Research Article

ATG7基因多态性与透明细胞肾细胞癌风险的关系

卷 19, 期 1, 2019

页: [40 - 47] 页: 8

弟呕挨: 10.2174/1566524019666190227202003

价格: $65

摘要

背景:肾癌是世界上最常见的癌症之一。最近的研究表明,自噬相关基因中的单核苷酸多态性(SNP)与肾癌的风险相关。目的:本研究旨在探讨自噬相关基因7(ATG7)多态性与中国汉族人群透明细胞肾细胞癌(ccRCC)风险的关系。 方法:从293名ccRCC患者和297名健康对照者中采集血样。通过Agena MassARRAY对三种ATG7多态性(rs1375206,rs2606736和rs6442260)进行基因分型。通过遗传模型和分层分析估计该关联。 结果:在rs6442260的等位基因A和ccRCC风险之间观察到显着相关性(OR = 0.76,95%CI:0.58-0.99,p = 0.039)。遗传模型分析显示rs2606736(OR = 0.57,95%CI:0.34-0.95,p = 0.031)和rs6442260(OR = 0.44,95%CI:0.22-0.90,p = 0.021)与降低ccRCC风险相关隐性模型。年龄分层分析显示,rs2606736(OR = 0.67,95%CI:0.46-0.98,p = 0.036)和rs6442260(OR = 0.26,95%CI:0.07-0.89,p = 0.014)显着降低了ccRCC的风险。年龄> 55岁且≤55岁的对数加性模型。 结论:本研究表明ATG7多态性(rs2606736和rs6442260)对ccRCC风险具有保护作用。需要进一步的大样本量和功能测定来证实我们的发现并揭示ATG7多态性在ccRCC癌发生中的作用。

关键词: ATG7,多态性,透明细胞肾细胞癌,中国汉族,病例对照,SNPs。

[1]
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017 [J]. CA Cancer J Clin 2017; 67(1): 7-30.
[2]
Ljungberg B, Campbell SC, Choi HY, et al. The epidemiology of renal cell carcinoma [J]. Eur Urol 2011; 60(4): 615-21.
[3]
Hsieh JJ, Purdue MP, Signoretti S, et al. Renal cell carcinoma [J]. Nat Rev Dis Primers 2017; 3: 17009.
[4]
Mclaughlin JK, Lipworth L, Tarone RE. Epidemiologic aspects of renal cell carcinoma [J]. Semin Oncol 2006; 33(5): 527-33.
[5]
Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer [J]. Nat Rev Urol 2010; 7(5): 245-57.
[6]
Tizaoui K, Hamzaoui K, Hamzaoui A. Update on Asthma Genetics: Results From Meta-Analyses of Candidate Gene Association Studies [J]. Curr Mol Med 2017; 17(10): 647-67.
[7]
Huang XF, Chi W, Lin D, et al. Association of IL33 and IL1RAP Polymorphisms With Acute Anterior Uveitis [J]. Curr Mol Med 2018; 17(7): 471-7.
[8]
Pan X, Zheng M, Zou T, et al. The LEPR K109R and Q223R Might Contribute to the Risk of NAFLD: A Meta-Analysis [J]. Curr Mol Med 2018; 18(2): 91-9.
[9]
Liu XD, Yao J, Tripathi DN, et al. Autophagy mediates HIF2alpha degradation and suppresses renal tumorigenesis [J]. Oncogene 2015; 34(19): 2450-60.
[10]
Yu Z, Ma J, Li X, et al. Autophagy defects and related genetic variations in renal cell carcinoma with eosinophilic cytoplasmic inclusions [J]. Sci Rep 2018; 8(1): 9972.
[11]
Tanida I, Mizushima N, Kiyooka M, et al. Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy [J]. Mol Biol Cell 1999; 10(5): 1367-79.
[12]
Komatsu M, Wang QJ, Holstein GR, et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration [J]. Proc Natl Acad Sci USA 2007; 104(36): 14489-94.
[13]
Mortensen M, Simon AK. Nonredundant role of Atg7 in mitochondrial clearance during erythroid development [J]. Autophagy 2010; 6(3): 423-5.
[14]
Zhang Y, Goldman S, Baerga R, et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis [J]. Proc Natl Acad Sci USA 2009; 106(47): 19860-5.
[15]
Mortensen M, Soilleux EJ, Djordjevic G, et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance [J]. J Exp Med 2011; 208(3): 455-67.
[16]
Turcotte S, Chan DA, Sutphin PD, et al. A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy [J]. Cancer Cell 2008; 14(1): 90-102.
[17]
Liu XD, Yao J, Tripathi DN, et al. Autophagy mediates HIF2α degradation and suppresses renal tumorigenesis [J]. Oncogene 2015; 34(19): 2450-60.
[18]
Sole X, Guino E, Valls J, et al. SNPStats: a web tool for the analysis of association studies [J]. Bioinformatics 2006; 22(15): 1928-9.
[19]
Chandrashekar DS, Bashel B. Balasubramanya SaH, UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses [J]. Neoplasia 2017; 19(8): 649-58.
[20]
Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses [J]. Nucleic Acids Res 2017; 45(W1): W98-W102.
[21]
Mizushima N. Autophagy: process and function [J]. Genes Dev 2007; 21(22): 2861-73.
[22]
Brest P, Corcelle EA, Cesaro A, et al. Autophagy and Crohn’s disease: at the crossroads of infection, inflammation, immunity, and cancer [J]. Curr Mol Med 2010; 10(5): 486-502.
[23]
Zhao X, Gao S, Ren H, et al. Inhibition of autophagy strengthens celastrol-induced apoptosis in human pancreatic cancer in vitro and in vivo models [J]. Curr Mol Med 2014; 14(4): 555-63.
[24]
Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer [J]. Genes Dev 2016; 30(17): 1913-30.
[25]
Eskelinen EL. The dual role of autophagy in cancer [J]. Curr Opin Pharmacol 2011; 11(4): 294-300.
[26]
Yun CW, Lee SH. The Roles of Autophagy in Cancer [J]. Int J Mol Sci 2018; 19(11)
[27]
Sandra T, Chan DA, Sutphin PD, et al. A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy [J]. Cancer Cell 2008; 14(1): 90-102.
[28]
Singla M, Bhattacharyya S. Autophagy as a potential therapeutic target during epithelial to mesenchymal transition in renal cell carcinoma: An in vitro study [J]. Biomed Pharmacother 2017; 94: 332-40.
[29]
Tanida I, Tanida-Miyake E, Ueno T, et al. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3 [J]. J Biol Chem 2001; 276(3): 1701-6.
[30]
Noda NN, Inagaki F. Mechanisms of Autophagy [J]. Annu Rev Biophys 2015; 44: 101-22.
[31]
Sun S, Wang Z, Tang F, et al. ATG7 promotes the tumorigenesis of lung cancer but might be dispensable for prognosis predication: a clinicopathologic study [J]. OncoTargets Ther 2016; 9: 4975-81.
[32]
Santanam U, Banach-Petrosky W, Abate-Shen C, et al. Atg7 cooperates with Pten loss to drive prostate cancer tumor growth [J]. Genes Dev 2016; 30(4): 399-407.
[33]
Zhu J, Li Y, Tian Z, et al. ATG7 Overexpression Is Crucial for Tumorigenic Growth of Bladder Cancer In Vitro and In Vivo by Targeting the ETS2/miRNA196b/FOXO1/p27 Axis [J]. Mol Ther Nucleic Acids 2017; 7: 299-313.
[34]
Wang ZL, Deng Q, Chong T, et al. Autophagy suppresses the proliferation of renal carcinoma celln [J]. Eur Rev Med Pharmacol Sci 2018; 22(2): 343-50.
[35]
Christie S, Robiou-Du-Pont S, Anand SS, et al. Genetic contribution to lipid levels in early life based on 158 loci validated in adults: the FAMILY study [J]. Sci Rep 2017; 7(1): 68.
[36]
Van Hemelrijck M, Garmo H, Hammar N, et al. The interplay between lipid profiles, glucose, BMI and risk of kidney cancer in the Swedish AMORIS study [J]. Int J Cancer 2012; 130(9): 2118-28.
[37]
Pham DL, Kim SH, Losol P, et al. Association of autophagy related gene polymorphisms with neutrophilic airway inflammation in adult asthma [J]. Korean J Intern Med 2016; 31(2): 375-85.
[38]
Bi LK, Zhou N, Liu C, et al. Kidney cancer cells secrete IL-8 to activate Akt and promote migration of mesenchymal stem cells [J]. Urol Oncol 2014; 32(5): 607-12.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy