Research Article

在CNT(6,6-6)纳米管上吸附Tyrphostin AG528抗癌药物的研究:DFT研究

卷 19, 期 2, 2019

页: [91 - 104] 页: 14

弟呕挨: 10.2174/1566524019666190226111823

价格: $65

摘要

目的:本研究首次通过密度泛函理论(DFT)计算溶剂水中药物Tyrphostin AG528与CNT(6,6-6)纳米管的相互作用。 方法和结果:根据计算,在分子Tyrphostin AG528的活性位置和纳米管的氢原子之间发生分子间氢键,其在复合CNT(6,6-6)/ Tyrphostin AG528的稳定性中起重要作用。 。还检测到分子Tyrphostin AG528与CNT(6,6-6)纳米管的非键合相互作用对电子性质,化学位移张量和自然电荷的影响。自然键轨道(NBO)分析表明,Tyrphostin AG528分子作为电子供体,CNT(6,6-6)纳米管在复合物CNT(6,6-6)/ Tyrphostin AG528中起电子受体的作用。 。 结论:Tyrphostin AG528药物和复合CNT(6,6-6)/ Tyrphostin AG528在溶剂水中的电子光谱通过时间密度泛函理论(TD-DFT)计算,用于研究Tyrphostin AG528的吸附效果。最大波长的纳米管上的药物。然后,已经建立了使用CNT(6,6-6)纳米管将Tyrphostin AG528递送至患病细胞的可能性。

关键词: Tyrphostin AG528,CNT(6

[1]
Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res 2009; 2: 85-120.
[2]
Peretz S, Regev O. Carbon nanotubes as nanocarriers in medicine. Curr Opin Colloid Interface Sci 2012; 17: 360-8.
[3]
Vashist SK, Zheng D, Pastorin G, Al-Rubeaan K, Luong JHT, Sheu F. Delivery of drugs and biomolecules using carbon nanotubes. Carbon 2011; 49: 4077-97.
[4]
Ji S, Liu C, Zhang B, et al. Carbon nanotubes in cancer diagnosis and therapy. Biochim.Biophys Acta (BBA)-. Rev Can 2010; 1806: 29-35.
[5]
Digge MS, Moon RS, Gattani SG. Applications of carbon nanotubes in drug delivery: A review. Int J Pharm Tech Res 2012; 4: 839-47.
[6]
Chandrasekhar P. CNT Applications in Drug and Biomolecule Delivery.In:Conducting Polymers, Fundamentals and Applications. Cham: Springer 2018; pp. 61-4.
[7]
Sharma S, Mehra NK, Jain K, Jain NK. Effect of functionalization on drug delivery potential of carbon nanotubes. Artif Cells Nanomed Biotechnol 2016; 44: 1851-60.
[8]
Mishra AK. Nanomedicine for drug delivery and therapeutics. John Wiley & Sons 2013.
[9]
Wilczewska AZ, Niemirowicz K, Markiewicz KH. Nanoparticles as drug delivery systems. Pharmacol Rep 2012; 64: 1020-37.
[10]
Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv Drug Deliv Rev 2006; 58: 1460-70.
[11]
Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Discov Today 2012; 17: 1044-52.
[12]
Tripisciano C, Kraemer K, Taylor A, Borowiak-Palen E. Single-wall carbon nanotubes based anticancer drug delivery system. Chem Phys Lett 2009; 478: 200-5.
[13]
Panchapakesan B, Lu S, Sivakumar K, Taker K, Cesarone G, Wickstrom E. Single-wall carbon nanotube nanobomb agents for killing breast cancer cells. Nanobiotechnol 2005; 1: 133-9.
[14]
Meng L, Zhang X, Lu Q, Fei Z, Dyson PJ. Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomater 2012; 33: 1689-98.
[15]
Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 2011; 6: 1-22.
[16]
Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 2009; 9: 28-39.
[17]
Levitzki A, Gazit A. Tyrosine kinase inhibition: an approach to drug development. Science 1995; 267: 1782-8.
[18]
Gschwind AM, Fischer O, Ullrich A. The discovery of receptor tyrosine kinases: Targets for cancer therapy. Nat Rev Cancer 2004; 4: 361-70.
[19]
Levitzki A, Mishani E. Tyrphostins and other tyrosine kinase inhibitors. Annu Rev Biochem 2006; 75: 93-109.
[20]
Levitzki A, Gazit A, Osherov N, Posner I, Gilon C. Inhibition of protein-tyrosine kinases by tyrphostins. Methods Enzymol 1991; 201: 37-61.
[21]
Yamamoto E, Kitano Y, Hasumi K. Elucidation of crucial structures for a catechol-based inhibitor of plasma hyaluronan-binding protein (factor VII activating protease) autoactivation. Biosci Biotechnol Biochem 2011; 75: 2070-2.
[22]
Fishbein I, Chorny M, Rabinovich L, Banai S, Gati I, Golomb G. Nanoparticulate delivery system of a tyrphostin for the treatment of restenosis. J Control Release 2000; 65: 221-9.
[23]
Fishbein I, Chorny M, Banai S, et al. Formulation and delivery mode affect disposition and activity of tyrphostin-loaded nanoparticles in the rat carotid model. Arterioscler Thromb Vasc Biol 2001; 21: 1434-9.
[24]
Xu H, Li L, Fan G, Chu X. DFT study of nanotubes as the drug delivery vehicles of Efavirenz. Comput Theor Chem 2018; 1131: 57-68.
[25]
El Khalifi M, Duverger E, Boulahdour H, Picaud F. Theoretical study of the interaction between carbon nanotubes and carboplatin anticancer molecules. Anal Methods 2015; 7: 10145-50.
[26]
Wang Y, Xu Z. Interaction mechanism of doxorubicin and SWCNT: protonation and diameter effects on drug loading and releasing. RSC Advances 2016; 6: 314-22.
[27]
Sheikhi M, Shahab S, Khaleghian M, Kumar R. Interaction between new anti-cancer drug syndros and CNT(6,6-6) nanotube for medical applications: Geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigation. Appl Surf Sci 2018; 434: 504-13.
[28]
Sheikhi M, Shahab S, Khaleghian M, Hajikolaee FH, Balakhanava I, Alnajjar R. Adsorption properties of the molecule resveratrol on CNT (8, 0-10) nanotube: Geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, Excited State), FMO, MEP and HOMO-LUMO investigations. J Mol Struct 2018; 1160: 479-8.
[29]
Khattab M, Wang F, A. H.A. Clayton Conformational plasticity in tyrosine kinase inhibitor-kinase interactions revealed with fluorescence spectroscopy and theoretical calculations. J Phys Chem B 2018; 122: 4667-79.
[30]
Shahab S, Filippovich L, Sheikhi M, et al. Polarization, excited states, trans-cis properties and anisotropy of thermal and electrical conductivity of the 4-(phenyldiazenyl)aniline in PVA matrix. J Mol Struct 2017; 1141: 703-9.
[31]
Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09 revision A02. Gaussian, Inc., Wallingford CT. 2009.
[32]
Frisch A, Nielson AB, Holder AJ. GAUSSVIEW User Manual. Gaussian Inc., Pittsburgh, PA. 2000.
[33]
Sheikhi M, Shahab S, Filippovich L, Yahyaei H, Dikusar E, Khaleghian M. New derivatives of (E,E)-azomethines: Design, quantum chemical modeling, spectroscopic (FT-IR, UV/Vis, polarization) studies, synthesis and their applications: Experimental and theoretical investigations. J Mol Struct 2018; 1152: 368-85.
[34]
Shahab S, Sheikhi M, Filippovich L. DikusarAnatol’evich E, Yahyaei H. Quantum chemical modeling of new derivatives of (E,E)-azomethines: Synthesis, spectroscopic (FT-IR, UV/Vis, polarization) and thermophysical investigations. J Mol Struct 2017; 1137: 335-48.
[35]
Weinhold F, Landis CR. Natural Bond Orbitals and Extensions of Localized Bonding Concepts. Chem Educ Res Pract 2001; 2: 91-104.
[36]
Sheikhi M, Sheikh D. Quantum chemical investigations on phenyl-7,8- dihydro-[1,3]dioxolo[4,5-g] quinolin-6(5h)-one. Rev Roum Chim 2014; 59: 761-7.
[37]
Sheikhi M, Balali E, Lari H. Theoretical investigations on molecular structure, NBO, HOMO-LUMO and MEP analysis of two crystal structures of N-(2-benzoyl-phenyl) oxalyl: A DFT study. J Phys Theor Chem 2016; 13: 155-71.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy