Research Article

血清同型半胱氨酸水平与载脂蛋白M的负相关性

卷 19, 期 2, 2019

页: [120 - 126] 页: 7

弟呕挨: 10.2174/1566524019666190308115624

价格: $65

摘要

背景:尽管进行了深入研究,仍然需要有效的心肌I / R损伤治疗方法。目的:探讨腺相关病毒9(AAV9)介导的TLR4小干扰RNA治疗心肌缺血再灌注(I / R)损伤及其对NF-κB和MAPK信号通路的影响。 方法:将大鼠分为3组,即假手术组,AAV9-siRNA对照组和AAV9-TLR4 siRNA组。通过尾部注射siRNA溶液或生理盐水。然后建立大鼠心肌I / R损伤模型。 HE染色和TUNEL染色比较三组心肌细胞的病理变化。免疫组织化学染色和蛋白质印迹用于检测siRNA干扰下的TLR4表达。通过ELISA商业试剂盒测定血清炎症因子(IL-1β,TNF-α)的表达。确定MAPK(p38,JNK 1/2)和NF-κB(p65)信号传导途径中的关键蛋白质以鉴定TLR4 siRNA功能机制。 结果:心肌荧光显微图像显示AAV9介导的siRNA被有效转染到心肌中,与阴性对照组相比,AAV9-TLR4 siRNA可降低I / R损伤后的梗死面积(P <0.05)。 siRNA干扰显着降低TLR4蛋白表达(P <0.001)。 TLR4基因沉默组中凋亡相关因子BCL-2表达增加,而Bax表达减少。 Bax / BCL-2比率也降低,表明对心肌细胞具有保护作用。 TLR4基因沉默组的炎症因子低于siRNA对照组(P <0.001)。 MAPK和NF-κB信号通路在心肌I / R损伤中被激活;然而,这两种信号通路中的主要蛋白质在TLR4 siRNA干扰后下调,差异显着(P <0.05)。 结论:AAV9-TLR4 siRNA通过抑制MAPK和NF-κB信号通路对心肌I / R损伤有积极作用,可作为心肌I / R损伤的潜在治疗方法。

关键词: 同型半胱氨酸,载脂蛋白男,脂质代谢,PI3K,高同型半胱氨酸血症,心血管疾病。

[1]
Mudd SH, Finkelstein JD, Refsum H, et al. Homocysteine and its disulfide derivatives: a suggested consensus terminology. Arterioscler Thromb Vasc Biol 2000; 20(7): 1704-6.
[2]
Jansen M, Dannhardt G. Antagonists and agonists at the glycine site of the NMDA receptor for therapeutic interventions. Eur J Med Chem 2003; 38(7-8): 661-70.
[3]
Mudd SH, Finkelstein JD, Irreverre F, et al. Homocystinuria: An Enzymatic Defect. Science 1964; 143(3613): 1443-5.
[4]
Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10(1): 111-3.
[5]
Curro M, Gugliandolo A, Gangemi C, et al. Toxic effects of mildly elevated homocysteine concentrations in neuronal-like cells. Neurochem Res 2014; 39(8): 1485-95.
[6]
Ueland PM, Refsum H. Plasma homocysteine, a risk factor for vascular disease: Plasma levels in health, disease, and drug therapy. J Lab Clin Med 1989; 114(5): 473-501.
[7]
Abushik PA, Niittykoski M, Giniatullina R, et al. The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. J Neurochem 2014; 129(2): 264-74.
[8]
Qureshi I, Chen H, Brown AT, et al. Homocysteine-induced vascular dysregulation is mediated by the NMDA receptor. Vasc Med 2005; 10(3): 215-23.
[9]
Clarke R, Daly L, Robinson K, et al. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 1991; 324(17): 1149-55.
[10]
Veeranna V, Zalawadiya SK, Niraj A, et al. Homocysteine and reclassification of cardiovascular disease risk. J Am Coll Cardiol 2011; 58(10): 1025-33.
[11]
Lai WK, Kan MY. Homocysteine-Induced Endothelial Dysfunction. Ann Nutr Metab 2015; 67(1): 1-12.
[12]
Chiang JK, Sung ML, Yu HR, et al. Homocysteine induces smooth muscle cell proliferation through differential regulation of cyclins A and D1 expression. J Cell Physiol 2011; 226(4): 1017-26.
[13]
Weiss N, Heydrick SJ, Postea O, et al. Influence of hyperhomocysteinemia on the cellular redox state--impact on homocysteine-induced endothelial dysfunction. Clin Chem Lab Med 2003; 41(11): 1455-61.
[14]
Wu S, Gao X, Yang S, et al. The role of endoplasmic reticulum stress in endothelial dysfunction induced by homocysteine thiolactone. Fundam Clin Pharmacol 2015; 29(3): 252-9.
[15]
Liao D, Tan H, Hui R, et al. Hyperhomocysteinemia decreases circulating high-density lipoprotein by inhibiting apolipoprotein A-I Protein synthesis and enhancing HDL cholesterol clearance. Circ Res 2006; 99(6): 598-606.
[16]
Wang Y, Liu J, Jiang Y, et al. Hyperhomocysteinemia is associated with decreased apolipoprotein AI levels in normal healthy people. BMC Cardiovasc Disord 2016; 16(1): 10.
[17]
Holven KB, Aukrust P, Retterstol K, et al. The antiatherogenic function of HDL is impaired in hyperhomocysteinemic subjects. J Nutr 2008; 138(11): 2070-5.
[18]
Rader DJ, Hovingh GK. HDL and cardiovascular disease. Lancet 2014; 384(9943): 618-25.
[19]
Wolfrum C, Poy MN, Stoffel M. Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat Med 2005; 11(4): 418-22.
[20]
Christoffersen C, Jauhiainen M, Moser M, et al. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice. J Biol Chem 2008; 283(4): 1839-47.
[21]
Elsoe S, Ahnstrom J, Christoffersen C, et al. Apolipoprotein M binds oxidized phospholipids and increases the antioxidant effect of HDL. Atherosclerosis 2012; 221(1): 91-7.
[22]
Christoffersen C, Obinata H, Kumaraswamy SB, et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci USA 2011; 108(23): 9613-8.
[23]
Murata N, Sato K, Kon J, et al. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem J 2000; 352(Pt 3): 809-15.
[24]
Galvani S, Sanson M, Blaho VA, et al. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Sci Signal 2015; 8(389): ra79.
[25]
Wei J, Yu Y, Luo GH, et al. 17beta-estradiol regulates the expression of apolipoprotein M through estrogen receptor alpha-specific binding motif in its promoter. Lipids Health Dis 2017; 16(1): 66.
[26]
Wei J, Shi Y, Zhang X, et al. Estrogen upregulates hepatic apolipoprotein M expression via the estrogen receptor. Biochim Biophys Acta 2011; 1811(12): 1146-51.
[27]
Lentz SR. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost 2005; 3(8): 1646-54.
[28]
Boushey CJ, Beresford SAA, Omenn GS, et al. A meta-analysis of plasma homocysteine as a risk factor for arteriosclerotic vascular disease and the potential preventive role of folic acid In homocysteine metabolism: from basic science to clinical medicine. Edited by Graham I, Refsum H,Rosenberg IH, Ueland PM, Shuman JM.. Boston, MA: Springer US 1997; pp. 245-9.
[29]
McCully KS. Homocysteine and the pathogenesis of atherosclerosis. Expert Rev Clin Pharmacol 2015; 8(2): 211-9.
[30]
Mikael LG, Genest JJR, Rozen R. Elevated homocysteine reduces apolipoprotein A-I expression in hyperhomocysteinemic mice and in males with coronary artery disease. Circ Res 2006; 98(4): 564-71.
[31]
Jin P, Bian Y, Wang K, et al. Homocysteine accelerates atherosclerosis via inhibiting LXRalpha-mediated ABCA1/ABCG1-dependent cholesterol efflux from macrophages. Life Sci 2018; 214: 41-50.
[32]
Downes CP, Leslie NR, Batty IH, et al. Metabolic switching of PI3K-dependent lipid signals. Biochem Soc Trans 2007; 35(Pt 2): 188-92.
[33]
Ricoult SJ, Yecies JL, Ben-Sahra I, et al. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene 2016; 35(10): 1250-60.
[34]
Shastry S, James LR. Homocysteine-induced macrophage inflammatory protein-2 production by glomerular mesangial cells is mediated by PI3 Kinase and p38 MAPK. J Inflamm (Lond) 2009; 6: 27.
[35]
Xu N, Ahren B, Jiang J, et al. Down-regulation of apolipoprotein M expression is mediated by phosphatidylinositol 3-kinase in HepG2 cells. Biochim Biophys Acta 2006; 1761(2): 256-60.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy