phytochemicals in cancer: Underlying mechanisms and translational significance. BioMed Res. Int., 2015, 2015(9), 1155-1164.
[37]
Shaalan, Y.M.; Handoussa, H.; Youness, R.A.; Assal, R.A.; El-Khatib, A.H.; Linscheid, M.W.; El Tayebi, H.M.; Abdelaziz, A.I. Destabilizing the interplay between miR-1275 and IGF2BPs by Tamarix articulata and quercetin in hepatocellular carcinoma. Nat. Prod. Res., 2018, 32(18), 2217-2220.
[38]
Ponnusamy, S.; Ravindran, R.; Zinjarde, S.; Bhargava, S.; Ravi Kumar, A. Evaluation of traditional Indian antidiabetic medicinal plants for human pancreatic amylase inhibitory effect in vitro. Evidence-Based Complement. Alternat. Med., 2011, 2011, 515647.
[39]
Jung, M.; Park, M.; Lee, H.C.; Kang, Y-H.; Kang, E.S.; Kim, S.K. Antidiabetic agents from medicinal plants. Curr. Med. Chem., 2006, 13(10), 1203-1218.
[40]
Gauttam, V.K.; Kalia, A.N. Development of polyherbal antidiabetic formulation encapsulated in the phospholipids vesicle system. J. Adv. Pharm. Technol. Res., 2013, 4(2), 108-117.
[41]
Mutalik, S.; Chetana, M.; Sulochana, B.; Devi, P.U.; Udupa, N. Effect of dianex, a herbal formulation on experimentally induced diabetes mellitus. Phytother. Res., 2005, 19(5), 409-415.
[42]
Bhattacharya, S.K.; Satyan, K.S.; Chakrabarti, A. Effect of Trasina, an Ayurvedic herbal formulation, on pancreatic islet superoxide dismutase activity in hyperglycaemic rats. Indian J. Experiment. Biol., 1997, 35(3), 297-299.
[43]
Wu, C.; Okar, D.A.; Kang, J.; Lange, A.J. Reduction of hepatic glucose production as a therapeutic target in the treatment of diabetes. Curr. Drug Targets Immune Endocr. Metabol. Disord., 2005, 5(1), 51-59.
[44]
Nordlie, R.C.; Foster, J.D.; Lange, A.J. Regulation of glucose production by the liver. Annu. Rev. Nutr., 1999, 19(1), 379-406.
[45]
Ou, S.; Kwok, K-C.; Li, Y.; Fu, L. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. J. Agric. Food Chem., 2001, 49(2), 1026-1029.
[46]
Williamson, G. Possible effects of dietary polyphenols on sugar absorption and digestion. Mol. Nutr. Food Res., 2013, 57(1), 48-57.
[47]
West, I.C. Radicals and oxidative stress in diabetes. Diabet. Med., 2000, 17(3), 171-180.
[48]
Hebi, M.; Eddouks, M. Hypolipidemic activity of Tamarix articulata Vahl. in diabetic rats. J. Integr. Med., 2017, 15(6), 476-482.
[49]
Alkreathy, H.M.; Khan, R.A.; Khan, M.R.; Sahreen, S. CCl 4 induced genotoxicity and DNA oxidative damages in rats: hepatoprotective effect of Sonchus arvensis. BMC Complement. Altern. Med., 2014, 14(1), 452.
[50]
Khan, R.A.; Khan, M.R.; Sahreen, S. Attenuation of CCl4-induced hepatic oxidative stress in rat by Launaea procumbens. Exp. Toxicol. Pathol., 2013, 65(3), 319-326.
[51]
Tili, E.; Michaille, J-J.; Alder, H.; Volinia, S.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFÎ2 signaling pathway in SW480 cells. Biochem. Pharmacol., 2010, 80(12), 2057-2065.
[52]
Hagiwara, K.; Kosaka, N.; Yoshioka, Y.; Takahashi, R-U.; Takeshita, F.; Ochiya, T. Stilbene derivatives promote Ago2-dependent tumour-suppressive microRNA activity. Sci. Rep., 2012, 2, 314.
[53]
Liu, P.; Liang, H.; Xia, Q.; Li, P.; Kong, H.; Lei, P.; Wang, S.; Tu, Z. Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin. Transl. Oncol., 2013, 15(9), 741-746.
[54]
Bai, T.; Dong, D-S.; Pei, L. Synergistic antitumor activity of resveratrol and miR-200c in human lung cancer. Oncol. Rep., 2014, 31(5), 2293-2297.
[55]
Kumazaki, M.; Noguchi, S.; Yasui, Y.; Iwasaki, J.; Shinohara, H.; Yamada, N.; Akao, Y. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J. Nutr. Biochem., 2013, 24(11), 1849-1858.
[56]
Tili, E.; Michaille, J-J.; Adair, B.; Alder, H.; Limagne, E.; Taccioli, C.; Ferracin, M.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis, 2010, 31(9), 1561-1566.
[57]
Tsang, W.P.; Kwok, T.T. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J. Nutr. Biochem., 2010, 21(2), 140-146.
[58]
Siddiqui, I.A.; Asim, M.; Hafeez, B.B.; Adhami, V.M.; Tarapore, R.S.; Mukhtar, H. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J., 2011, 25(4), 1198-1207.
[59]
Wang, H.; Bian, S.; Yang, C.S. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1α. Carcinogenesis, 2011, 32(12), 1881-1889.
[60]
Zhou, D-H.; Wang, X.; Feng, Q. EGCG enhances the efficacy of cisplatin by downregulating hsa-miR-98-5p in NSCLC A549 cells. Nutr. Cancer, 2014, 66(4), 636-644.
[61]
Chakrabarti, M.; Ai, W.; Banik, N.L.; Ray, S.K. Overexpression of miR-7-1 increases efficacy of green tea polyphenols for induction of apoptosis in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cells. Neurochem. Res., 2013, 38(2), 420-432.
[62]
Salerno, E.; Scaglione, B.J.; Coffman, F.D.; Brown, B.D.; Baccarini, A.; Fernandes, H.; Marti, G.; Raveche, E.S. Correcting miR- 15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity. Mol. Cancer Therapeut, 2009, 1535- 7163. MCT-09-0127.
[63]
Chen, Y.; Zaman, M.S.; Deng, G.; Majid, S.; Saini, S.; Liu, J.; Tanaka, Y.; Dahiya, R. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev. Res., 2011, 4(1), 76-86.
[64]
Del Follo-Martinez, A.; Banerjee, N.; Li, X.; Safe, S.; Mertens-Talcott, S. Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr. Cancer, 2013, 65(3), 494-504.
[65]
Appari, M.; Babu, K.R.; Kaczorowski, A.; Gross, W.; Herr, I. Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int. J. Oncol., 2014, 45(4), 1391-1400.
[66]
Yang, J.; Cao, Y.; Sun, J.; Zhang, Y. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med. Oncol., 2010, 27(4), 1114-1118.
[67]
Zhang, J.; Du, Y.; Wu, C.; Ren, X.; Ti, X.; Shi, J.; Zhao, F.; Yin, H. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol. Rep., 2010, 24(5), 1217-1223.
[68]
Mudduluru, G.; George-William, J.N.; Muppala, S.; Asangani, I.A.; Kumarswamy, R.; Nelson, L.D.; Allgayer, H. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci. Rep., 2011, 31(3), 185-197.
[69]
Zeng, C-W.; Zhang, X-J.; Lin, K-Y.; Ye, H.; Feng, S-Y.; Zhang, H.; Chen, Y-Q. Camptothecin induces apoptosis in cancer cells via miR-125b mediated mitochondrial pathways. Mol. Pharmacol., 2012, 81(4), 578-586.
[70]
Li, Y.; VandenBoom, T.G.; Kong, D.; Wang, Z.; Ali, S.; Philip, P.A.; Sarkar, F.H. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res., 2009, 69(16), 6704-6712.
[71]
Li, Y.; VandenBoom, T.G.; Wang, Z.; Kong, D.; Ali, S.; Philip, P.A.; Sarkar, F.H. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res, 2010, 0008-5472. CAN-09-2792.
[72]
Jin, Y. 3,3′-Diindolylmethane inhibits breast cancer cell growth via miR-21-mediated Cdc25A degradation. Mol. Cell. Biochem., 2011, 358(1-2), 345-354.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy