[1]
Del Valle EMM. Cyclodextrins and their uses: a review. Process Biochem 2004; 39(9): 1033-46.
[2]
Conceição J, Adeoye O, Cabral-Marques HM, Lobo JMS. Cyclodextrins as excipients in tablet formulations. Drug Discov Today 2018; 23(6): 1274-84.
[3]
Higashi T, Iohara D, Motoyama K, Arima H. Supramolecular pharmaceutical sciences: a novel concept combining pharmaceutical sciences and supramolecular chemistry with a focus on cyclodextrin-based supermolecules. Chem Pharm Bull 2018; 66(3): 207-16.
[4]
Zia V, Rajewski RA, Stella VJ. Effect of cyclodextrin charge on complexation of neutral and charged substrates: comparison of (SBE)7M-beta-CD to HP-beta-CD. Pharm Res 2001; 18(5): 667-73.
[5]
Loftsson T, Hreinsdóttir D, Másson M. Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 2005; 302(1-2): 18-28.
[6]
Loftsson T, Matthíasson K, Másson M. The effects of organic salts on the cyclodextrin solubilization of drugs. Int J Pharm 2003; 262(1-2): 101-7.
[7]
Jansook P, Ogawa N, Loftsson T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm 2018; 535(1-2): 272-84.
[8]
Saokham P, Muankaew C, Jansook P, Loftsson T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018; 23(5): E1161.
[9]
Agrawal R, Gupta V. Cyclodextrins-a review on pharmaceutical application for drug delivery. Int J Pharm Front 2012; 2(1): 95-112.
[10]
Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 2004; 3(12): 1023-35.
[11]
Arima H, Miyaji T, Irie T, Hirayama F, Uekama K. Enhancing effect of hydroxypropyl-β-cyclodextrin on cutaneous penetration and activation of ethyl 4-biphenylyl acetate in hairless mouse skin. Eur J Pharm Sci 1998; 6(1): 53-9.
[12]
Asai K, Morishita M, Katsuta H, et al. The effects of water-soluble cyclodextrins on the histological integrity of the rat nasal mucosa. Int J Pharm 2002; 246(1-2): 25-35.
[13]
Han Y, Liu W, Huang J, et al. Cyclodextrin-based metal-organic frameworks (CD-MOFS) in pharmaceutics and biomedicine. Pharmaceutics 2018; 10(4): 271.
[14]
Cova TF, Murtinho D, Pais AACC, Valente AJM. Combining cellulose and cyclodextrins: Fascinating designs for materials and pharmaceutics. Front Chem 2018; 6: 271.
[15]
Ahmad M, Qureshi S, Maqsood S, Gani A, Masoodi FA. Micro-encapsulation of folic acid using horse chestnut starch and β-cyclodextrin: Microcapsule characterization, release behavior & antioxidant potential during GI tract conditions. Food Hydrocoll 2017; 66: 154-60.
[16]
Santos EH, Kamimura JA, Hill LE, Gomes CL. Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT - Food Sci Technol 2015; 60(1): 583-92.
[17]
Nalawade P, Gajjar A. Assessment of in vitro bio accessibility and characterization of spray dried complex of astaxanthin with methylated betacyclodextrin. J Incl Phenom Macrocycl Chem 2015; 83(1): 63-75.
[18]
Shelley H, Babu RJ. Role of Cyclodextrins in Nanoparticle-Based Drug Delivery Systems. J Pharm Sci 2018; 107: 1741-53.
[19]
Loftsson T, Jarho P, Másson M, Järvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2005; 2(2): 335-51.
[20]
Esclusa-Diaz MT, Gayo-Otero M, Pérez-Marcos MB, Vila-Jato JL, Torres-Labandeira JJ. Preparation and evaluation of ketoconazole-β-cyclodextrin multicomponent complexes. Int J Pharm 1996; 142(2): 183-7.
[21]
Horikawa T, Hirayama F, Uekama K. In vivo and in vitro correlation for delayed-release behaviour of a molsidomine/o-carboxymethyl-o-ethyl-β-cyclodextrin complex in gastric acidity-controlled dogs. J Pharm Pharmacol 1995; 47(2): 124-7.
[22]
Horiuchi Y, Hirayama F, Uekama K. Slow-release characteristics of diltiazem from ethylated beta-cyclodextrin complexes. J Pharm Sci 1990; 79(2): 128-32.
[23]
Okimoto K, Ohike A, Ibuki R, et al. Design and evaluation of an osmotic pump tablet (OPT) for chlorpromazine using (SBE)7m-beta-CD. Pharm Res 1999; 16(4): 549-54.
[24]
Archontaki HA, Vertzoni MV, Athanassiou-Malaki MH. Study on the inclusion complexes of bromazepam with beta- and beta-hydroxypropyl-cyclodextrins. J Pharm Biomed Anal 2002; 28(3-4): 761-9.
[25]
Matsubara K, Abe K, Irie T, Uekama K. Improvement of nasal bioavailability of luteinizing hormone-releasing hormone agonist, buserelin, by cyclodextrin derivatives in rats. J Pharm Sci 1995; 84(11): 1295-300.
[26]
Adjei A, Sundberg D, Miller J, Chun A. Bioavailability of leuprolide acetate following nasal and inhalation delivery to rats and healthy humans. Pharm Res 1992; 9(2): 244-9.
[27]
Sakr FM. Nasal administration of glucagon combined with dimethyl-β-cyclodextrin: Comparison of pharmacokinetics and pharmacodynamics of spray and powder formulations. Int J Pharm 1996; 132(1): 189-94.
[28]
Schipper NG, Romeijn SG, Verhoef JC, Merkus FW. Nasal insulin delivery with dimethyl-β-cyclodextrin as an absorption enhancer in rabbits: powder more effective than liquid formulations. Pharm Res 1993; 10: 682-6.
[29]
Merkus FW, Verhoef JC, Marttin E, et al. Cyclodextrins in nasal drug delivery. Adv Drug Deliv Rev 1999; 36(1): 41-57.
[30]
Muankaew C, Loftsson T. Cyclodextrin-based formulations: a non-invasive platform for targeted drug delivery. Basic Clin Pharmacol Toxicol 2018; 122(1): 46-55.
[31]
Loftsson T, Stefánsson E. Cyclodextrins in eye drop formulations: enhanced topical delivery of corticosteroids to the eye. Acta Ophthalmol Scand 2002; 80(2): 144-50.
[32]
Archontaki HA, Vertzoni MV, Athanassiou-Malaki MH. Study on the inclusion complexes of bromazepam with β-and β-hydroxypropyl-cyclodextrins. J Pharm Biomed Anal 2002; 28(3-4): 761-9.
[33]
Suhonen P, Järvinen T, Lehmussaari K, Reunamäki T, Urtti A. Ocular absorption and irritation of pilocarpine prodrug is modified with buffer, polymer, and cyclodextrin in the eyedrop. Pharm Res 1995; 12: 529-33.
[34]
Järvinen T, Järvinen K, Urtti A, Thompson D, Stella VJ. Sulfobutyl ether beta-cyclodextrin (SBE-beta-CD) in eyedrops improves the tolerability of a topically applied pilocarpine prodrug in rabbits. J Ocul Pharmacol Ther 1995; 11(2): 95-106.
[35]
Davies NM, Wang G, Tucker IG. Evaluation of a hydrocortisone/hydroxypropyl-β-cyclodextrin solution for ocular drug delivery. Int J Pharm 1997; 156(2): 201-9.
[36]
Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 2004; 3(12): 1023.
[37]
Chordiya MA, Senthilkumaran K. Cyclodextrin in drug delivery: a review. Res Rev J Pharm Pharm Sci 2012; 1: 19-29.
[38]
Arima H, Adachi H, Irie T, Uekama K. Improved drug delivery through the skin by hydrophilic β-cyclodextrins. Drug Investig 1990; 2(3): 155-61.
[39]
Tomono K, Gotoh H, Okamura M, Horioka M, Ueda H, Nagai T. Effect of β-cyclodextrins on sustained release of nitroglycerin from ointment bases. InChem. Abstr 1991; 115: 22-8.
[40]
Roy SD, de Groot JS. Percutaneous absorption of nafarelin acetate, an LHRH analog, through human cadaver skin and monkey skin. Int J Pharm 1994; 110(2): 137-45.
[41]
Ishida K, Hoshino T, Irie T, Uekama K. Alleviation of chlorpromazine-photosensitized contact dermatitis by β-cyclodextrin derivatives and their possible mechanisms. Drug Metab Pharmacokinet 1988; 3(4): 377-86.
[42]
Matsuda H, Arima H. Cyclodextrins in transdermal and rectal delivery. Adv Drug Deliv Rev 1999; 36(1): 81-99.
[43]
Takahashi T, Kagami I, Kitamura K, Nakanishi Y, Imasato Y. Stabilization of AD-1590, a non-steroidal antiinflammatory agent, in suppository bases by β-cyclodextrin complexation. Chem Pharm Bull 1986; 34: 1770-4.
[44]
Arima H, Kondo T, Irie T, Uekama K. Enhanced rectal absorption and reduced local irritation of the anti-inflammatory drug ethyl 4-biphenylylacetate in rats by complexation with water-soluble β-cyclodextrin derivatives and formulation as oleaginous suppository. J Pharm Sci 1992; 81(11): 1119-25.
[45]
Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 2005; 6(2): E329-57.
[46]
Proniuk S, Blanchard J. Anhydrous Carbopol polymer gels for the topical delivery of oxygen/water sensitive compounds. Pharm Dev Technol 2002; 7(2): 249-55.
[47]
Nagase Y, Hirata M, Wada K, et al. Improvement of some pharmaceutical properties of DY-9760e by sulfobutyl ether beta-cyclodextrin. Int J Pharm 2001; 229(1-2): 163-72.
[48]
Defaye J, García Fernández JM, Ortiz Mellet C. Cyclodextrins in pharmacy: prospects for targeting therapeutic assets and control of membrane interactions. Ann Pharm Fr 2007; 65: 33-49.
[49]
Bin H, Xiali L, Bo Y. Targeted drug delivery systems based on cyclodextrins. Prog Chem 2014; 26(6): 1039-49.
[50]
Bellocq NC, Pun SH, Jensen GS, Davis ME. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug Chem 2003; 14(6): 1122-32.
[51]
Chen J, Lu S, Gu W, et al. Characterization of 9-nitrocamptothecin-in-cyclodextrin-in-liposomes modified with transferrin for the treating of tumor. Int J Pharm 2015; 490(1-2): 219-28.
[52]
Zhang H, Cai Z, Sun Y, Yu F, Chen Y, Sun B. Folate-conjugated β-cyclodextrin from click chemistry strategy and for tumor-targeted drug delivery. J Biomed Mater Res A 2012; 100: 2441-9.
[53]
Yin JJ, Sharma S, Shumyak SP, et al. Synthesis and biological evaluation of novel folic acid receptor-targeted, β-cyclodextrin-based drug complexes for cancer treatment. PLoS One 2013; 8(5): e62289.
[54]
Conte C, Fotticchia I, Tirino P, et al. Cyclodextrin-assisted assembly of PEGylated polyester nanoparticles decorated with folate. Colloids Surf B Biointerfaces 2016; 141: 148-57.
[55]
Xu J, Xu B, Shou D, Qin F, Xu Y, Hu Y. Characterization and evaluation of a folic acid receptor-targeted cyclodextrin complex as an anticancer drug delivery system. Eur J Pharm Sci 2016; 83: 132-42.
[56]
Evans JC, Malhotra M, Sweeney K, et al. Folate-targeted amphiphilic cyclodextrin nanoparticles incorporating a fusogenic peptide deliver therapeutic siRNA and inhibit the invasive capacity of 3D prostate cancer tumours. Int J Pharm 2017; 532(1): 511-8.
[57]
Yin H, Zhao F, Zhang D, Li J. Hyaluronic acid conjugated β-cyclodextrin-oligoethylenimine star polymer for CD44-targeted gene delivery. Int J Pharm 2015; 483: 169-79.
[58]
Xiong Q, Cui M, Bai Y, Liu Y, Liu D, Song T. A supramolecular nanoparticle system based on β-cyclodextrin-conjugated poly-l-lysine and hyaluronic acid for co-delivery of gene and chemotherapy agent targeting hepatocellular carcinoma. Colloids Surf B Biointerfaces 2017; 155: 93-103.
[59]
Lin IC, Fang JH, Lin CT, Sung SY, Su YL, Hu SH. Enhanced targeted delivery of cyclodextrin-based supermolecules by core-shell nanocapsules for magnetothermal chemotherapy. Macromol Biosci 2016; 16(9): 1273-86.
[60]
Saraswathy M, Knight GT, Pilla S, Ashton RS, Gong S. Multifunctional drug nanocarriers formed by cRGD-conjugated βCD-PAMAM-PEG for targeted cancer therapy. Colloids Surf B Biointerfaces 2015; 126: 590-7.
[61]
Ye Z, Zhang Q, Wang S, et al. Tumor-targeted drug delivery with mannose‐functionalized nanoparticles self-assembled from amphiphilic β-cyclodextrins. . Chem Eur J 2016; 22: 15216-21.
[62]
Bertolla C, Rolin S, Evrard B, Pochet L, Masereel B. Synthesis and pharmacological evaluation of a new targeted drug carrier system: β-Cyclodextrin coupled to oxytocin. Bioorg Med Chem Lett 2008; 18(6): 1855-8.
[63]
Guo J, Ogier JR, Desgranges S, Darcy R. O′Driscoll C. Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice. Biomaterials 2012; 33(31): 7775-84.
[64]
Evans JC, Malhotra M, Fitzgerald KA, et al. Formulation and evaluation of anisamide-targeted amphiphilic cyclodextrin nanoparticles to promote therapeutic gene silencing in a 3D prostate cancer bone metastases model. Mol Pharm 2016; 14(1): 42-52.
[65]
Guo J, Russell EG, Darcy R, et al. Antibody-targeted cyclodextrin-based nanoparticles for siRNA delivery in the treatment of acute myeloid leukemia: physicochemical characteristics, in vitro mechanistic studies, and ex vivo patient derived therapeutic efficacy. Mol Pharm 2017; 14(3): 940-52.
[66]
Huang X, Yi C, Fan Y, et al. Magnetic Fe3O4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy. Mater Sci Eng C 2014; 42: 325-32.
[67]
Luo C, Zuo F, Zheng Z, Ding X, Peng Y. Temperature/light dual‐responsive inclusion complexes of α‐cyclodextrins and azobenzene‐containing polymers. J Macromol Sci A 2008; 45(5): 364-71.
[68]
Song X, Wen Y, Zhu JL, Zhao F, Zhang ZX, Li J. Thermoresponsive delivery of paclitaxel by β-cyclodextrin-based poly (N-isopropylacrylamide) star polymer via inclusion complexation. Biomacromolecules 2016; 17: 3957-63.
[69]
Lu B, Wei L, Meng G, Hou J, Liu Z, Guo X. Synthesis of self-assemble pH-responsive cyclodextrin block copolymer for sustained anticancer drug delivery. Chin J Polym Sci 2017; 35(8): 924-38.
[70]
Yu H, Sun J, Zhang Y, et al. pH-and β-cyclodextrin-responsive micelles based on polyaspartamide derivatives as drug carrier. . J Polym Sci A 2015; 53: 1387-95.
[71]
Bílková E, Sedlák M, Imramovský A, Chárová P, Knotek P, Beneš L. Prednisolone-α-cyclodextrin-star poly (ethylene glycol) polypseudorotaxane with delayed pH-sensitivity as a targeted drug delivery system. Int J Pharm 2011; 414(1-2): 42-7.
[72]
Mei X, Yang S, Chen D, et al. Light-triggered reversible assemblies of azobenzene-containing amphiphilic copolymer with β-cyclodextrin-modified hollow mesoporous silica nanoparticles for controlled drug release. ChemComm 2012; 48(80): 10010.
[73]
Wang A, Jin W, Chen E, Zhou J, Zhou L, Wei S. Drug delivery function of carboxymethyl-β-cyclodextrin modified upconversion nanoparticles for adamantine phthalocyanine and their NIR-triggered cancer treatment. Dalton Trans 2016; 45(9): 3853-62.
[74]
Zhang X, Ma X, Wang K, et al. Recent advances in cyclodextrin-based light-responsive supramolecular systems. Macromol Rapid Commun 2018; 39: e1800142.
[75]
Ben MA, Larue L, Moussaron A, et al. Use of cyclodextrins in anticancer photodynamic therapy treatment. Molecules 2018; 23(8): 1936.
[76]
Xu D, Wang L, Cochran S, Melzer A. Targeted drug delivery with modified gamma-cyclodextrin nanocarriers and MR-guided focused ultrasound triggering. J Ther Ultrasound 2015; 3: 79.
[77]
Gourevich D, Dogadkin O, Volovick A, et al. Ultrasound-mediated targeted drug delivery with a novel cyclodextrin-based drug carrier by mechanical and thermal mechanisms. J Control Release 2013; 170(3): 316-24.
[78]
Rahman S, Cao S, Steadman KJ, Wei M, Parekh HS. Native and β-cyclodextrin-enclosed curcumin: entrapment within liposomes and their in vitro cytotoxicity in lung and colon cancer. Drug Deliv 2012; 19(7): 346-53.
