Review Article

糖基大环化合物:潜在的新先导化合物及其在药物化学中的应用前景

卷 27, 期 20, 2020

页: [3386 - 3410] 页: 25

弟呕挨: 10.2174/0929867326666190227232721

价格: $65

摘要

在化疗领域,大环化合物涵盖了具有广泛生物活性的小分子片段。主要是已知具有广泛生物活性的大环类候选药物的天然来源。药物化学向基于大环的化疗的进一步演变涉及到天然产物的半合成功能化。近年来,以碳水化合物为基础的大环已引起了全世界药物化学家的极大兴趣。碳水化合物提供了一个理想的支架,以产生具有明确的药物团修饰方式的手性大环,以实现所需的生物活性。综述了碳水化合物衍生的大环化合物在药物设计和发现中的合成及其在药物化学中的潜在作用。

关键词: 糖基-大环,糖杂化,糖苷,环肽,糖肽,糖代谢学,皂苷。

« Previous
[1]
Frank, A.T.; Farina, N.S.; Sawwan, N.; Wauchope, O.R.; Qi, M.; Brzostowska, E.M.; Chan, W.; Grasso, F.W.; Haberfield, P.; Greer, A. Natural macrocyclic molecules have a possible limited structural diversity. Mol. Divers., 2007, 11(3-4), 115-118.
[http://dx.doi.org/10.1007/s11030-007-9065-5] [PMID: 18027097]
[2]
Gibson, S.E.; Lecci, C. Amino acid derived macrocycles--an area driven by synthesis or application? Angew. Chem. Int. Ed. Engl., 2006, 45(9), 1364-1377.
[http://dx.doi.org/10.1002/anie.200503428] [PMID: 16444788]
[3]
Driggers, E.M.; Hale, S.P.; Lee, J.; Terrett, N.K. The exploration of macrocycles for drug discovery--an underexploited structural class. Nat. Rev. Drug Discov., 2008, 7(7), 608-624.
[http://dx.doi.org/10.1038/nrd2590] [PMID: 18591981]
[4]
Crane, E.A.; Scheidt, K.A. Prins-type macrocyclizations as an efficient ring-closing strategy in natural product synthesis. Angew. Chem. Int. Ed. Engl., 2010, 49(45), 8316-8326.
[http://dx.doi.org/10.1002/anie.201002809] [PMID: 20931580]
[5]
Madsen, C.M.; Clausen, M.H. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity-Oriented Synthesis. Eur. J. Org. Chem., 2011, 2011(17), 3107-3115.
[http://dx.doi.org/10.1002/ejoc.201001715]
[6]
Maiti, K.; Jayaraman, N. Synthesis and Structure of Cyclic Trisaccharide with Expanded Glycosidic Linkages. J. Org. Chem., 2016, 81(11), 4616-4622.
[http://dx.doi.org/10.1021/acs.joc.6b00462] [PMID: 27182797]
[7]
Butler, M.S. Natural products to drugs: natural product derived compounds in clinical trials. Nat. Prod. Rep., 2005, 22(2), 162-195.
[http://dx.doi.org/10.1039/b402985m] [PMID: 15806196]
[8]
Gradillas, A.; Pérez-Castells, J. Macrocyclization by ring-closing metathesis in the total synthesis of natural products: reaction conditions and limitations. Angew. Chem. Int. Ed. Engl., 2006, 45(37), 6086-6101.
[http://dx.doi.org/10.1002/anie.200600641] [PMID: 16921569]
[9]
Parenty, A.; Moreau, X.; Campagne, J.M. Macrolactonizations in the total synthesis of natural products. Chem. Rev., 2006, 106(3), 911-939.
[http://dx.doi.org/10.1021/cr0301402] [PMID: 16522013]
[10]
Kim, K.; Yoo, D.; Kim, Y.; Lee, B.; Shin, D.; Kim, E.K. Characteristics of sophorolipid as an antimicrobial agent. J. Microbiol. Biotechnol., 2002, 12, 235-241.
[11]
Desmond, R.T.; Magpusao, A.N.; Lorenc, C.; Alverson, J.B.; Priestley, N.; Peczuh, M.W. De novo macrolide-glycolipid macrolactone hybrids: Synthesis, structure and antibiotic activity of carbohydrate-fused macrocycles. Beilstein J. Org. Chem., 2014, 10, 2215-2221.
[http://dx.doi.org/10.3762/bjoc.10.229] [PMID: 25246980]
[12]
Tsunakawa, M.; Kotake, C.; Yamasaki, T.; Moriyama, T.; Konishi, M.; Oki, T. New antiviral antibiotics, cycloviracins B1 and B2. II. Structure determination. J. Antibiot. (Tokyo), 1992, 45(9), 1472-1480.
[http://dx.doi.org/10.7164/antibiotics.45.1472] [PMID: 1429233]
[13]
Fürstner, A. Total Syntheses and Biological Assessment of Macrocyclic Glycolipids. Eur. J. Org. Chem., 2004, 2004(5), 943-958.
[http://dx.doi.org/10.1002/ejoc.200300728]
[14]
Fürstner, A.; Jeanjean, F.; Razon, P. Total synthesis of woodrosin I. Angew. Chem. Int. Ed. Engl., 2002, 41(12), 2097-2101.
[PMID: 19746609]
[15]
Simmons, T.L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W.H. Marine natural products as anticancer drugs. Mol. Cancer Ther., 2005, 4(2), 333-342.
[PMID: 15713904]
[16]
Kaiser, M.; De Cian, A.; Sainlos, M.; Renner, C.; Mergny, J.L.; Teulade-Fichou, M.P. Neomycin-capped aromatic platforms: quadruplex DNA recognition and telomerase inhibition. Org. Biomol. Chem., 2006, 4(6), 1049-1057.
[http://dx.doi.org/10.1039/b516378a] [PMID: 16525549]
[17]
Miyauchi, M.; Harada, A. Construction of supramolecular polymers with alternating alpha-, beta-cyclodextrin units using conformational change induced by competitive guests. J. Am. Chem. Soc., 2004, 126(37), 11418-11419.
[http://dx.doi.org/10.1021/ja046562q] [PMID: 15366870]
[18]
Hirschberg, J.H.; Brunsveld, L.; Ramzi, A.; Vekemans, J.A.; Sijbesma, R.P.; Meijer, E.W. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature, 2000, 407(6801), 167-170.
[http://dx.doi.org/10.1038/35025027] [PMID: 11001050]
[19]
Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin Drug Carrier Systems. Chem. Rev., 1998, 98(5), 2045-2076.
[http://dx.doi.org/10.1021/cr970025p] [PMID: 11848959]
[20]
Redenti, E.; Szente, L.; Szejtli, J. Drug/cyclodextrin/ hydroxy acid multicomponent systems. Properties and pharmaceutical applications. J. Pharm. Sci., 2000, 89(1), 1-8.
[http://dx.doi.org/10.1002/(SICI)1520-6017(200001)89: 1<1::AID-JPS1>3.0.CO;2-W] [PMID: 10664533]
[21]
Takahashi, K. Organic Reactions Mediated by Cyclodextrins. Chem. Rev., 1998, 98(5), 2013-2034.
[http://dx.doi.org/10.1021/cr9700235] [PMID: 11848957]
[22]
Bell, T.W.; Hext, N.M. Supramolecular optical chemosensors for organic analytes. Chem. Soc. Rev., 2004, 33(9), 589-598.
[PMID: 15592624]
[23]
Coteron, J.M.; Vicent, C.; Bosso, C.; Penades, S. Glycophanes, cyclodextrin-cyclophane hybrid receptors for apolar binding in aqueous solutions. A stereoselective carbohydrate-carbohydrate interaction in water. J. Am. Chem. Soc., 1993, 115(22), 10066-10076.
[http://dx.doi.org/10.1021/ja00075a023]
[24]
Morales, J.C.; Zurita, D.; Penadés, S. Carbohydrate-Carbohydrate Interactions in Water with Glycophanes as Model Systems. J. Org. Chem., 1998, 63(25), 9212-9222.
[http://dx.doi.org/10.1021/jo9807823]
[25]
Muthana, S.; Yu, H.; Cao, H.; Cheng, J.; Chen, X. Chemoenzymatic synthesis of a new class of macrocyclic oligosaccharides. J. Org. Chem., 2009, 74(8), 2928-2936.
[http://dx.doi.org/10.1021/jo8027856] [PMID: 19296596]
[26]
Furukawa, J-I.; Sakairi, N. Synthetic Studies on Resin Glycosides. Trends Glycosci. Glycotechnol., 2001, 13(69), 1-10.
[http://dx.doi.org/10.4052/tigg.13.1]
[27]
Pereda-Miranda, R.; Rosas-Ramírez, D.; Castañeda-Gómez, J. Resin glycosides from the morning glory family. Fortschr. Chem. Org. Naturst., 2010, 92, 77-153.
[http://dx.doi.org/10.1007/978-3-211-99661-4_2] [PMID: 20198465]
[28]
Pouységu, L.; Deffieux, D.; Malik, G.; Natangelo, A.; Quideau, S. Synthesis of ellagitannin natural products. Nat. Prod. Rep., 2011, 28(5), 853-874.
[http://dx.doi.org/10.1039/c0np00058b] [PMID: 21321753]
[29]
Fang, Z.; Song, Y.; Zhan, P.; Zhang, Q.; Liu, X. Conformational restriction: an effective tactic in ‘follow-on’-based drug discovery. Future Med. Chem., 2014, 6(8), 885-901.
[http://dx.doi.org/10.4155/fmc.14.50] [PMID: 24962281]
[30]
Iqbal, E.S.; Hartman, M.C.T. Shaping molecular diversity. Nat. Chem., 2018, 10(7), 692-694.
[http://dx.doi.org/10.1038/s41557-018-0095-7] [PMID: 29930271]
[31]
Bastida, A.; Hidalgo, A.; Chiara, J.L.; Torrado, M.; Corzana, F.; Pérez-Cañadillas, J.M.; Groves, P.; Garcia-Junceda, E.; Gonzalez, C.; Jimenez-Barbero, J.; Asensio, J.L. Exploring the use of conformationally locked aminoglycosides as a new strategy to overcome bacterial resistance. J. Am. Chem. Soc., 2006, 128(1), 100-116.
[http://dx.doi.org/10.1021/ja0543144] [PMID: 16390137]
[32]
Marsault, E.; Peterson, M.L. Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J. Med. Chem., 2011, 54(7), 1961-2004.
[http://dx.doi.org/10.1021/jm1012374] [PMID: 21381769]
[33]
Mallinson, J.; Collins, I. Macrocycles in new drug discovery. Future Med. Chem., 2012, 4(11), 1409-1438.
[http://dx.doi.org/10.4155/fmc.12.93] [PMID: 22857532]
[34]
Yu, X.; Sun, D. Macrocyclic drugs and synthetic methodologies toward macrocycles. Molecules, 2013, 18(6), 6230-6268.
[http://dx.doi.org/10.3390/molecules18066230] [PMID: 23708234]
[35]
Giordanetto, F.; Kihlberg, J. Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties? J. Med. Chem., 2014, 57(2), 278-295.
[http://dx.doi.org/10.1021/jm400887j] [PMID: 24044773]
[36]
Hirschmann, R.; Nicolaou, K.C.; Pietranico, S.; Leahy, E.M.; Salvino, J.; Arison, B.; Cichy, M.A.; Spoors, P.G.; Shakespeare, W.C. De novo design and synthesis of somatostatin non-peptide peptidomimetics utilizing. beta.-D-glucose as a novel scaffolding. J. Am. Chem. Soc., 1993, 115(26), 12550-12568.
[http://dx.doi.org/10.1021/ja00079a039]
[37]
Opatz, T.; Kallus, C.; Wunberg, T.; Schmidt, W.; Henke, S.; Kunz, H. D-glucose as a multivalent chiral scaffold for combinatorial chemistry. Carbohydr. Res., 2002, 337(21-23), 2089-2110.
[http://dx.doi.org/10.1016/S0008-6215(02)00301-4] [PMID: 12433474]
[38]
Schweizer, F.; Hindsgaul, O. Combinatorial synthesis of carbohydrates. Curr. Opin. Chem. Biol., 1999, 3(3), 291-298.
[http://dx.doi.org/10.1016/S1367-5931(99)80045-3] [PMID: 10359718]
[39]
Bols, M. Carbohydrate Building Blocks; John Wiley & Sons: New York, 1996.
[40]
Le, G.T.; Abbenante, G.; Becker, B.; Grathwohl, M.; Halliday, J.; Tometzki, G.; Zuegg, J.; Meutermans, W. Molecular diversity through sugar scaffolds. Drug Discov. Today, 2003, 8(15), 701-709.
[http://dx.doi.org/10.1016/S1359-6446(03)02751-X] [PMID: 12927513]
[41]
Meutermans, W.; Le, G.T.; Becker, B. Carbohydrates as scaffolds in drug discovery. ChemMedChem, 2006, 1(11), 1164-1194.
[http://dx.doi.org/10.1002/cmdc.200600150] [PMID: 16983718]
[42]
Kim, Y.K.; Arai, M.A.; Arai, T.; Lamenzo, J.O.; Dean, E.F., III; Patterson, N.; Clemons, P.A.; Schreiber, S.L. Relationship of stereochemical and skeletal diversity of small molecules to cellular measurement space. J. Am. Chem. Soc., 2004, 126(45), 14740-14745.
[http://dx.doi.org/10.1021/ja048170p] [PMID: 15535697]
[43]
Wessjohann, L.A.; Ruijter, E.; Garcia-Rivera, D.; Brandt, W. What can a chemist learn from nature’s macrocycles?--a brief, conceptual view. Mol. Divers., 2005, 9(1-3), 171-186.
[http://dx.doi.org/10.1007/s11030-005-1314-x] [PMID: 15789564]
[44]
Wagner, H. 1973.The chemistry of the resin glycosides of the Convolvulaceae family In: Bendz G, Santesson J (eds) 25th Nobel Symp, Vol XI. Academic press, London New York pp. 235-240
[45]
Pereda-Miranda, R.; Bah, M. Biodynamic constituents in the Mexican morning glories: purgative remedies transcending boundaries. Curr. Top. Med. Chem., 2003, 3(2), 111-131.
[http://dx.doi.org/10.2174/1568026033392534] [PMID: 12570768]
[46]
Pereda-Miranda, R.; Mata, R.; Anaya, A.L.; Wickramaratne, D.B.; Pezzuto, J.M.; Kinghorn, A.D.; Tricolorin, A. Tricolorin A, major phytogrowth inhibitor from Ipomoea tricolor. J. Nat. Prod., 1993, 56(4), 571-582.
[http://dx.doi.org/10.1021/np50094a018] [PMID: 8496705]
[47]
Morsomme, P.; Boutry, M. The plant plasma membrane H(+)-ATPase: structure, function and regulation. Biochim. Biophys. Acta, 2000, 1465(1-2), 1-16.
[http://dx.doi.org/10.1016/S0005-2736(00)00128-0] [PMID: 10748244]
[48]
Calera, M.R.; Anaya, A.L.; Gavilanes-Ruiz, M. Effect of phytotoxic resin glycoside on activity of H(+)-ATPase from plasma membrane. J. Chem. Ecol., 1995, 21(3), 289-297.
[http://dx.doi.org/10.1007/BF02036718] [PMID: 24234061]
[49]
Lotina-Hennsen, B.; King-Díaz, B.; Pereda-Miranda, R. Tricolorin A as a natural herbicide. Molecules, 2013, 18(1), 778-788.
[http://dx.doi.org/10.3390/molecules18010778] [PMID: 23303337]
[50]
Larson, D.P.; Heathcock, C.H. Total Synthesis of Tricolorin A. J. Org. Chem., 1997, 62(24), 8406-8418.
[http://dx.doi.org/10.1021/jo971413u] [PMID: 11671979]
[51]
Fürstner, A.; Müller, T. Efficient Total Syntheses of Resin Glycosides and Analogues by Ring-Closing Olefin Metathesis. J. Am. Chem. Soc., 1999, 121(34), 7814-7821.
[http://dx.doi.org/10.1021/ja991361l]
[52]
Brito-Arias, M.; Pereda-Miranda, R.; Heathcock, C.H. Synthesis of tricolorin F. J. Org. Chem., 2004, 69(14), 4567-4570.
[http://dx.doi.org/10.1021/jo030244c] [PMID: 15230576]
[53]
Bah, M.; Pereda-Miranda, R. Isolation and structural characterization of new glyclipid ester type dimers from the resin of Ipomoea tricolor (Convolvulaceae). Tetrahedron, 1997, 53(27), 9007-9022.
[http://dx.doi.org/10.1016/S0040-4020(97)00607-8]
[54]
Pereda-Miranda, R.; Kaatz, G.W.; Gibbons, S. Polyacylated oligosaccharides from medicinal Mexican morning glory species as antibacterials and inhibitors of multidrug resistance in Staphylococcus aureus. J. Nat. Prod., 2006, 69(3), 406-409.
[http://dx.doi.org/10.1021/np050227d] [PMID: 16562846]
[55]
Cao, S.; Guza, R.C.; Wisse, J.H.; Miller, J.S.; Evans, R.; Kingston, D.G.; Ipomoeassins, A-E. Ipomoeassins A-E, cytotoxic macrocyclic glycoresins from the leaves of Ipomoea squamosa from the Suriname rainforest. J. Nat. Prod., 2005, 68(4), 487-492.
[http://dx.doi.org/10.1021/np049629w] [PMID: 15844934]
[56]
Postema, M.H.; TenDyke, K.; Cutter, J.; Kuznetsov, G.; Xu, Q. Total synthesis of ipomoeassin F. Org. Lett., 2009, 11(6), 1417-1420.
[http://dx.doi.org/10.1021/ol900086b] [PMID: 19228042]
[57]
Jiang, Z-H.; Geyer, A.; Schmidt, R.R. The Macrolidic Glycolipid Calonyctin A, a Plant Growth Regulator: Synthesis, Structural Assignment, and Conformational Analysis in Micellar Solution. Angew. Chem. Int. Ed. Engl., 1995, 34(22), 2520-2524.
[http://dx.doi.org/10.1002/anie.199525201]
[58]
Fürstner, A.; Ruiz-Caro, J.; Prinz, H.; Waldmann, H. Structure assignment, total synthesis, and evaluation of the phosphatase modulating activity of glucolipsin A. J. Org. Chem., 2004, 69(2), 459-467.
[http://dx.doi.org/10.1021/jo035079f] [PMID: 14725460]
[59]
Nilsson, I.; Hoffmann, I. Cell cycle regulation by the Cdc25 phosphatase family. Prog. Cell Cycle Res., 2000, 4, 107-114.
[http://dx.doi.org/10.1007/978-1-4615-4253-7_10] [PMID: 10740819]
[60]
Tsunakawa, M.; Komiyama, N.; Tenmyo, O.; Tomita, K.; Kawano, K.; Kotake, C.; Konishi, M.; Oki, T. New antiviral antibiotics, cycloviracins B1 and B2. I. Production, isolation, physico-chemical properties and biological activity. J. Antibiot. (Tokyo), 1992, 45(9), 1467-1471.
[http://dx.doi.org/10.7164/antibiotics.45.1467] [PMID: 1331014]
[61]
Fürstner, A.; Albert, M.; Mlynarski, J.; Matheu, M.; DeClercq, E. Structure assignment, total synthesis, and antiviral evaluation of cycloviracin B1. J. Am. Chem. Soc., 2003, 125(43), 13132-13142.
[http://dx.doi.org/10.1021/ja036521e] [PMID: 14570487]
[62]
Fürstner, A.; Albert, M.; Mlynarski, J.; Matheu, M. A concise synthesis of the fully functional lactide core of cycloviracin B with implications for the structural assignment of related glycolipids. J. Am. Chem. Soc., 2002, 124(7), 1168-1169.
[http://dx.doi.org/10.1021/ja0175791] [PMID: 11841275]
[63]
Fürstner, A.; Mlynarski, J.; Albert, M. Total synthesis of the antiviral glycolipid cycloviracin B. J. Am. Chem. Soc., 2002, 124(35), 10274-10275.
[http://dx.doi.org/10.1021/ja027346p] [PMID: 12197718]
[64]
Ivanchina, N.V.; Kicha, A.A.; Stonik, V.A. Steroid glycosides from marine organisms. Steroids, 2011, 76(5), 425-454.
[http://dx.doi.org/10.1016/j.steroids.2010.12.011] [PMID: 21194537]
[65]
Dong, G.; Xu, T.; Yang, B.; Lin, X.; Zhou, X.; Yang, X.; Liu, Y. Chemical constituents and bioactivities of starfish. Chem. Biodivers., 2011, 8(5), 740-791.
