Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis and Investigation of Therapeutic Potential of Isoform-Specific HDAC8 Inhibitors for the Treatment of Cutaneous T Cell Lymphoma

Author(s): Appavoo Umamaheswari, Ayarivan Puratchikody* and Natarajan Hari

Volume 19, Issue 7, 2019

Page: [916 - 934] Pages: 19

DOI: 10.2174/1871520619666190301150254

Price: $65

Abstract

Background: The available treatment option for any type of cancer including CTCL is chemotherapy and radiation therapy which indiscriminately persuade on the normal cells. One way out for selective destruction of CTCL cells without damaging normal cells is the use of histone deacetylase inhibitors (HDACi). Despite promising results in the treatment of CTCL, these HDACi have shown a broadband inhibition profile, moderately selective for one HDAC class but not for a particular isotype. The prevalence of drug-induced side effects leaves open a narrow window of speculation that the decreased therapeutic efficacy and observed side effects may be most likely due to non specific HDAC isoform inhibition. The aim of this paper is to synthesis and evaluates HDAC8 isoform specific inhibitors.

Methods: Based on the preliminary report on the design and in silico studies of 52 hydroxamic acid derivatives bearing multi-substituent heteroaromatic rings with chiral amine linker, five compounds were shortlisted and synthesized by microwave assisted approach and high yielding synthetic protocol. A series of in vitro assays in addition to HDAC8 inhibitory activity was used to evaluate the synthesised compounds.

Results: Inhibitors 1e, 2e, 3e, 4e and 5e exerted the anti-proliferative activities against CTCL cell lines at 20- 100 µM concentrations. Both the pyrimidine- and pyridine-based probes exhibited μM inhibitory activity against HDAC8. The pyrimidine-based probe 1e displayed remarkable HDAC8 selectivity superior to that of the standard drug, SAHA with an IC50 at 0.1µM.

Conclusion: Our study demonstrated that simple modifications at different portions of pharmacophore in the hydroxamic acid analogues are effective for improving both HDAC8 inhibitory activity and isoform selectivity. Potent and highly isoform-selective HDAC8 inhibitors were identified. These findings would be expedient for further development of HDAC8-selective inhibitors.

Keywords: HDAC8i, chiral, hydroxamates, microwave synthesis, lymphoma, in vitro validation.

Graphical Abstract

[1]
Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global cancer transitions according to the human development index (2008-2030): A population-based study. Lancet Oncol., 2012, 13, 790-801.
[2]
Cutaneous Lymphoma Foundation, 2006. Available at: http://www. clfoundation.org/publications/publications.htm Accessed 3 December 2017.
[3]
Panda, S. Mycosis fungoides: Current trends in diagnosis and management. Indian J. Dermatol., 2007, 52, 5-20.
[4]
Glenn, M.P.; Kahnberg, P.; Boyle, G.M.; Hansford, K.A.; Hans, D.; Martyn, A.C.; Parsons, P.G.; Fairlie, D.P. Antiproliferative and phenotype-transforming antitumor agents derived from cysteine. J. Med. Chem., 2004, 47, 2984-2994.
[5]
Kahnberg, P.; Lucke, A.J.; Glenn, M.P.; Boyle, G.M.; Tyndall, J.D.A.; Parsons, P.G.; Fairlie, D.P. Design, synthesis, potency, and cytoselectivity of anticancer agents derived by parallel synthesis from α-aminosuberic acid. J. Med. Chem., 2006, 49, 7611-7622.
[6]
Ververis, K.; Hiong, A.; Karagiannis, T.C.; Licciardi, P.V. Histone deacetylase inhibitors (HDACIs): Multitargeted anticancer agents. Biologics, 2013, 7, 47-60.
[7]
Di Micco, S.; Chini, M.G.; Terracciano, S.; Bruno, I.; Riccio, R.; Bifulco, G. Structural basis for the design and synthesis of selective HDAC inhibitors. Bioorg. Med. Chem., 2013, 21, 3795-3807.
[8]
Gryder, B.E.; Sodji, Q.H.; Oyelere, A.K. Targeted cancer therapy: Giving histone deacetylase inhibitors all they need to succeed. Future Med. Chem., 2012, 4, 505-524.
[9]
Smil, D.V.; Manku, S.; Chantigny, Y.A.; Leit, S.; Wahhab, A.; Yan, T.P.; Fournel, M.; Maroun, C.; Li, Z.; Lemieux, A.M.; Nicolescu, A.; Rahil, J.; Lefebvre, S.; Panetta, A.; Besterman, J.M.; Deziel, R. Novel HDAC6 isoform selective chiral small molecule histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19, 688-692.
[10]
Sumithira, G.; Sujatha, M. Drug chirality & its clinical significance evident, future for the development/separation of single enantiomer drug from racemates - The chiral switch. Int. J. Ad. Pharm. Gen. Res., 2013, 1(1), 1-19.
[11]
Slovakova, A.; Hutt, A.J. Chiral compounds and their pharmacologic effects. Ceska Slov. Farm., 1999, 48, 107-112.
[12]
Umamaheswari, A.; Irfan, N.; Puratchikody, A. In silico molecular interaction studies of chiral heterocyclic analogs of SAHA as selective histone deacetylase 8 Inhibitors. Lett. Drug Des. Discov., 2015, 12, 711-727.
[13]
Choi, S.E.; Pflum, M.K.H. The structural requirements of histone deacetylase inhibitors: suberoyl anilide hydroxamic acid analogs modified at the C6 position. Bioorg. Med. Chem. Lett., 2012, 22(23), 7084-7086.
[14]
Chunavala, K.C.; Joshi, G.; Suresh, E.; Adimurthy, S. Thermal and microwave-assisted rapid syntheses of substituted imidazo[1,2-α]pyridines under solvent- and catalyst-free conditions. Synthesis, 2011, 635-641.
[15]
Clayden, J.; Greeves, N.; Warren, S. Stereoselectivity in cyclic molecules. In: Organic Chemistry, 2nd ed; Oxford University Press, 2012; pp. 825-851.
[16]
Raju, M.; Maeorg, S.; Tsubrik, O.; Maeorg, U. Efficient solventless technique for Boc-protection of hydrazines and amines. ARKIVOC, 2009, 6, 291-297.
[17]
Konig, W.; Geiger, R. A new method for synthesis of peptides: activation of the carboxyl group with dicyclohexylcarbodiimide using 1-hydroxybenzotriazoles as additives. Chem. Ber., 1970, 103(3), 788-798.
[18]
Pellon, R.F.; Docampo, M.L. Synthesis of novel cinnamoyl amides using a solvent-free microwave-assisted method. Synth. Commun., 2013, 43, 537-552.
[19]
Bogdał, D.; Łukasiewicz, M. Microwave-assisted oxidation of alcohols using aqueous hydrogen peroxide. Synlett, 2000, 1, 143-145.
[20]
Vogel, A.I.; Furniss, B.S. Vogel’s Textbook of Practical Organic Chemistry. Longman Scientific & Technical. In: Wiley: London, New York, 5th Ed.,; , 1989.
[21]
Hartwig, S.; Nguyen, M.M.; Hecht, S. Exponential growth of functional poly (glutamic acid) dendrimers with variable stereochemistry. Polym. Chem., 2010, 1, 69-71.
[22]
Yang, C.; Yang, S.; Wood, K.B.; Hornicek, F.; Schwab, J.H.; Fondren, G.; Mankin, H.; Duan, Z. Multidrug resistant osteosarcoma cell lines exhibit deficiency of GADD45α expression. Apoptosis, 2009, 14, 124-133.
[23]
Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol., 2001, •••
[http://dx.doi.org/10.1002/0471142735.ima03bs21]
[24]
Thomas, S.; Thurn, K.T.; Raha, P.; Chen, S.; Munster, P.N. Efficacy of histone deacetylase and estrogen receptor inhibition in breast cancer cells due to concerted down regulation of Akt. PLoS One, 2013, 8(7)e68973
[25]
Franken, N.A.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1(5), 2315-2319.
[26]
Rio, D.C.; Ares, M.; Hannon, G.J.; Nilsen, T.W. Purification of RNA using TRIzol (TRI Reagent). Cold Spring Harb. Protoc., 2010, 6prot5439
[27]
Zhang, P.; Ng, P.; Caridha, D.; Leach, R.A.; Asher, L.V.; Novak, M.J.; Smith, W.J.; Zeichner, S.L.; Chiang, P.K. Gene expressions in jurkat cells poisoned by a sulphur mustard vesicant and the induction of apoptosis. Br. J. Pharmacol., 2002, 137(2), 245-252.
[28]
Bevilacqua, A.; Ceriani, M.C.; Canti, G.; Asnaghi, L.; Gherzi, R.; Brewer, G.; Papucci, L.; Schiavone, N.; Capaccioli, S.; Nicolin, A. Bcl-2 protein is required for the adenine/uridine-rich element (ARE)-dependent degradation of its own messenger. J. Biol. Chem., 2003, 278(26), 23451-23459.
[29]
Agami, C.; Couty, F. The reactivity of the N-Boc protecting group: An underrated feature. Tetrahedron, 2002, 58(14), 2701-2724.
[30]
Alanine, T.A.; Galloway, W.R.J.D.; Bartlett, S.; Ciardiello, J.J.; McGuire, T.M.; Spring, D.R. Concise synthesis of rare pyrido[1,2-α]pyrimidin-2-ones and related nitrogen-rich bicyclic scaffolds with a ring-junction nitrogen. Org. Biomol. Chem., 2016, 14, 1031-1038.
[31]
Massaro, A.; Mordini, A.; Reginato, G.; Russo, F.; Taddei, M. Microwave-assisted transformation of esters into hydroxamic acids. Synthesis, 2007, 20, 3201-3204.
[32]
Ripka, A.S.; Bohacek, R.S.; Rich, D.H. Synthesis of novel cyclic protease inhibitors using grubbs olefin metathesis. Bioorg. Med. Chem. Lett., 1998, 8(4), 357-360.
[33]
Aguero, L.; Guerrero-Ramirez, L.G.; Katime, I. New family of functionalized monomers based on amines: A novel synthesis that exploits the nucleophilic substitution reaction. Mater. Sci. Appl., 2010, 1(3), 103-108.
[34]
Mohan, J. Organic spectroscopy: Principles and applications; Alpha Science International Ltd, 2nd Ed, 2004.
[35]
Riss, T.L.; Moravec, R.A. Use of multiple assay endpoints to investigate the effects of incubation time, dose of toxin, and plating density in cell-based cytotoxicity assays. Assay Drug Dev. Technol., 2004, 2(1), 51-62.
[36]
Dai, Y.; Guo, Y.; Curtin, M.L.; Li, J.; Pease, L.J.; Guo, J.; Marcotte, P.A.; Glaser, B.; Davidsen, S.K.; Michaelides, M.R. A novel series of histone deacetylase inhibitors incorporating hetero aromatic ring systems as connection units. Bioorg. Med. Chem. Lett., 2003, 13(21), 3817-3820.
[37]
Kashmiri, L.; Pinki, Y. Recent advancements in 1,4-disubstituted 1H-1,2,3-triazoles as potential anti-cancer agents. Anti-Cancer Agent. Med., 2018, 18, 6-14.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy