Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Immunostimulatory Potential of Natural Compounds and Extracts: A Review

Author(s): ">Andreea C. Stroe* and ">Simona Oancea

Volume 16, Issue 4, 2020

Page: [444 - 454] Pages: 11

DOI: 10.2174/1573401315666190301154200

Price: $65

Abstract

The proper functioning of human immune system is essential for organism survival against infectious, toxic and oncogenic agents. The present study aimed to describe the scientific evidence regarding the immunomodulatory properties of the main micronutrients and specific phytochemicals. Plants of food interest have the ability to dynamically affect the immune system through particular molecules. Plant species, type of compounds and biological effects were herein reviewed mainly focusing on plants which are not commonly used in food supplements. Several efficient phytoproducts showed significant advantages compared to synthetic immunomodulators, being good candidates for the development of immunotherapeutic drugs.

Keywords: Carotenoids, flavonoids, immunostimulation, phenolics, plant extracts, polysaccharides.

Graphical Abstract

[1]
Lake DF, Briggs AD, Akporiaye ET. Immunopharmacology. In: Masters SB, Trevor AJ, Katzung BG, Eds. . Basic and Clinical Pharmacology. New York/ London: McGraw-Hill Medical 2012; pp. 977-1000.
[2]
Maggini S, Wintergerst ES, Beveridge S, Hornig D. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses 2007; 98(1): 29-S35.
[http://dx.doi.org/10.1017/S0007114507832971]
[3]
Hung SW, Tu CY, Wang WS. In vivo effects of adding singular or combined anti-oxidative vitamins and/or minerals to diets on the immune system of tilapia (Oreochromis hybrids) peripheral blood monocyte-derived, anterior kidney-derived, and spleen-derived macrophages 2007; 115(1-2): 87-99.
[4]
Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics 2004; 17: 259-75.
[http://dx.doi.org/10.1079/NRR200479]
[5]
Nakamura K, Kariyazono H, Komokata T, Hamada N, Sakata R, Yamada K. Influence of preoperative administration of omega-3 fatty acid-enriched supplement on inflammatory and immune responses in patients undergoing major surgery for cancer. Nutrition 2005; 21: 639-49.
[6]
Bendich A. Vitamins and immunity. J Nutr 1992; 122: 601-3.
[http://dx.doi.org/10.1093/jn/122.suppl_3.601]
[7]
Del Rio M, Ruedas G, Medina S, Victor VM, De la Fuente M. Improvement by several antioxidants of macrophage function in vitro. Life Sci 1998; 63: 871-81.
[http://dx.doi.org/10.1016/S0024-3205(98)00344-0]
[8]
Uchio R, Hirose Y, Murosaki S, Yamamoto Y, Ishigami A. High dietary intake of vitamin C suppresses age-related thymic atrophy and contributes to the maintenance of immune cells in vitamin C-deficient senescence marker protein-30 knockout mice. Br J Nutr 2015; 113(4): 603-9.
[http://dx.doi.org/10.1017/S0007114514003857] [PMID: 25608928]
[9]
Salgueiro MJ, Zubillaga M, Lysionek A, et al. Zinc status and immune system relationship: a review. Biol Trace Elem Res 2000; 76(3): 193-205.
[http://dx.doi.org/10.1385/BTER:76:3:193] [PMID: 11049218]
[10]
Wintergerst ES, Maggini S, Horing DH. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 2007; 51: 301-23.
[11]
Oppenheimer SJ. Iron and its relation to immunity and infectious disease. J Nutr 2001; 131(2S-2): 616S-33S.
[http://dx.doi.org/10.1093/jn/131.2.616S] [PMID: 11160594]
[12]
Hawkes WC, Kelley DS, Taylor PC. The effects of dietary selenium on the immune system in healthy men. Biol Trace Elem Res 2001; 81(3): 189-213.
[http://dx.doi.org/10.1385/BTER:81:3:189] [PMID: 11575678]
[13]
Shrivastava A, Aggarwal LM, Mishra SP, Khanna HD, Shahi UP, Pradhan S. Free radicals and antioxidants in normal versus cancerous cells - An overview. J Biochem Biophys 2019; 56(1): 7-19.
[14]
Martel J, Ko YF, Ojcius DM, et al. Immunomodulatory Properties of Plants and Mushrooms. Trends Pharmacol Sci 2017; 38(11): 967-81.
[http://dx.doi.org/10.1016/j.tips.2017.07.006] [PMID: 28863984]
[15]
Kähkönen MP, Heinonen M. Antioxidant activity of anthocyanins and their aglycons. J Agric Food Chem 2003; 51(3): 628-33.
[http://dx.doi.org/10.1021/jf025551i] [PMID: 12537433]
[16]
Demirbas A, Yilmaz V, Ildiz N, Baldemir A, Ocsoy I. Anthocyanins-rich berry extracts directed formation of Ag NPs with the investigation of their antioxidant and antimicrobial activities. J Mol Liq 2017; 248: 1044-9.
[http://dx.doi.org/10.1016/j.molliq.2017.10.130]
[17]
Song J, Wei Q, Wang X, et al. Degradation of carotenoids in dehydrated pumpkins as affected by different storage conditions. Food Res Int 2018; 107: 130-6.
[http://dx.doi.org/10.1016/j.foodres.2018.02.024] [PMID: 29580470]
[18]
Farges MC, Minet-Quinard R, Walrand S, et al. Immune status is more affected by age than by carotenoid depletion-repletion in healthy human subjects. Br J Nutr 2012; 108(11): 2054-65.
[http://dx.doi.org/10.1017/S0007114512000177] [PMID: 22397808]
[19]
Maestri E, Marmiroli M, Marmiroli N. Bioactive peptides in plant-derived foodstuffs. J Proteomics 2016; 147: 140-55.
[http://dx.doi.org/10.1016/j.jprot.2016.03.048] [PMID: 27079980]
[20]
Marmiroli N, Maestri E. Plant peptides in defense and signaling. Peptides 2014; 56: 30-44.
[http://dx.doi.org/10.1016/j.peptides.2014.03.013] [PMID: 24681437]
[21]
Ryu HS, Lee HK, Kim JS, et al. Saucerneol D inhibits dendritic cell activation by inducing heme oxygenase-1, but not by directly inhibiting toll-like receptor 4 signaling. J Ethnopharmacol 2015; 166: 92-101.
[http://dx.doi.org/10.1016/j.jep.2015.03.020] [PMID: 25792017]
[22]
Sakthivel M, Deivasigamani B, Rajasekar T, Kumaran S, Alagappan KM. Immunostimulatory effects of polysaccharide compound from seaweed Kappaphycus alvarezii on Asian seabass (Lates calcarifer) and it’s resistance against Vibrio parahaemolyticus. J Marine Biol Oceanogr 2015; 4.
[23]
Aldahlawi AM. Modulation of dendritic cell immune functions by plant components. J Microsc Ultrastruct 2016; 4(2): 55-62.
[http://dx.doi.org/10.1016/j.jmau.2016.01.001] [PMID: 30023210]
[24]
Bradley WG, Widen RH, Weiser AM, et al. The novel differentiation of human blood mononuclear cells into CD1a-negative dendritic cells is stimulated in the absence of exogenous cytokines by an extract prepared from pinecones. Int Immunopharmacol 2003; 3(2): 209-23.
[http://dx.doi.org/10.1016/S1567-5769(02)00267-9] [PMID: 12586602]
[25]
Bernd A, Ramirez-Bosca A, Huber H, et al. In vitro studies on the immunomodulating effects of polypodium leucotomos extract on human leukocyte fractions. Arzneimittelforschung 1995; 45(8): 901-4.
[PMID: 7575758]
[26]
Nabeshima S, Murata M, Hamada M, Chong Y, Yamaji K, Hayashi J. Maturation of monocyte-derived dendritic cells by Hochu-ekki-to, a traditional Japanese herbal medicine. Int Immunopharmacol 2004; 4(1): 37-45.
[http://dx.doi.org/10.1016/j.intimp.2003.10.002] [PMID: 14975358]
[27]
Berman B, Ellis C, Elmets C. Polypodium leucotomos--An overview of basic investigative findings. J Drugs Dermatol 2016; 15(2): 224-8.
[PMID: 26885792]
[28]
Knott A, Reuschlein K, Mielke H, et al. Natural Arctium lappa fruit extract improves the clinical signs of aging skin. J Cosmet Dermatol 2008; 7(4): 281-9.
[http://dx.doi.org/10.1111/j.1473-2165.2008.00407.x] [PMID: 19146605]
[29]
Vaid M, Singh T, Prasad R, Elmets CA, Xu H, Katiyar SK. Bioactive grape proanthocyanidins enhance immune reactivity in UV-irradiated skin through functional activation of dendritic cells in mice. Cancer Prev Res (Phila) 2013; 6(3): 242-52.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0320] [PMID: 23321928]
[30]
Sun Y, Hu X, Li W. Antioxidant, antitumor and immunostimulatory activities of the polypeptide from Pleurotus eryngii mycelium. Int J Biol Macromol 2017; 97: 323-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.043] [PMID: 28093329]
[31]
Borlinghaus J, Albrecht F, Gruhlke MCH, Nwachukwu ID, Slusarenko AJ. Allicin: chemistry and biological properties. Molecules 2014; 19(8): 12591-618.
[http://dx.doi.org/10.3390/molecules190812591] [PMID: 25153873]
[32]
Lomax AR, Calder PC. Prebiotics, immune function, infection and inflammation: a review of the evidence. Br J Nutr 2009; 101(5): 633-58.
[http://dx.doi.org/10.1017/S0007114508055608] [PMID: 18814803]
[33]
Seifert S, Watzl B. Inulin and oligofructose: review of experimental data on immune modulation. J Nutr 2007; 137(11)(Suppl.): 2563S-7S.
[http://dx.doi.org/10.1093/jn/137.11.2563S]
[34]
Shokryazdan P, Faseleh Jahromi M, Navidshad B, Liang JB. Effects of prebiotics on immune system and cytokine expression. Med Microbiol Immunol (Berl) 2017; 206(1): 1-9.
[http://dx.doi.org/10.1007/s00430-016-0481-y] [PMID: 27704207]
[35]
Looijer-van Langen MA, Dieleman LA. Prebiotics in chronic intestinal inflammation. Inflamm Bowel Dis 2009; 15(3): 454-62.
[http://dx.doi.org/10.1002/ibd.20737] [PMID: 18831524]
[36]
Steed H, Macfarlane S. Mechanisms of prebiotic impact on health.In: Rastall RA, Charalampopoulos D. . Prebiotics and Probiotics Science and Technology. New York: Springer 2009; pp. 135-61.
[http://dx.doi.org/10.1007/978-0-387-79058-9_5]
[37]
Urai M, Kataoka K, Nishida S, Sekimizu K. Structural analysis of an innate immunostimulant from broccoli, Brassica oleracea var. italica. Drug Discov Ther 2017; 11(5): 230-7.
[http://dx.doi.org/10.5582/ddt.2017.01044] [PMID: 29021502]
[38]
Li L, Zheng S, Brinckmann JA, et al. Chemical and genetic diversity of Astragalus mongholicus grown in different eco-climatic regions. PLoS One 2017; 12(9): e0184791
[http://dx.doi.org/10.1371/journal.pone.0184791] [PMID: 28945770]
[39]
Shao P, Zhao LH, Zhi-Chen , Pan JP. Regulation on maturation and function of dendritic cells by Astragalus mongholicus polysaccharides. Int Immunopharmacol 2006; 6(7): 1161-6.
[http://dx.doi.org/10.1016/j.intimp.2006.02.009] [PMID: 16714220]
[40]
Santander SP, Hernandez JF, Barreto CC, Masayuki A, Moins-Teisserenc H, Fiorentino S. Regulation on maturation and function of dendritic cells by Astragalus mongholicus polysaccharides. Am J Chin Med 2012; 40(4): 833-44.
[http://dx.doi.org/10.1142/S0192415X12500620] [PMID: 22809035]
[41]
Wang Z, Meng J, Xia Y, et al. Maturation of murine bone marrow dendritic cells induced by acidic Ginseng polysaccharides. Int J Biol Macromol 2013; 53: 93-100.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.11.009] [PMID: 23164755]
[42]
Zou Y, Meng J, Chen W, et al. Modulation of phenotypic and functional maturation of murine dendritic cells (DCs) by purified Achyranthes bidentata polysaccharide (ABP). Int Immunopharmacol 2011; 11(8): 1103-8.
[http://dx.doi.org/10.1016/j.intimp.2011.03.006] [PMID: 21439398]
[43]
Zhu J, Zhao LH, Zhao XP, Chen Z. Lycium barbarum polysaccharides regulate phenotypic and functional maturation of murine dendritic cells. Cell Biol Int 2007; 31(6): 615-9.
[http://dx.doi.org/10.1016/j.cellbi.2006.12.002] [PMID: 17289406]
[44]
Zhu J, Zhang Y, Shen Y, Zhou H, Yu X. Lycium barbarum polysaccharides induce Toll-like receptor 2- and 4-mediated phenotypic and functional maturation of murine dendritic cells via activation of NF-κB. Mol Med Rep 2013; 8(4): 1216-20.
[http://dx.doi.org/10.3892/mmr.2013.1608] [PMID: 23904044]
[45]
Sheu SC, Lai MH. Composition analysis and immuno-modulatory effect of okra (Abelmoschus esculentus L.) extract. Food Chem 2012; 134(4): 1906-11.
[http://dx.doi.org/10.1016/j.foodchem.2012.03.110] [PMID: 23442637]
[46]
Tanaka S, Koizumi S, Makiuchi N, et al. The extract of Japanese soybean, Kurosengoku activates the production of IL-12 and IFN-γ by DC or NK1.1(+) cells in a TLR4- and TLR2-dependent manner. Cell Immunol 2011; 266(2): 135-42.
[http://dx.doi.org/10.1016/j.cellimm.2010.09.009] [PMID: 20971456]
[47]
Singh N, Singh SM, Shrivastava P. Effect of Tinospora cordifolia on the antitumor activity of tumor-associated macrophages-derived dendritic cells. Immunopharmacol Immunotoxicol 2005; 27(1): 1-14.
[http://dx.doi.org/10.1081/IPH-200051287] [PMID: 15803856]
[48]
Jantan I, Ahmad W, Bukhari SN. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front Plant Sci 2015; 6: 655.
[http://dx.doi.org/10.3389/fpls.2015.00655] [PMID: 26379683]
[49]
Kumar RA, Sridevi K, Kumar NV, Nanduri S, Rajagopal S. Anticancer and immunostimulatory compounds from Andrographis paniculata. J Ethnopharmacol 2004; 92(2-3): 291-5.
[50]
Khajuria A, Gupta A, Garai S, Wakhloo BP. Immunomodulatory effects of two sapogenins 1 and 2 isolated from Luffa cylindrica in Balb/C mice. Bioorg Med Chem Lett 2007; 17(6): 1608-12.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.091] [PMID: 17270438]
[51]
Umeyama A, Yahisa Y, Okada M, et al. Triterpene esters from Uncaria rhynchophylla drive potent IL-12-dependent Th1 polarization. J Nat Med 2010; 64(4): 506-9.
[http://dx.doi.org/10.1007/s11418-010-0438-1] [PMID: 20585989]
[52]
Furusawa S, Wu J. The effects of biscoclaurine alkaloid cepharanthine on mammalian cells: implications for cancer, shock, and inflammatory diseases. Life Sci 2007; 80(12): 1073-9.
[http://dx.doi.org/10.1016/j.lfs.2006.12.001] [PMID: 17204293]
[53]
Yan ZR, Wang ZY, Wang B, et al. Immune-inhibitive phenyl-C1 substituent aporphine alkaloids from Thalictrum cirrhosum. Fitoterapia 2018; 128: 247-52.
[http://dx.doi.org/10.1016/j.fitote.2018.05.030] [PMID: 29852264]
[54]
Niu XF, Zhou P, Li WF, Xu HB. Effects of chelerythrine, a specific inhibitor of cyclooxygenase-2, on acute inflammation in mice. Fitoterapia 2011; 82(4): 620-5.
[http://dx.doi.org/10.1016/j.fitote.2011.01.020] [PMID: 21291962]
[55]
Oh YC, Kang OH, Kim SB, et al. Anti-inflammatory effect of sinomenine by inhibition of pro-inflammatory mediators in PMA plus A23187-stimulated HMC-1 Cells. Eur Rev Med Pharmacol Sci 2012; 16(9): 1184-91.
[PMID: 23047501]
[56]
Zhang Y, Wang S, Li Y, Xiao Z, Hu Z, Zhang J. Sophocarpine and matrine inhibit the production of TNF-alpha and IL-6 in murine macrophages and prevent cachexia-related symptoms induced by colon26 adenocarcinoma in mice. Int Immunopharmacol 2008; 8(13-14): 1767-72.
[57]
Yun KJ, Shin JS, Choi JH, Back NI, Chung HG, Lee KT. Quaternary alkaloid, pseudocoptisine isolated from tubers of Corydalis turtschaninovi inhibits LPS-induced nitric oxide, PGE(2), and pro-inflammatory cytokines production via the down-regulation of NF-kappaB in RAW 264.7 murine macrophage cells. Int Immunopharmacol 2009; 9(11): 1323-31.
[http://dx.doi.org/10.1016/j.intimp.2009.08.001] [PMID: 19666143]
[58]
Wu CJ, Wang YH, Lin CJ, Chen HH, Chen YJ. Tetrandrine down-regulates ERK/NF-κB signaling and inhibits activation of mesangial cells. Toxicol In Vitro 2011; 25(8): 1834-40.
[http://dx.doi.org/10.1016/j.tiv.2011.09.024] [PMID: 22001142]
[59]
Song Y, Qu R, Zhu S, Zhang R, Ma S. Rhynchophylline attenuates LPS-induced pro-inflammatory responses through down-regulation of MAPK/NF-κB signaling pathways in primary microglia. Phytother Res 2012; 26(10): 1528-33.
[http://dx.doi.org/10.1002/ptr.4614] [PMID: 22322985]
[60]
Vaibhav K, Shrivastava P, Javed H, et al. Piperine suppresses cerebral ischemia-reperfusion-induced inflammation through the repression of COX-2, NOS-2, and NF-κB in middle cerebral artery occlusion rat model. Mol Cell Biochem 2012; 367(1-2): 73-84.
[61]
Son DJ, Akiba S, Hong JT, et al. Piperine inhibits the activities of platelet cytosolic phospholipase A2 and thromboxane A2 synthase without affecting cyclooxygenase-1 activity: different mechanisms of action are involved in the inhibition of platelet aggregation and macrophage inflammatory response. Nutrients 2014; 6(8): 3336-52.
[http://dx.doi.org/10.3390/nu6083336] [PMID: 25153972]
[62]
Lin WC, Lin JY. Berberine down-regulates the Th1/Th2 cytokine gene expression ratio in mouse primary splenocytes in the absence or presence of lipopolysaccharide in a preventive manner. Int Immunopharmacol 2011; 11(12): 1984-90.
[http://dx.doi.org/10.1016/j.intimp.2011.08.008] [PMID: 21867779]
[63]
Xu YK, Liao SG, Na Z, Hu HB, Li Y, Luo HR. Gelsemium alkaloids, immunosuppressive agents from Gelsemium elegans. Fitoterapia 2012; 83(6): 1120-4.
[http://dx.doi.org/10.1016/j.fitote.2012.04.023] [PMID: 22579843]
[64]
Kang J, Zhang Y, Cao X, et al. Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge. Int Immunopharmacol 2012; 12(1): 249-56.
[http://dx.doi.org/10.1016/j.intimp.2011.11.018] [PMID: 22155741]
[65]
Zhang B, Liu ZY, Li YY, et al. Antiinflammatory effects of matrine in LPS-induced acute lung injury in mice. Eur J Pharm Sci 2011; 44(5): 573-9.
[http://dx.doi.org/10.1016/j.ejps.2011.09.020] [PMID: 22019524]
[66]
Liu HX, Pan LL, Yang HB, Gong QH, Zhu YZ. Leonurine attenuates lipopolysaccharide-induced inflammatory responses in human endothelial cells: involvement of reactive oxygen species and NF-κB pathways. Eur J Pharmacol 2012; 680(1-3): 108-14.
[67]
Chen CY, Peng WH, Tsai KD, Hsu SL. Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci 2007; 81(23-24): 1602-14.
[68]
Chen D, Bi A, Dong X, et al. Luteolin exhibits anti-inflammatory effects by blocking the activity of heat shock protein 90 in macrophages. Biochem Biophys Res Commun 2014; 443(1): 326-32.
[http://dx.doi.org/10.1016/j.bbrc.2013.11.122] [PMID: 24321097]
[69]
Shin EK, Kwon HS, Kim YH, Shin HK, Kim JK. Chrysin, a natural flavone, improves murine inflammatory bowel diseases. Biochem Biophys Res Commun 2009; 381(4): 502-7.
[http://dx.doi.org/10.1016/j.bbrc.2009.02.071] [PMID: 19233127]
[70]
Bae Y, Lee S, Kim SH. Chrysin suppresses mast cell-mediated allergic inflammation: involvement of calcium, caspase-1 and nuclear factor-κB. Toxicol Appl Pharmacol 2011; 254(1): 56-64.
[http://dx.doi.org/10.1016/j.taap.2011.04.008] [PMID: 21515303]
[71]
Nicholas C, Batra S, Vargo MA, et al. Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-kappaB through the suppression of p65 phosphorylation. J Immunol 2007; 179(10): 7121-7.
[http://dx.doi.org/10.4049/jimmunol.179.10.7121] [PMID: 17982104]
[72]
Kang SR, Park KI, Park HS, et al. Anti-inflammatory effect of flavonoids isolated from Korea Citrus aurantium L. on lipopolysaccharide-induced mouse macrophage RAW 264.7 cells by blocking of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathways. Food Chem 2011; 129(4): 1721-8.
[http://dx.doi.org/10.1016/j.foodchem.2011.06.039]
[73]
Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm 2007; 2007: 45673.
[http://dx.doi.org/10.1155/2007/45673] [PMID: 18274639]
[74]
Valles SL, Dolz-Gaiton P, Gambini J, et al. Estradiol or genistein prevent Alzheimer’s disease-associated inflammation correlating with an increase PPAR gamma expression in cultured astrocytes. Brain Res 2010; 1312: 138-44.
[http://dx.doi.org/10.1016/j.brainres.2009.11.044] [PMID: 19948157]
[75]
Cherng JM, Chiang W, Chiang LC. Immunomodulatory activities of common vegetables and spices of Umbelliferae and its related coumarins and flavonoids. Food Chem 2008; 106: 944-50.
[http://dx.doi.org/10.1016/j.foodchem.2007.07.005]
[76]
Liu X, Mei Z, Qian J, Zeng Y, Wang M. Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway. Neural Regen Res 2013; 8(34): 3203-15.
[PMID: 25206641]
[77]
Zhao F, Nozawa H, Daikonnya A, Kondo K, Kitanaka S. Inhibitors of nitric oxide production from hops (Humulus lupulus L.). Biol Pharm Bull 2003; 26(1): 61-5.
[http://dx.doi.org/10.1248/bpb.26.61] [PMID: 12520174]
[78]
Kim JS, Jobin C. The flavonoid luteolin prevents lipopolysaccharide-induced NF-kappaB signalling and gene expression by blocking IkappaB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells. Immunology 2005; 115(3): 375-87.
[http://dx.doi.org/10.1111/j.1365-2567.2005.02156.x] [PMID: 15946255]
[79]
Lee IT, Lin CC, Lee CY, Hsieh PW, Yang CM. Protective effects of (-)-epigallocatechin-3-gallate against TNF-α-induced lung inflammation via ROS-dependent ICAM-1 inhibition. J Nutr Biochem 2013; 24(1): 124-36.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.009] [PMID: 22819551]
[80]
Alonso-Castro AJ, Ortiz-Sánchez E, García-Regalado A, et al. Kaempferitrin induces apoptosis via intrinsic pathway in HeLa cells and exerts antitumor effects. J Ethnopharmacol 2013; 145(2): 476-89.
[http://dx.doi.org/10.1016/j.jep.2012.11.016] [PMID: 23211658]
[81]
Fu RH, Wang YC, Liu SP, et al. Acetylcorynoline impairs the maturation of mouse bone marrow-derived dendritic cells via suppression of IκB kinase and mitogen-activated protein kinase activities. PLoS One 2013; 8: 3
[http://dx.doi.org/10.1371/journal.pone.0058398]
[82]
Ramgolam V, Ang SG, Lai YH, Loh CS, Yap HK. Traditional Chinese medicines as immunosuppressive agents. Ann Acad Med Singapore 2000; 29(1): 11-6.
[PMID: 10748958]
[83]
Brinker AM, Ma J, Lipsky PE, Raskin I. Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry 2007; 68(6): 732-66.
[http://dx.doi.org/10.1016/j.phytochem.2006.11.029] [PMID: 17250858]
[84]
Kannaiyan R, Shanmugam MK, Sethi G. Molecular targets of celastrol derived from Thunder of God Vine: potential role in the treatment of inflammatory disorders and cancer. Cancer Lett 2011; 303(1): 9-20.
[http://dx.doi.org/10.1016/j.canlet.2010.10.025] [PMID: 21168266]
[85]
Hartog A, Smit HF, van der Kraan PM, Hoijer MA, Garssen J. In vitro and in vivo modulation of cartilage degradation by a standardized Centella asiatica fraction. Exp Biol Med (Maywood) 2009; 234(6): 617-23.
[http://dx.doi.org/10.3181/0810-RM-298] [PMID: 19307458]
[86]
Li H, Gong X, Zhang L, et al. Madecassoside attenuates inflammatory response on collagen-induced arthritis in DBA/1 mice. Phytomedicine 2009; 16(6-7): 538-46.
[87]
Chen X, Murakami T, Oppenheim JJ, Howard OM. Triptolide, a constituent of immunosuppressive Chinese herbal medicine, is a potent suppressor of dendritic-cell maturation and trafficking. Blood 2005; 106(7): 2409-16.
[http://dx.doi.org/10.1182/blood-2005-03-0854] [PMID: 15956285]
[88]
Carlos IZ, Carli CBA, Maia DGC, et al. Immunostimulatory effects of the phenolic compounds from lichens on nitric oxide and hydrogen peroxide production. Rev Bras Farmacogn 2009; 19
[http://dx.doi.org/10.1590/S0102-695X2009000600009]
[89]
Li S, Lin YC, Ho CT, et al. Formulated extract from multiple citrus peels impairs dendritic cell functions and attenuates allergic contact hypersensitivity. Int Immunopharmacol 2014; 20(1): 12-23.
[http://dx.doi.org/10.1016/j.intimp.2014.02.005] [PMID: 24566093]
[90]
Nakamura K, Kariyazono H, Komokata T, Hamada N, Sakata R, Yamada K. Influence of preoperative administration of omega-3 fatty acid-enriched supplement on inflammatory and immune responses in patients undergoing major surgery for cancer. Nutrition 2005; 21(6): 639-49.
[http://dx.doi.org/10.1016/j.nut.2005.03.001] [PMID: 15925286]
[91]
Kew S, Banerjee T, Minihane AM, et al. Lack of effect of foods enriched with plant- or marine-derived n-3 fatty acids on human immune function. Am J Clin Nutr 2003; 77(5): 1287-95.
[http://dx.doi.org/10.1093/ajcn/77.5.1287] [PMID: 12716684]
[92]
Fenton JI, Hord NG, Ghosh S, Gurzell EA. Immunomodulation by dietary long chain omega-3 fatty acids and the potential for adverse health outcomes. Prostaglandins Leukot Essent Fatty Acids 2013; 89(6): 379-90.
[http://dx.doi.org/10.1016/j.plefa.2013.09.011] [PMID: 24183073]
[93]
Stefanson A. Anti-inflammatory and immunomodulatory effects of carrot-derived polyacetylenes in acutte intestinal and systemic inflammation and an evaluation of potential of agronomic techniques for their enhancement in carrot. Human Health and Nutritional Sciences 2018.Available from . http://hdl.handle.net/10214/14300
[94]
Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 2009; 284(20): 13291-5.
[http://dx.doi.org/10.1074/jbc.R900010200] [PMID: 19182219]
[95]
Benson JM, Pokorny AJ, Rhule A, et al. Echinacea purpurea extracts modulate murine dendritic cell fate and function. Food Chem Toxicol 2010; 48(5): 1170-7.
[http://dx.doi.org/10.1016/j.fct.2010.02.007] [PMID: 20149833]
[96]
Yin SY, Wang WH, Wang BX, et al. Stimulatory effect of Echinacea purpurea extract on the trafficking activity of mouse dendritic cells: revealed by genomic and proteomic analyses. BMC Genomics 2010; 11: 612.
[http://dx.doi.org/10.1186/1471-2164-11-612]
[97]
Kurokawa K, Ishii R, An WW, et al. A heat-stable extract from Mucuna stimulates the differentiation of bone marrow cells into dendritic cells and induces apoptosis in cancer cells. Nutr Cancer 2011; 63(1): 100-8.
[PMID: 21170811]
[98]
Jing XN, Qiu B, Wang JF, Wu YG, Chen DD. [In vitro anti-tumor effect of human dendritic cells vaccine induced by astragalus polysacharin: an experimental study]. Zhong Xi Yi Jie He Za Zhi 2014; 34(9): 1103-7.
[99]
Azadmehr A, Latifi R, Mosalla S, Hajiaghaee R, Shahnazi M. Immunomodulatory effects of Ziziphora tenuior L. extract on the dendritic cells. Daru 2014; 22: 63.
[http://dx.doi.org/10.1186/s40199-014-0063-8] [PMID: 25227582]
[100]
Chen Y, Yang L, Lee TJ. Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-kappaB activation. Biochem Pharmacol 2000; 59(11): 1445-57.
[http://dx.doi.org/10.1016/S0006-2952(00)00255-0] [PMID: 10751555]
[101]
Ye M, Wang Q, Zhang W, Li Z, Wang Y, Hu R. Oroxylin A exerts anti-inflammatory activity on lipopolysaccharide-induced mouse macrophage via Nrf2/ARE activation. Biochem Cell Biol 2014; 92(5): 337-48.
[http://dx.doi.org/10.1139/bcb-2014-0030] [PMID: 25247252]
[102]
Kumar VP, Venkatesh YP. Alleviation of cyclophosphamide-induced immunosuppression in Wistar rats by onion lectin (Allium cepa agglutinin). J Ethnopharmacol 2016; 186: 280-8.
[http://dx.doi.org/10.1016/j.jep.2016.04.006] [PMID: 27063982]
[103]
Goodarzi M, Nanekarani S, Landy N. Effect of dietary supplementation with onion (Allium cepa L) on performance, carcass traits and intestinal microflora composition in broiler chickens. Asian Pac J Trop Med 2014; 4: S297-301.
[http://dx.doi.org/10.1016/S2222-1808(14)60459-X]
[104]
Cheng H, Huang G. Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide. Int J Biol Macromol 2018; 114: 415-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.156] [PMID: 29596932]
[105]
Kopec A, et al. Healthy properties of garlic. Curr Nutr Food Sci 2013; 9(1): 59-64.
[106]
Rahman MS. Allicin and other functional active components in garlic: health benefits and bioavailability. Int J Food Prop 2007; 10(2): 245-68.
[http://dx.doi.org/10.1080/10942910601113327]
[107]
Chen J, Cheong Kl, Song Z, Shi Y, Huang X. Structure and protective effect on UVB-induced keratinocyte damage of fructan from white garlic. Carbohydr Polym 2013; 92(1): 200-5.
[http://dx.doi.org/10.1016/j.carbpol.2012.09.068] [PMID: 23218283]
[108]
Rezig L, Chouaibi M, Msaada K, Hamdi S. Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Ind Crops Prod 2012; 37(1): 82-7.
[http://dx.doi.org/10.1016/j.indcrop.2011.12.004]
[109]
Adams GG, Imran S, Wang S, et al. Extraction, isolation and characterisation of oil bodies from pumpkin seeds for therapeutic use. Food Chem 2012; 134(4): 1919-25.
[http://dx.doi.org/10.1016/j.foodchem.2012.03.114] [PMID: 23442639]
[110]
Egusa S, Otani H. Characterization of a cellular immunostimulating peptide from a soybean protein fraction digested with peptidase R. J Nutr Sci Vitaminol (Tokyo) 2009; 55(5): 428-33.
[http://dx.doi.org/10.3177/jnsv.55.428] [PMID: 19926930]
[111]
Nichenametla SN, Taruscio TG, Barney DL, Exon JH. A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr 2006; 46(2): 161-83.
[http://dx.doi.org/10.1080/10408390591000541] [PMID: 16431408]
[112]
Chen L, Xin X, Yuan Q, Su D, Liu W. Phytochemical properties and antioxidant capacities of various colored berries. J Sci Food Agric 2014; 94(2): 180-8.
[http://dx.doi.org/10.1002/jsfa.6216] [PMID: 23653223]
[113]
Shen YC, Chen CF, Chiou WF. Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect. Br J Pharmacol 2002; 135(2): 399-406.
[http://dx.doi.org/10.1038/sj.bjp.0704493] [PMID: 11815375]
[114]
Song JY, Han SK, Son EH, Pyo SN, Yun YS, Yi SY. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. Int Immunopharmacol 2002; 2(7): 857-65.
[http://dx.doi.org/10.1016/S1567-5769(01)00211-9] [PMID: 12188027]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy