Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

5-Nitrofuran-2-yl Thiohydrazones as Double Antibacterial Agents Synthesis and In Vitro Evaluation

Author(s): Alexey Yurjevich Lukin, Tatiana Sergeevna Vedekhina and Mikhail Vassiljevich Chudinov*

Volume 17, Issue 3, 2020

Page: [356 - 361] Pages: 6

DOI: 10.2174/1570180816666190221162055

Price: $65

Abstract

Background: Applying of "double-drug" strategy to 5-nitrofuran derivatives has been proposed.

Methods: A small library of 5-Nitrofuran-2-yl Thiohydrazones was developed, and initial screening demonstrated good activity against bacteria and fungi of ESKAPE panel.

Results and Conclusion: The synthesis of the desired thiohydrazones was carried out via condensation of 5-nitrofuran-2-carbaldehyde with thiohydrazides of substituted oxamic acids.

Keywords: 5-Nitrofuran derivatives, thiohydrazones, double drug, health care-associated infections, bacterial resistance, CO-ADD.

« Previous
Graphical Abstract

[1]
Dann, O.; Möller, E.F. Bakteriostatish wirkende nitroverbindunges des thiophens und furans. Chem. Ber., 1947, 80, 23-36.
[2]
Chamberlain, R.E. Chemotherapeutic properties of prominent nitrofurans. J. Antimicrob. Ther., 1976, 2(4), 325-336.
[http://dx.doi.org/10.1093/jac/2.4.325]
[3]
Monasterios, M.; Escorche, M.; Avendaño, M. Conformational analysis, electronic properties and molecular electrostatic potential of nitrofurans derivatives with antibacterial activity. J. Mol. Struct., 2005, 748(1-3), 49-55.
[http://dx.doi.org/10.1016/j.molstruc.2005.03.019]
[4]
Krasavin, M.; Parchinsky, V.; Kantin, G.; Manicheva, O.; Dogonadze, M.; Vinogradova, T.; Karge, B.; Brönstrup, M. New nitrofurans amenable by isocyanide multicomponent chemistry are active against multidrug-resistant and poly-resistant Mycobacterium tuberculosis. Bioorg. Med. Chem., 2017, 25(6), 1867-1874.
[http://dx.doi.org/10.1016/j.bmc.2017.02.003] [PMID: 28214232]
[5]
Zorzi, R.R.; Jorge, S.D.; Palace-Berl, F.; Pasqualoto, K.F.M.; Bortolozzo, L.S.; Siqueira, A.M.C.; Tavares, L.C. Exploring 5-nitrofuran derivatives against nosocomial pathogens: Synthesis, antimicrobial activity and chemometric analysis. Bioorg. Med. Chem., 2014, 22, 2844-2854.
[http://dx.doi.org/10.1016/j.bmc.2014.03.044] [PMID: 24751553]
[6]
Popiołek, Ł.; Biernasiuk, A. Synthesis and investigation of antimicrobial activities of nitrofurazone analogues containing hydrazide-hydrazone moiety. Saudi Pharm. J., 2017, 25, 1097-1102.
[http://dx.doi.org/10.1016/j.jsps.2017.05.006] [PMID: 29158722]
[7]
Palace-Berl, F.; Pasqualoto, K.F.M.; Jorge, S.D.; Zingales, B.; Zorzi, R.R.; Silva, M.N.; Ferreira, A.K.; Azevedo, R.A.; Teixeira, S.F.; Tavares, L.C. Designing and exploring active N′-[(5-nitrofuran-2-yl) methylene] substituted hydrazides against three Trypanosoma cruzi strains more prevalent in Chagas disease patients. Eur. J. Med. Chem., 2015, 96, 330-339.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.066] [PMID: 25899337]
[8]
Palace-Berl, F.; Pasqualoto, K.F.M.; Zingales, B.; Moraes, C.B.; Bury, M.; Franco, C.H.; Neto, A.L.S.; Murayama, J.S.; Nunes, S.L.; Silva, M.N.; Tavares, L.C. Investigating the structure-activity relationships of N′-[(5-nitrofuran-2-yl) methylene] substituted hydrazides against Trypanosoma cruzi to design novel active compounds. Eur. J. Med. Chem., 2018, 144, 29-40.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.011] [PMID: 29247858]
[9]
Kedderis, G.L.; Miwa, G.T. The metabolic activation of nitroheterocyclic therapeutic agents. Drug Metab. Rev., 1988, 19(1), 33-62.
[http://dx.doi.org/10.3109/03602538809049618] [PMID: 3293954]
[10]
Viodé, C.; Bettacha, N.; Cenas, N.; Krauth-Siegel, R.L.; Chauvière, G.; Bakalara, N.; Périé, J. Enzymatic reduction studies of nitroheterocycles. Biochem. Pharmacol., 1999, 57(5), 549-557.
[http://dx.doi.org/10.1016/S0006-2952(98)00324-4] [PMID: 9952319]
[11]
Purohit, V.; Basu, A.K. Mutagenicity of nitroaromatic compounds. Chem. Res. Toxicol., 2000, 13, 673-692.
[http://dx.doi.org/10.1021/tx000002x]
[12]
Hofnung, M.; Quillardet, P.; Michel, V.; Touati, E. Genotoxicity of 2-nitro-7-methoxy-naphtho[2,1-b]furan (R7000): A case study with some considerations on nitrofurantoin and nifuroxazide. Res. Microbiol., 2002, 153, 427-434.
[http://dx.doi.org/10.1016/S0923-2508(02)01354-2] [PMID: 12405349]
[13]
Pokrovskaya, V.; Baasov, T. Dual-acting hybrid antibiotics: A promising strategy to combat bacterial resistance. Expert Opin. Drug Discov., 2010, 5(9), 883-902.
[http://dx.doi.org/10.1517/17460441.2010.508069] [PMID: 22823262]
[14]
Waisser, K.; Odlerová, Z.; Houngbedji, N.; Thiel, W.; Mayer, R. [Antitubercular agents. 45. Antimycobacterial thiohydrazide]. Zentralbl. Mikrobiol., 1989, 144(5), 355-357.
[http://dx.doi.org/10.1016/S0232-4393(89)80015-0] [PMID: 2515678]
[15]
Yarovenko, V.N.; Zayakin, E.S.; Krayushkin, M.M.; Zorina, V.V.; Kapotina, L.N.; Zigangirova, N.A. Derivatives of thiohydrazides as effective antibacterial remedies for chlamydial infection treatment at chronic stages of infections. J. Chem. Chem. Eng., 2010, 4(4), 55.
[16]
Krayushkin, M.M. N-Substituted derivatives of oxamic acid thiohydrazides, synthesis method and use thereof. Russian Patent RU 2400471 2009.
[17]
Yarovenko, V.N.; Shirokov, A.V.; Krupinova, O.N.; Zavarzin, I.V.; Krayushkin, M.M. Synthesis of oxamic acids thiohydrazides and carbamoyl-1,3,4-thiadiazoles. Russ. J. Org. Chem., 2003, 39(8), 1133-1139.
[http://dx.doi.org/10.1023/B:RUJO.0000010181.01921.77]
[18]
Krasavin, M.; Lukin, A.; Zhurilo, N.; Kovalenko, A.; Zahanich, I.; Zozulya, S. Novel agonists of free fatty acid receptor 1 (GPR40) based on 3-(1,3,4-thiadiazol-2-yl)propanoic acid scaffold. J. Enzyme Inhib. Med. Chem., 2016, 31, 1404-1410.
[19]
Cooper, M.A. A community-based approach to new antibiotic discovery. Nat. Rev. Drug Discov., 2015, 14(9), 587-588.
[http://dx.doi.org/10.1038/nrd4706] [PMID: 26265313]
[20]
McDonald, C.L.; Maher, W.E.; Fass, R.J. Revised interpretation of oxacillin MICs for Staphylococcus epidermidis based on mecA detection. Antimicrob. Agents Chemother., 1995, 39(4), 982-984.
[http://dx.doi.org/10.1128/AAC.39.4.982] [PMID: 7786008]
[21]
Ramage, G.; Vande Walle, K.; Wickes, B.L.; López-Ribot, J.L. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob. Agents Chemother., 2001, 45(9), 2475-2479.
[http://dx.doi.org/10.1128/AAC.45.9.2475-2479.2001] [PMID: 11502517]
[22]
Lyusova, L.R.; Ilyin, A.A.; Shibryaeva, L.S. Methods of preventing biofilms formation on the surfaces of polymer materials. Fine Chem. Technol, 2018, 13(6), 5-27. (in Russian).

© 2025 Bentham Science Publishers | Privacy Policy