[79]
Pourjavadi A, Tehrani ZM. Poly(N-isopropylacrylamide)-coated β-cyclodextrin-capped magnetic mesoporous silica nanoparticles exhibiting thermal and pH dual response for triggered anticancer drug delivery. Int J Polym Mater Po 2017; 66(7): 336-48.
[80]
Hu QD, Tang GP, Chu PK. Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: from design to applications. Acc Chem Res 2014; 47(7): 2017-25.
[81]
Nagai N, Mano Y, Ito Y. An ophthalmic formulation of disulfiram nanoparticles prolongs drug residence time in lens. Biol Pharm Bull 2016; 39(11): 1881-7.
[82]
Chen J, Yao J, Ma Z, et al. Delivery of fluorescent-labeled cyclodextrin by liposomes: role of transferrin modification and phosphatidylcholine composition. J Liposome Res 2017; 27(1): 21-31.
[83]
Badwaik V, Liu L, Gunasekera D, Kulkarni A, Thompson DH. Mechanistic insight into receptor-mediated delivery of cationic-β-cyclodextrin:hyaluronic acid-adamantamethamidyl host:guest pDNA nanoparticles to CD44+ cells. Mol Pharm 2016; 13(3): 1176-84.
[84]
Ji T, Li S, Zhang Y, et al. An MMP-2 responsive liposome integrating antifibrosis and chemotherapeutic drugs for enhanced drug perfusion and efficacy in pancreatic cancer. ACS Appl Mater Interfaces 2016; 8(5): 3438-45.
[85]
Yang Y, Zhang YM, Chen Y, Chen JT, Liu Y. Polysaccharide-based noncovalent assembly for targeted delivery of taxol. Sci Rep 2016; 6: 19212.
[86]
Chen WH, Lei Q, Luo GF, et al. Rational design of multifunctional gold nanoparticles via host-guest interaction for cancer-targeted therapy. ACS Appl Mater Interfaces 2015; 7(31): 17171-80.
[87]
Liao R, Yi S, Liu M, Jin W, Yang B. Folic acid-targeted self-assembling supramolecular carrier for gene delivery. ChemBioChem 2015; 16(11): 1622-8.
[88]
Sayed M, Pal H. pH-assisted control over the binding and relocation of an acridine guest between a macrocyclic nanocarrier and natural DNA. Phys Chem Chem Phys 2015; 17: 9519-32.
[89]
Theodossiou TA, Gonçalves AR, Yannakopoulou K, Skarpen E, Berg K. Photochemical internalization of tamoxifens transported by a “trojan-horse” nanoconjugate into breast-cancer cell lines. Angew Chem Int Ed Engl 2015; 54: 4885-9.
[90]
Shi Y, Su C, Cui W, et al. Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl-beta-cyclodextrin nanoparticles enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cells. J Nanobiotechnology 2014; 12: 43.
[91]
Rodríguez-Lavado J, de la Mata M, Jiménez-Blanco JL, et al. Targeted delivery of pharmacological chaperones for Gaucher disease to macrophages by a mannosylated cyclodextrin carrier. Org Biomol Chem 2014; 12(14): 2289-301.
[92]
Zhao F, Yin H, Li J. Supramolecular self-assembly forming a multifunctional synergistic system for targeted co-delivery of gene and drug. Biomaterials 2014; 35: 1050-62.
[93]
Du F, Meng H, Xu K, et al. CPT loaded nanoparticles based on beta-cyclodextrin-grafted poly(ethylene glycol)/poly (L-glutamic acid) diblock copolymer and their inclusion complexes with CPT. Colloids Surf B Biointerfaces 2014; 113: 230-6.
[94]
Li JM, Ji YY, Mao ZW, Wang H, Zhang LN, Su ZW. Low-weight polyethylenimine cross-linked 2-hydroxypopyl-β-cyclodextrin and folic acid as an efficient and nontoxic siRNA carrier for gene silencing and tumor inhibition by VEGF siRNA. Int J Nanomedicine 2013; 8: 2101.
[95]
Gavini E, Spada G, Rassu G, et al. Development of solid nanoparticles based on hydroxypropyl-β-cyclodextrin aimed for the colonic transmucosal delivery of diclofenac sodium. J Pharm Pharmacol 2011; 63(4): 472-82.