[http://dx.doi.org/10.1002/cbdv.200900344] [PMID: 21560228]
[66]
Kicha, A.A.; Kalinovsky, A.I.; Malyarenko, T.V.; Ivanchina, N.V.; Dmitrenok, P.S.; Menchinskaya, E.S.; Yurchenko, E.A.; Pislyagin, E.A.; Aminin, D.L.; Huong, T.T.; Long, P.Q.; Stonik, V.A. Cyclic Steroid Glycosides from the Starfish Echinaster luzonicus: Structures and Immunomodulatory Activities. J. Nat. Prod., 2015, 78(6), 1397-1405.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00332] [PMID: 26068600]
[67]
Kong, F-h.; Zhu, D-y.; Xu, R-s.; Fu, Z-c.; Zhou, L-y.; Iwashita, T.; Komura, H. Structural study of tubeimoside i, a constituent of tu-bei-mu. Tetrahedron Lett., 1986, 27(47), 5765-5768.
[http://dx.doi.org/10.1016/S0040-4039(00)85321-6]
[68]
Fujioka, T.; Iwamoto, M.; Iwase, Y.; Hachiyama, S.; Okabe, H.; Yamauchi, T.; Mihashi, K. Studies on the Constituents of Actinostemma lobatum MAXIM. IV. Structures of Lobatosides C, D and H, the Dicrotalic Acid Esters of Bayogenin Bisdesmosides Isolated from the Herb. Chem. Pharm. Bull. (Tokyo), 1989, 37(7), 1770-1775.
[http://dx.doi.org/10.1248/cpb.37.1770]
[69]
Cheng, G.; Zhang, Y.; Zhang, X.; Tang, H.F.; Cao, W.D.; Gao, D.K.; Wang, X.L.; Tubeimoside, V. Tubeimoside V (1), a new cyclic bisdesmoside from tubers of Bolbostemma paniculatum, functions by inducing apoptosis in human glioblastoma U87MG cells. Bioorg. Med. Chem. Lett., 2006, 16(17), 4575-4580.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.020] [PMID: 16784856]
[70]
Fujioka, T.; Kashiwada, Y.; Okabe, H.; Mihashi, K.; Lee, K-H. Antitumor agents 171. Cytotoxicities of lobatosides B, C, D, and E, cyclic bisdesmosides isolated from Actinostemma lobatum maxim. Bioorg. Med. Chem. Lett., 1996, 6(23), 2807-2810.
[http://dx.doi.org/10.1016/S0960-894X(96)00522-7]
[71]
Zhu, C.; Tang, P.; Yu, B. Total synthesis of lobatoside E, a potent antitumor cyclic triterpene saponin. J. Am. Chem. Soc., 2008, 130(18), 5872-5873.
[http://dx.doi.org/10.1021/ja801669r] [PMID: 18407637]
[72]
White, C.J.; Yudin, A.K. Contemporary strategies for peptide macrocyclization. Nat. Chem., 2011, 3(7), 509-524.
[http://dx.doi.org/10.1038/nchem.1062] [PMID: 21697871]
[73]
Singh, A.; Khatri, V.; Malhotra, S.; Prasad, A.K. Sugar-based novel chiral macrocycles for inclusion applications and chiral recognition. Carbohydr. Res., 2016, 421, 25-32.
[http://dx.doi.org/10.1016/j.carres.2015.12.006] [PMID: 26774875]
[74]
Łęczycka-Wilk, K.; Dąbrowa, K.; Cmoch, P.; Jarosz, S. Chloride-Templated Macrocyclization and Anion-Binding Properties of C2-Symmetric Macrocyclic Ureas from Sucrose. Org. Lett., 2017, 19(17), 4596-4599.
[http://dx.doi.org/10.1021/acs.orglett.7b02198] [PMID: 28825841]
[75]
Chen, A.; Samankumara, L.P.; Dodlapati, S.; Wang, D.; Adhikari, S.; Wang, G. Syntheses of Bis-Triazole Linked Carbohydrate Based Macrocycles and Their Applications for Accelerating Copper Sulfate Mediated Click Reaction. Eur. J. Org. Chem., 2018.
[http://dx.doi.org/10.1002/ejoc.201801714]
[76]
Chaciak, B.; Dąbrowa, K.; Świder, P.; Jarosz, S. Macrocyclic derivatives with a sucrose scaffold: insertion of a long polyhydroxylated linker between the terminal 6,6′-positions. New J. Chem., 2018, 42(23), 18578-18584.
[http://dx.doi.org/10.1039/C8NJ02808G]
[77]
Zong, G.; Sun, X.; Bhakta, R.; Whisenhunt, L.; Hu, Z.; Wang, F.; Shi, W.Q. New insights into structure-activity relationship of ipomoeassin F from its bioisosteric 5-oxa/aza analogues. Eur. J. Med. Chem., 2018, 144, 751-757.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.022] [PMID: 29291442]
[78]
Sytniczuk, A.; Dąbrowski, M.; Banach, Ł.; Urban, M.; Czarnocka-Śniadała, S.; Milewski, M.; Kajetanowicz, A.; Grela, K. At Long Last: Olefin Metathesis Macrocyclization at High Concentration. J. Am. Chem. Soc., 2018, 140(28), 8895-8901.
[http://dx.doi.org/10.1021/jacs.8b04820] [PMID: 29944361]
[79]
Maurya, S.K.; Rana, R. An eco-compatible strategy for the diversity-oriented synthesis of macrocycles exploiting carbohydrate-derived building blocks. Beilstein J. Org. Chem., 2017, 13, 1106-1118.
[http://dx.doi.org/10.3762/bjoc.13.110] [PMID: 28684990]
[80]
Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology, 1993, 3(2), 97-130.
[http://dx.doi.org/10.1093/glycob/3.2.97] [PMID: 8490246]
[81]
Dwek, R.A. Glycobiology: Toward Understanding the Function of Sugars. Chem. Rev., 1996, 96(2), 683-720.
[http://dx.doi.org/10.1021/cr940283b] [PMID: 11848770]
[82]
Bertozzi, C.R.; Kiessling, L.L. Chemical glycobiology. Science, 2001, 291(5512), 2357-2364.
[http://dx.doi.org/10.1126/science.1059820] [PMID: 11269316]
[83]
Wyatt, R.; Sodroski, J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science, 1998, 280(5371), 1884-1888.
[http://dx.doi.org/10.1126/science.280.5371.1884] [PMID: 9632381]
[84]
Geyer, H.; Geyer, R. Glycobiology of Viruses. In: Ernst B, Hart G W, Sinaj P, editors. Carbohydr Chem Biol. Weinheim, Germany: Wiley-VCH; 2008. pp. 821-838.
[85]
Troy, F.A., II Polysialylation: from bacteria to brains. Glycobiology, 1992, 2(1), 5-23.
[http://dx.doi.org/10.1093/glycob/2.1.5] [PMID: 1550990]
[86]
Lasky, L.A. Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu. Rev. Biochem., 1995, 64, 113-139.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.000553] [PMID: 7574477]
[87]
Weis, W.I.; Drickamer, K. Structural basis of lectin-carbohydrate recognition. Annu. Rev. Biochem., 1996, 65, 441-473.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.002301] [PMID: 8811186]
[88]
Takano, R.; Muchmore, E.; Dennis, J.W. Sialylation and malignant potential in tumour cell glycosylation mutants. Glycobiology, 1994, 4(5), 665-674.
[http://dx.doi.org/10.1093/glycob/4.5.665] [PMID: 7881181]
[89]
Muramatsu, T. Carbohydrate signals in metastasis and prognosis of human carcinomas. Glycobiology, 1993, 3(4), 291-296.
[http://dx.doi.org/10.1093/glycob/3.4.291] [PMID: 8400544]
[90]
Hanwell, P.A. The biology of glycoproteins: Biochem Edu; R J , Ivatt, Ed.; , 1985, 13, p. (3)148.
[http://dx.doi.org/10.1016/0307-4412(85)90221-3]
[91]
Hart, G.W. Glycosylation. Curr. Opin. Cell Biol., 1992, 4(6), 1017-1023.
[http://dx.doi.org/10.1016/0955-0674(92)90134-X] [PMID: 1485955]
[92]
McAuliffe, J.C.; Fukuda, M.; Hindsgaul, O. Expedient synthesis of a series of N-acetyllactosamines. Bioorg. Med. Chem. Lett., 1999, 9(19), 2855-2858.
[http://dx.doi.org/10.1016/S0960-894X(99)00485-0] [PMID: 10522705]
[93]
Hounsell, E.F.; Davies, M.J.; Renouf, D.V. O-linked protein glycosylation structure and function. Glycoconj. J., 1996, 13(1), 19-26.
[http://dx.doi.org/10.1007/BF01049675] [PMID: 8785483]
[94]
Lohof, E.; Planker, E.; Mang, C.; Burkhart, F.; Dechantsreiter, M.A.; Haubner, R.; Wester, H.J.; Schwaiger, M.; Hölzemann, G.; Goodman, S.L.; Kessler, H. Carbohydrate Derivatives for Use in Drug Design: Cyclic alpha(v)-Selective RGD Peptides Angew. Chem. Int. Ed. Engl., 2000, 39(15), 2761-2764.
[http://dx.doi.org/10.1002/1521-3773(20000804)39:15<2761:AID-ANIE2761>3.0.CO;2-9] [PMID: 10934419]
[95]
Locardi, E.; Stöckle, M.; Gruner, S.; Kessler, H. Cyclic homooligomers from sugar amino acids: synthesis, conformational analysis, and significance. J. Am. Chem. Soc., 2001, 123(34), 8189-8196.
[http://dx.doi.org/10.1021/ja010181k] [PMID: 11516268]
[96]
van Well, R.M.; Marinelli, L.; Altona, C.; Erkelens, K.; Siegal, G.; van Raaij, M.; Llamas-Saiz, A.L.; Kessler, H.; Novellino, E.; Lavecchia, A.; van Boom, J.H.; Overhand, M. Conformational analysis of furanoid epsilon-sugar amino acid containing cyclic peptides by NMR spectroscopy, molecular dynamics simulation, and X-ray crystallography: evidence for a novel turn structure. J. Am. Chem. Soc., 2003, 125(36), 10822-10829.
[http://dx.doi.org/10.1021/ja035461+] [PMID: 12952461]
[97]
El Oualid, F.; Burm, B.E.; Leroy, I.M.; Cohen, L.H.; van Boom, J.H.; van den Elst, H.; Overkleeft, H.S.; van der Marel, G.A.; Overhand, M. Design, synthesis, and evaluation of sugar amino acid based inhibitors of protein prenyl transferases PFT and PGGT-1. J. Med. Chem., 2004, 47(16), 3920-3923.
[http://dx.doi.org/10.1021/jm049927q] [PMID: 15267228]
[98]
Chakraborty, T.K.; Srinivasu, P.; Tapadar, S.; Mohan, B.K. Sugar amino acids in designing new molecules. Glycoconj. J., 2005, 22(3), 83-93.
[http://dx.doi.org/10.1007/s10719-005-0844-x] [PMID: 16133829]
[99]
Seitz, O. Glycopeptide synthesis and the effects of glycosylation on protein structure and activity. ChemBioChem, 2000, 1(4), 214-246.
[http://dx.doi.org/10.1002/1439-7633(20001117)1:4<214:AID-CBIC214>3.0.CO;2-B] [PMID: 11828414]
[100]
Lis, H.; Sharon, N. Protein glycosylation. Structural and functional aspects. Eur. J. Biochem., 1993, 218(1), 1-27.
[http://dx.doi.org/10.1111/j.1432-1033.1993.tb18347.x] [PMID: 8243456]
[101]
Sharon, N.; Lis, H. Lectins--proteins with a sweet tooth: functions in cell recognition. Essays Biochem., 1995, 30, 59-75.
[PMID: 8822149]
[102]
Tsai, C-Y.; Huang, X.; Wong, C-H. Design and synthesis of cyclic sialyl Lewis X mimetics: a remarkable enhancement of inhibition by pre-organizing all essential functional groups. Tetrahedron Lett., 2000, 41(49), 9499-9503.
[http://dx.doi.org/10.1016/S0040-4039(00)01653-1]
[103]
Sprengard, U.; Schudok, M.; Schmidt, W.; Kretzschmar, G.; Kunz, H. Multiple Sialyl Lewisx N-Glycopeptides: Effective Ligands for E-Selectin. Angew. Chem. Int. Ed. Engl., 1996, 35(3), 321-324.
[http://dx.doi.org/10.1002/anie.199603211]
[104]
Ramphal, J.Y.; Zheng, Z.L.; Perez, C.; Walker, L.E.; DeFrees, S.A.; Gaeta, F.C. Structure--activity relationships of sialyl Lewis x-containing oligosaccharides. 1. Effect of modifications of the fucose moiety. J. Med. Chem., 1994, 37(21), 3459-3463.
[http://dx.doi.org/10.1021/jm00047a003] [PMID: 7523674]
[105]
Brandley, B.K.; Kiso, M.; Abbas, S.; Nikrad, P.; Srivasatava, O.; Foxall, C.; Oda, Y.; Hasegawa, A. Structure-function studies on selectin carbohydrate ligands. Modifications to fucose, sialic acid and sulphate as a sialic acid replacement. Glycobiology, 1993, 3(6), 633-641.
[http://dx.doi.org/10.1093/glycob/3.6.633] [PMID: 7510548]
[106]
Tsai, C.Y.; Park, W.K.; Weitz-Schmidt, G.; Ernst, B.; Wong, C.H. Synthesis of sialyl Lewis X mimetics using the Ugi four-component reaction. Bioorg. Med. Chem. Lett., 1998, 8(17), 2333-2338.
[http://dx.doi.org/10.1016/S0960-894X(98)00422-3] [PMID: 9873537]
[107]
Sharma, A.; Sharma, S.; Tripathi, R.P.; Ampapathi, R.S. Robust turn structures in α3β cyclic tetrapeptides induced and controlled by carbo-β3 amino acid. J. Org. Chem., 2012, 77(4), 2001-2007.
[http://dx.doi.org/10.1021/jo2019834] [PMID: 22283925]
[108]
Gruner, S.A.; Kéri, G.; Schwab, R.; Venetianer, A.; Kessler, H. Sugar amino acid containing somatostatin analogues that induce apoptosis in both drug-sensitive and multidrug-resistant tumor cells. Org. Lett., 2001, 3(23), 3723-3725.
[http://dx.doi.org/10.1021/ol0166698] [PMID: 11700122]
[109]
Chandrasekhar, S.; Rao, C.L.; Seenaiah, M.; Naresh, P.; Jagadeesh, B.; Manjeera, D.; Sarkar, A.; Bhadra, M.P. Total synthesis of azumamide E and sugar amino acid-containing analogue. J. Org. Chem., 2009, 74(1), 401-404.
[http://dx.doi.org/10.1021/jo8020264] [PMID: 19053574]
[110]
Dasari, B.; Jogula, S.; Borhade, R.; Balasubramanian, S.; Chandrasekar, G.; Kitambi, S.S.; Arya, P. Macrocyclic glycohybrid toolbox identifies novel antiangiogenesis agents from zebrafish assay. Org. Lett., 2013, 15(3), 432-435.
[http://dx.doi.org/10.1021/ol3032297] [PMID: 23331160]
[111]
Dolhem, F.; Al Tahli, F.; Lièvre, C.; Demailly, G. Efficient Synthesis of 1,2,3-Triazole-Fused Bicyclic Compounds from Aldoses. Eur. J. Org. Chem., 2005, 2005(23), 5019-5023.
[http://dx.doi.org/10.1002/ejoc.200500451]
[112]
Hotha, S.; Anegundi, R.I.; Natu, A.A. Expedient synthesis of 1,2,3-triazole-fused tetracyclic compounds by intramolecular Huisgen (‘click’) reactions on carbohydrate-derived azido-alkynes. Tetrahedron Lett., 2005, 46(27), 4585-4588.
[http://dx.doi.org/10.1016/j.tetlet.2005.05.012]
[113]
Xie, J.; Bogliotti, N. Synthesis and applications of carbohydrate-derived macrocyclic compounds. Chem. Rev., 2014, 114(15), 7678-7739.
[http://dx.doi.org/10.1021/cr400035j] [PMID: 25007213]
[114]
Pasini, D. The click reaction as an efficient tool for the construction of macrocyclic structures. Molecules, 2013, 18(8), 9512-9530.
[http://dx.doi.org/10.3390/molecules18089512] [PMID: 23966075]
[115]
Yu, Y.; Bogliotti, N.; Tang, J.; Xie, J. Synthesis and Properties of Carbohydrate-Based BODIPY-Functionalised Fluorescent Macrocycles. Eur. J. Org. Chem., 2013, 2013(34), 7749-7760.
[http://dx.doi.org/10.1002/ejoc.201300953]
[116]
Chandrasekhar, S.; Rao, C.L.; Nagesh, C.; Reddy, C.R.; Sridhar, B. Inter and intramolecular copper(I)-catalyzed 1,3-dipolar cycloaddition of azido-alkynes: synthesis of furanotriazole macrocycles. Tetrahedron Lett., 2007, 48(33), 5869-5872.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.062]
[117]
Lo Conte, M.; Grotto, D.; Chambery, A.; Dondoni, A.; Marra, A. Convergent synthesis and inclusion properties of novel Cn-symmetric triazole-linked cycloglucopyranosides. Chem. Commun. (Camb.), 2011, 47(4), 1240-1242.
[http://dx.doi.org/10.1039/C0CC04127K] [PMID: 21103536]
[118]
Billing, J.F.; Nilsson, U.J. C2-symmetric macrocyclic carbohydrate/amino acid hybrids through copper(I)-catalyzed formation of 1,2,3-triazoles. J. Org. Chem., 2005, 70(12), 4847-4850.
[http://dx.doi.org/10.1021/jo050585l] [PMID: 15932327]
[119]
Ray, A.; Manoj, K.; Bhadbhade, M.M.; Mukhopadhyay, R.; Bhattacharjya, A. Cu(I)-Catalyzed cycloaddition of constrained azido-alkynes: access to 12- to 17-membered monomeric triazolophanes incorporating furanoside rings. Tetrahedron Lett., 2006, 47(16), 2775-2778.
[http://dx.doi.org/10.1016/j.tetlet.2006.02.068]
[120]
Ågren, J.K.M.; Billing, J.F.; Grundberg, H.E.; Nilsson, U.J. Synthesis of a Chiral and Fluorescent Sugar-Based Macrocycle by 1,3-Dipolar Cycloaddition. Synthesis, 2006, 2006(18), 3141-3145.
[http://dx.doi.org/10.1055/s-2006-942503]
[121]
Ying, L.; Gervay-Hague, J. Synthesis of N-(fluoren-9-ylmethoxycarbonyl)glycopyranosylamine uronic acids. Carbohydr. Res., 2004, 339(2), 367-375.
[http://dx.doi.org/10.1016/j.carres.2003.10.018] [PMID: 14698895]
[122]
Leyden, R.; Murphy, P.V. Glycotriazolophane Synthesis via Click Chemistry. Synlett, 2009, 2009(12), 1949-1950.
[http://dx.doi.org/10.1055/s-0029-1217534]
[123]
Das Adhikary, N.; Chattopadhyay, P. Design and synthesis of 1,2,3-triazole-fused chiral medium-ring benzo-heterocycles, scaffolds mimicking benzolactams. J. Org. Chem., 2012, 77(12), 5399-5405.
[http://dx.doi.org/10.1021/jo3004327] [PMID: 22647142]
[124]
Dörner, S.; Westermann, B. A short route for the synthesis of “sweet” macrocycles via a click-dimerization-ring-closing metathesis approach. Chem. Commun. (Camb.), 2005, (22), 2852-2854.
[http://dx.doi.org/10.1039/b502682b] [PMID: 15928780]
[125]
Hoffmann, B.; Bernet, B.; Vasella, A. Oligosaccharide Analogues of Polysaccharides. Helv. Chim. Acta, 2002, 85(1), 265-287.
[http://dx.doi.org/10.1002/1522-2675(200201)85:1<265:AID-HLCA265>3.0.CO;2-1]
[126]
Rajesh, R.; Periyasami, G.; Raghunathan, R. An efficient one-pot synthesis of C2-symmetric triazolophanes by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Tetrahedron Lett., 2010, 51(14), 1896-1898.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.020]
[127]
Moore, B.P.; Chung, D.H.; Matharu, D.S.; Golden, J.E.; Maddox, C.; Rasmussen, L.; Noah, J.W.; Sosa, M.I.; Ananthan, S.; Tower, N.A.; White, E.L.; Jia, F.; Prisinzano, T.E.; Aubé, J.; Jonsson, C.B.; Severson, W.E. (S)-N-(2,5-Dimethylphenyl)-1-(quinoline-8-ylsulfonyl)pyrrolidine-2-carboxamide as a small molecule inhibitor probe for the study of respiratory syncytial virus infection. J. Med. Chem., 2012, 55(20), 8582-8587.
[http://dx.doi.org/10.1021/jm300612z] [PMID: 23043370]
[128]
Cui, J.J.; McTigue, M.; Nambu, M.; Tran-Dubé, M.; Pairish, M.; Shen, H.; Jia, L.; Cheng, H.; Hoffman, J.; Le, P.; Jalaie, M.; Goetz, G.H.; Ryan, K.; Grodsky, N.; Deng, Y.L.; Parker, M.; Timofeevski, S.; Murray, B.W.; Yamazaki, S.; Aguirre, S.; Li, Q.; Zou, H.; Christensen, J. Discovery of a novel class of exquisitely selective mesenchymal-epithelial transition factor (c-MET) protein kinase inhibitors and identification of the clinical candidate 2-(4-(1-(quinolin-6-ylmethyl)-1H-[1,2,3]triazolo[4,5-b]pyrazin-6-yl)-1H-pyrazol-1-yl)ethanol (PF-04217903) for the treatment of cancer. J. Med. Chem., 2012, 55(18), 8091-8109.
[http://dx.doi.org/10.1021/jm300967g] [PMID: 22924734]
[129]
Carta, A.; Briguglio, I.; Piras, S.; Corona, P.; Boatto, G.; Nieddu, M.; Giunchedi, P.; Marongiu, M.E.; Giliberti, G.; Iuliano, F.; Blois, S.; Ibba, C.; Busonera, B.; La Colla, P. Quinoline tricyclic derivatives. Design, synthesis and evaluation of the antiviral activity of three new classes of RNA-dependent RNA polymerase inhibitors. Bioorg. Med. Chem., 2011, 19(23), 7070-7084.
[http://dx.doi.org/10.1016/j.bmc.2011.10.009] [PMID: 22047799]
[130]
Thakur, R.K.; Mishra, A.; Ramakrishna, K.K.G.; Mahar, R.; Shukla, S.K.; Srivastava, A.K.; Tripathi, R.P. Synthesis of novel pyrimidine nucleoside analogues owning multiple bases/sugars and their glycosidase inhibitory activity. Tetrahedron, 2014, 70(45), 8462-8473.
[http://dx.doi.org/10.1016/j.tet.2014.09.078]
[131]
Wei, C.X.; Deng, X.Q.; Chai, K.Y.; Sun, Z.G.; Quan, Z.S. Synthesis and anticonvulsant activity of 1-formamide-triazolo[4,3-a]quinoline derivatives. Arch. Pharm. Res., 2010, 33(5), 655-662.
[http://dx.doi.org/10.1007/s12272-010-0502-0] [PMID: 20512461]
[132]
Wei, C-X.; Li, F-N.; Zhao, L-X.; Zhao, L-M.; Quan, Z-S. Synthesis of 2-substituted-7-heptyloxy-4,5-dihydro-[1,2,4]-triazolo[4,3-a]quinolin-1(2H)-ones with anticonvulsant activity. Arch. Pharm. (Weinheim), 2007, 340(9), 491-495.
[http://dx.doi.org/10.1002/ardp.200700106] [PMID: 17763376]
[133]
Herbrecht, R. Posaconazole: a potent, extended-spectrum triazole anti-fungal for the treatment of serious fungal infections. Int. J. Clin. Pract., 2004, 58(6), 612-624.
[http://dx.doi.org/10.1111/j.1368-5031.2004.00167.x] [PMID: 15311563]
[134]
Anand, N.; Jaiswal, N.; Pandey, S.K.; Srivastava, A.K.; Tripathi, R.P. Application of click chemistry towards an efficient synthesis of 1,2,3-1H-triazolyl glycohybrids as enzyme inhibitors. Carbohydr. Res., 2011, 346(1), 16-25.
[http://dx.doi.org/10.1016/j.carres.2010.10.017] [PMID: 21129735]
[135]
Singh, N.; Pandey, S.K.; Tripathi, R.P. Regioselective [3+2] cycloaddition of chalcones with a sugar azide: easy access to 1-(5-deoxy-D-xylofuranos-5-yl)-4,5-disubstituted-1H-1,2,3-triazoles. Carbohydr. Res., 2010, 345(12), 1641-1648.
[http://dx.doi.org/10.1016/j.carres.2010.04.019] [PMID: 20579636]
[136]
Diot, J.D.; Garcia Moreno, I.; Twigg, G.; Ortiz Mellet, C.; Haupt, K.; Butters, T.D.; Kovensky, J.; Gouin, S.G. Amphiphilic 1-deoxynojirimycin derivatives through click strategies for chemical chaperoning in N370S Gaucher cells. J. Org. Chem., 2011, 76(19), 7757-7768.
[http://dx.doi.org/10.1021/jo201125x] [PMID: 21830816]
[137]
Mir, F.; Shafi, S.; Zaman, M.S.; Kalia, N.P.; Rajput, V.S.; Mulakayala, C.; Mulakayala, N.; Khan, I.A.; Alam, M.S. Sulfur rich 2-mercaptobenzothiazole and 1,2,3-triazole conjugates as novel antitubercular agents. Eur. J. Med. Chem., 2014, 76, 274-283.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.017] [PMID: 24589483]
[138]
Singh, B.K.; Yadav, A.K.; Kumar, B.; Gaikwad, A.; Sinha, S.K.; Chaturvedi, V.; Tripathi, R.P. Preparation and reactions of sugar azides with alkynes: synthesis of sugar triazoles as antitubercular agents. Carbohydr. Res., 2008, 343(7), 1153-1162.
[http://dx.doi.org/10.1016/j.carres.2008.02.013] [PMID: 18346719]
[139]
Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54(8), 2529-2591.
[http://dx.doi.org/10.1021/jm1013693] [PMID: 21413808]
[140]
Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
[141]
Goswami, S.; Mukherjee, R.; Ray, J. Design and synthesis of a neutral fluorescent macrocyclic receptor for the recognition of urea in chloroform. Org. Lett., 2005, 7(7), 1283-1285.
[http://dx.doi.org/10.1021/ol050034h] [PMID: 15787487]
[142]
Nepogodiev, S.A.; Stoddart, J.F. Cyclodextrin-Based Catenanes and Rotaxanes. Chem. Rev., 1998, 98(5), 1959-1976.
[http://dx.doi.org/10.1021/cr970049w] [PMID: 11848954]
[143]
Ajay, A.; Sharma, S.; Gupt, M.P.; Bajpai, V.; Hamidullah, ; Kumar, B.; Kaushik, M.P.; Konwar, R.; Ampapathi, R.S.; Tripathi, R.P. Diversity oriented synthesis of pyran based polyfunctional stereogenic macrocyles and their conformational studies. Org. Lett., 2012, 14(17), 4306-4309.
[http://dx.doi.org/10.1021/ol3022275] [PMID: 22931313]
[144]
Allam, A.; Dupont, L.; Behr, J-B.; Plantier-Royon, R. Convenient Synthesis of a Galacturonic Acid Based Macrocycle with Potential Copper-Complexation Ability. Eur. J. Org. Chem., 2012, 2012(4), 817-823.
[http://dx.doi.org/10.1002/ejoc.201101406]
[145]
Campo, V.L.; Ivanova, I.M.; Carvalho, I.; Lopes, C.D.; Carneiro, Z.A.; Saalbach, G.; Schenkman, S.; da Silva, J.S.; Nepogodiev, S.A.; Field, R.A. Click chemistry oligomerisation of azido-alkyne-functionalised galactose accesses triazole-linked linear oligomers and macrocycles that inhibit Trypanosoma cruzi macrophage invasion. Tetrahedron, 2015, 71(39), 7344-7353.
[http://dx.doi.org/10.1016/j.tet.2015.04.085] [PMID: 26435551]
[146]
Carvalho, I.; Andrade, P.; Campo, V.L.; Guedes, P.M.; Sesti-Costa, R.; Silva, J.S.; Schenkman, S.; Dedola, S.; Hill, L.; Rejzek, M.; Nepogodiev, S.A.; Field, R.A. ‘Click chemistry’ synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase. Bioorg. Med. Chem., 2010, 18(7), 2412-2427.
[http://dx.doi.org/10.1016/j.bmc.2010.02.053] [PMID: 20335038]
[147]
Singh, K.; Sharma, G.; Shukla, M.; Kant, R.; Chopra, S.; Shukla, S.K.; Tripathi, R.P. Metal- and Phenol-Free Synthesis of Biaryl Ethers: Access to Dibenzobistriazolo-1,4,7-oxadiazonines and Vancomycin-Like Glyco-Macrocycles as Antibacterial Agents. J. Org. Chem., 2018, 83(24), 14882-14893.
[http://dx.doi.org/10.1021/acs.joc.8b01631] [PMID: 30457336]
[148]
Zhou, J.; Reidy, M.; O’Reilly, C.; Jarikote, D.V.; Negi, A.; Samali, A.; Szegezdi, E.; Murphy, P.V. Decorated macrocycles via ring-closing double-reductive amination. identification of an apoptosis inducer of leukemic cells that at least partially antagonizes a 5-HT2 receptor. Org. Lett., 2015, 17(7), 1672-1675.
[http://dx.doi.org/10.1021/acs.orglett.5b00404] [PMID: 25774456]
[149]
Bodine, K.D.; Gin, D.Y.; Gin, M.S. Highly convergent synthesis of C3- or C2-symmetric carbohydrate macrocycles. Org. Lett., 2005, 7(20), 4479-4482.
[http://dx.doi.org/10.1021/ol051818y] [PMID: 16178563]
[150]
Bodine, K.D.; Gin, D.Y.; Gin, M.S. Synthesis of readily modifiable cyclodextrin analogues via cyclodimerization of an alkynyl-azido trisaccharide. J. Am. Chem. Soc., 2004, 126(6), 1638-1639.
[http://dx.doi.org/10.1021/ja039374t] [PMID: 14871087]
[151]
Kim, M.J.; Lee, S.H.; Park, S.O.; Kang, H.; Lee, J.S.; Lee, K.N.; Jung, M.E.; Kim, J.; Lee, J. Novel macrocyclic C-aryl glucoside SGLT2 inhibitors as potential antidiabetic agents. Bioorg. Med. Chem., 2011, 19(18), 5468-5479.
[http://dx.doi.org/10.1016/j.bmc.2011.07.045] [PMID: 21868239]
[152]
Nomura, S.; Sakamaki, S.; Hongu, M.; Kawanishi, E.; Koga, Y.; Sakamoto, T.; Yamamoto, Y.; Ueta, K.; Kimata, H.; Nakayama, K.; Tsuda-Tsukimoto, M. Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J. Med. Chem., 2010, 53(17), 6355-6360.
[http://dx.doi.org/10.1021/jm100332n] [PMID: 20690635]
[153]
Xu, B.; Feng, Y.; Cheng, H.; Song, Y.; Lv, B.; Wu, Y.; Wang, C.; Li, S.; Xu, M.; Du, J.; Peng, K.; Dong, J.; Zhang, W.; Zhang, T.; Zhu, L.; Ding, H.; Sheng, Z.; Welihinda, A.; Roberge, J.Y.; Seed, B.; Chen, Y. C-aryl glucosides substituted at the 4′-position as potent and selective renal sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes. Bioorg. Med. Chem. Lett., 2011, 21(15), 4465-4470.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.032] [PMID: 21737266]
[154]
Zhang, Y.; Liu, Z-P. Recent developments of C-aryl glucoside SGLT2 inhibitors. Curr. Med. Chem., 2016, 23(8), 832-849.
[http://dx.doi.org/10.2174/0929867323666160210125747] [PMID: 26861002]
[155]
Lv, B.; Xu, B.; Feng, Y.; Peng, K.; Xu, G.; Du, J.; Zhang, L.; Zhang, W.; Zhang, T.; Zhu, L.; Ding, H.; Sheng, Z.; Welihinda, A.; Seed, B.; Chen, Y. Exploration of O-spiroketal C-arylglucosides as novel and selective renal sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(24), 6877-6881.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.088] [PMID: 19896374]
[156]
Lapuerta, P.; Zambrowicz, B.; Strumph, P.; Sands, A. Development of sotagliflozin, a dual sodium-dependent glucose transporter 1/2 inhibitor. Diab. Vasc. Dis. Res., 2015, 12(2), 101-110.
[http://dx.doi.org/10.1177/1479164114563304] [PMID: 25690134]
[157]
Zambrowicz, B.; Freiman, J.; Brown, P.M.; Frazier, K.S.; Turnage, A.; Bronner, J.; Ruff, D.; Shadoan, M.; Banks, P.; Mseeh, F.; Rawlins, D.B.; Goodwin, N.C.; Mabon, R.; Harrison, B.A.; Wilson, A.; Sands, A.; Powell, D.R. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin. Pharmacol. Ther., 2012, 92(2), 158-169.
[http://dx.doi.org/10.1038/clpt.2012.58] [PMID: 22739142]
[158]
Dwarakanathan, A. Diabetes update. J. Insur. Med., 2006, 38(1), 20-30.
[PMID: 16642640]
[159]
Meng, W.; Ellsworth, B.A.; Nirschl, A.A.; McCann, P.J.; Patel, M.; Girotra, R.N.; Wu, G.; Sher, P.M.; Morrison, E.P.; Biller, S.A.; Zahler, R.; Deshpande, P.P.; Pullockaran, A.; Hagan, D.L.; Morgan, N.; Taylor, J.R.; Obermeier, M.T.; Humphreys, W.G.; Khanna, A.; Discenza, L.; Robertson, J.G.; Wang, A.; Han, S.; Wetterau, J.R.; Janovitz, E.B.; Flint, O.P.; Whaley, J.M.; Washburn, W.N. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J. Med. Chem., 2008, 51(5), 1145-1149.
[http://dx.doi.org/10.1021/jm701272q] [PMID: 18260618]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy